共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium binding to brain and erythrocyte spectrins was studied at physiological ionic strength by a calcium overlay assay and aqueous two-phase partitioning. When the spectrins were immobilized on nylon membranes by slot blotting, the overlay assay showed that even though both spectrins bound 45Ca2+, the brain protein displayed much greater affinity for calcium ions than erythrocyte spectrin did. Since the observed binding was weaker than that displayed by calmodulin under similar conditions, the overlay assay results indicated that the binding must be weaker than 1 microM. The phase partition experiments showed that there are at least two sites for calcium on brain spectrin and that calcium binding to one of these sites is reduced significantly by magnesium ions. From the partition isotherm, the dissociation constants were estimated as 50 microM for the Mg(2+)-independent site and 150 microM for the Mg(2+)-dependent site. The phase partition results also showed that erythrocyte spectrin bound calcium ions at least 1 order of magnitude weaker. By examining calcium binding to slot-blotted synthetic peptides, we identified two binding sites in brain spectrin. One mapped to the second putative calcium binding site (EF-hand) in alpha-spectrin and the other to the 36 amino acid residue long insert in domain 11. In addition, a tryptic fragment derived from the C-terminal of erythrocyte alpha-spectrin, which contained the two postulated EF-hands, also bound calcium. These findings suggest that the calcium signal system may also involve direct binding of calcium to spectrin beside known calcium modulators such as calmodulin and calpain.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
2.
Brain spectrin alpha and beta chains bind 45Ca2+, as shown by the calcium overlay method. Flow dialysis measurements revealed eight high affinity binding sites/tetramer that comprise two binding components (determined by nonlinear regression analysis). The first component has one or two sites (kd = 2-30 x 10(-8) M), depending on the ionic strength of the binding buffer, with the remaining high affinity sites in the second component (kd = 1-3 x 10(-6) M). In addition, there is a variable, low affinity binding component (n = 100-400, kd = 1-2 x 10(-4) M). Magnesium inhibits calcium binding to the low affinity sites with a K1 = 1.21 mM. Proteolytic fragments from trypsin or chymotrypsin digests of brain spectrin bind 45Ca2+ if they include alpha domain IV, alpha domain III, or the amino-terminal half of the beta chain (but more than 25 kDa from the amino-terminal). These data suggest that calcium ions bind with high affinity to the putative EF-hands in alpha domain IV and to one site in the amino-terminal half of the beta chain that is associated with alpha domain IV in the native dimer. The localization is consistent with a direct calcium modulation of the spectrin-actin-protein 4.1 interaction. In addition, there appears to be one high affinity site near the hypersensitive region of alpha brain spectrin. All four proposed binding sites occur near probable calmodulin-binding or calcium-dependent protease cleavage sites. 相似文献
3.
E Damiani C Heilmann S Salvatori A Margreth 《Biochemical and biophysical research communications》1989,165(3):973-980
It had been previously demonstrated that endoplasmic reticulum membranes from rat hepatocytes contain a major calsequestrin-like protein, on account of electrophoretic and Stains All-staining properties (Damiani et al., J. Biol. Chem. 263, 340-343). Here we show that a Ca2+-binding protein sharing characteristics in size and biochemical properties with this protein is likewise present in the isolated endoplasmic reticulum from human liver. Human calsequestrin-like protein was characterized as 62 kDa, highly acidic protein (pl 4.5), using an extraction procedure from whole tissue, followed by DEAE-Cellulose chromatography, that was originally developed for purification of skeletal muscle and cardiac calsequestrin. Liver calsequestrin-like protein bound Ca2+ at low affinity (Kd = 4 mM) and in high amounts (Bmax = 1600 nmol Ca2+/mg of protein), as determined by equilibrium dialysis, but differed strikingly from skeletal muscle calsequestrin for the lack of binding to phenyl-Sepharose resin in the absence of Ca2+, and of changes in intrinsic fluorescence upon binding of Ca2+. Thus, these results suggest that liver 62 kDa protein, in spite of its calsequestrin-like Ca2+-binding properties, does not contain a Ca2+-regulated hydrophobic site, which is a specific structural feature of the calsequestrin-class of Ca2+-binding proteins. 相似文献
4.
Calcium binding to adipocyte plasma membranes has been assessed by equilibrium dialysis and by membrane filtration techniques. Calcium binding was specific and saturable, displaying two distinct classes of binding sites. The affinity constants and maximum binding capacities in the presence of 0.1 M KCl were 4.5 X 10(4) M-1 and 1.8 nmol/mg of protein and 2.0 X 10(3) M-1 and 13.7 nmol/mg for the high and low affinity sites, respectively. Bound calcium was totally dissociated in the presence of excess calcium within 11.0 min in two distinct phases corresponding to the two classes of sites. Association and dissociation rate constants for the high affinity sites were 7.7 X 10(2) M-1S-1 and 9.2 X 10(-3S-1 respectively. Free energy changes at 24 degrees were +6.4 kcal mol-1 for the high affinity sites and +4.5 kcal mol-1 for the low affinity sites. The high affinity sites demonstrated a pH optimum of 7.0 whereas the binding to the low affinity sites progressively increased between pH 6.0 and 9.0. Low concentrations of MgCl2 (less than 300 muM) enhanced calcium binding slightly, whereas high concentrations of KCl and MgCl2 were noncompetitive inhibitors of calcium binding. Procaine and ruthenium red had no effect on calcium binding and lanthanum was a poor inhibitor of calcium binding. This represents the first report of calcium binding to adipocyte plasma membranes and the first kinetic analysis of calcium binding to biological membranes. The specificity of this calcium-binding system in adipocyte plasma membranes suggests its importance in cellular bioregulation. 相似文献
5.
Adiponectin is secreted from adipose tissue and functions as a protein hormone in regulating glucose metabolism and fatty acid catabolism. Adiponectin plays an important role as a novel risk factor and potential diagnostic and prognostic biomarker in cancer. Crystal structures of globular adiponectin have been resolved with three calcium‐binding sites on the top of its central tunnel. However, the calcium‐binding property of adiponectin remains elusive. Mouse globular adiponectin was cloned into pET11a and expressed in Escherichia coli. The folding of adiponectin was indicated by the spread of resonances in HSQC spectrum. Luminescence resonance energy transfer was used to obtain the binding constant (Kd) of Tb3+ and the inhibitor constant (Ki) of Ca2+ for globular adiponectin. The obtained calcium‐binding affinity to adiponectin is relatively low (~2 mM), which indicates that the high concentration of adiponectin in circulating system may function as calcium storage bank and buffer the free calcium concentration. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
6.
Calcium binding protein 40 (CBP40) is a Ca(2+)-binding protein abundant in the plasmodia of Physarum polycephalum. CBP40 consists four EF-hand domains in the COOH-terminal half and a putative alpha-helix domain in the NH(2)-terminal half. We expressed recombinant proteins of CBP40 in Escherichia coli to investigate its Ca(2+)-binding properties. Recombinant proteins of CBP40 bound 4 mol of Ca(2+) with much higher affinity (pCa(1/2) = 6.5) than that of calmodulin. When residues 1-196 of the alpha-helix domain were deleted, the affinity for Ca(2+) decreased to pCa(1/2) = 4.6. A chimeric calmodulin was generated by conjugating the alpha-helix domain of CBP40 with calmodulin. The affinity of Ca(2+) for the chimeric calmodulin was higher than that for calmodulin, suggesting that the alpha-helix domain is responsible for the high affinity of CBP40 for Ca(2+). CBP40 forms large aggregates reversibly in a Ca(2+)-dependent manner. A mutant protein with a deletion of NH(2)-terminal 32 residues, however, could not aggregate, indicating the importance of these residues for the aggregation. The aggregation occurs above micromolar levels of Ca(2+) concentration, so it may only occur when CBP40 is secreted out of the plasmodial cells. 相似文献
7.
Caged-Ca(2+) compounds such as nitrophenyl-EGTA (NP-EGTA) and DM-nitrophen (DMn) are extremely useful in biological research, but their use in live cells is hampered by cytoplasmic [Mg(2+)]. We determined the properties of Ca(2+) release from NP-EGTA and DMn by using Oregon green BAPTA-5N to measure changes in [Ca(2+)] after ultraviolet flash photolysis in vitro, with or without Mg(2+) present. A large fraction (65%) of NP-EGTA, which has a negligible Mg(2+) affinity, uncages with a time constant of 10.3 ms, resulting in relatively slow increases in [Ca(2+)]. Uncaging of DMn is considerably faster, but DMn has a significant affinity for Mg(2+) to complicate the uncaging process. With experimentally determined values for the Ca(2+) and Mg(2+) binding/unbinding rates of DMn and NP-EGTA, we built a mathematical model to assess the utility of NP-EGTA and DMn in rapid Ca(2+)-uncaging experiments in the presence of Mg(2+). We discuss the advantages and disadvantages of using each compound under different conditions. To determine the kinetics of Ca(2+) binding to biologically relevant Ca(2+) buffers, such as Ca(2+)-binding proteins, the use of DMn is preferable even in the presence of Mg(2+). 相似文献
8.
The Ca2+-binding properties of isolated brush-border membranes at physiological ionic strength and pH were examined by rapid Millipore filtration. A comprehensive analysis of the binding data suggested the presence of two types of Ca2+-binding sites. The high-affinity sites, Ka = (6.3 +/- 3.3) X 10(5) M-1 (mean +/- S.E.M.), bound 0.8 +/- 0.1 nmol of Ca2+/mg of protein and the low-affinity sites, Ka = (2.8 +/- 0.3) X 10(2) M-1, bound 33 +/- 3.5 nmol of Ca2+/mg of protein. The high-affinity site exhibited a selectivity for Ca2+, since high concentrations of competing bivalent cations were required to inhibit Ca2+ binding. The relative effectiveness of the competing cations (1 and 10 mM) for the high-affinity site was Mn2+ approximately equal to Sr2+ greater than Ba2+ greater than Mg2+. Data from the pH studies, treatment of the membranes with carbodi-imide and extraction of phospholipids with aqueous acetone and NH3 provided evidence that the low-affinity sites were primarily phospholipids and the high-affinity sites were either phosphoprotein or protein with associated phospholipid. Two possible roles for the high-affinity binding sites are suggested. Either high-affinity Ca2+ binding is involved with specific enzyme activities or Ca2+ transport across the luminal membrane occurs via a Ca2+ channel which contains a high-affinity Ca2+-specific binding site that may regulate the intracellular Ca2+ concentration and gating of the channel. 相似文献
9.
10.
We report the first characterization of the physical and spectroscopic properties of the Staphylococcus aureus heme-binding protein IsdA. In this study, a combination of gel filtration chromatography and analytical centrifugation experiments demonstrate that IsdA, in solution, is a monomer and adopts an extended conformation that would suggest that it has the ability to protrude from the staphylococcal cell wall and interact with the extracellular environment. IsdA efficiently scavenged intracellular heme within Escherichia coli. Gel filtration chromatography and electrospray mass spectrometry together showed that rIsdA in solution is a monomer, and each monomer binds a single heme. Magnetic circular dichroism analyses demonstrate that the heme in rIsdA is a five-coordinate high-spin ferric heme molecule, proximally coordinated by a tyrosyl residue in a cavity that restricts access to small ligands. The heme binding is unlike that in a typical heme protein, for example, myoglobin, because we report that no additional axial ligation is possible in the high-spin ferric state of IsdA. However, reduction to ferrous heme is possible which then allows CO to axially ligate to the ferrous iron. Reoxidation forms the ferric heme, which is once again isolated from exogenous ligands. In summary, rIsdA binds a five-coordinate, high-spin ferric heme which is proximally coordinated by tyrosine. Reduction results in formation of five-coordinate, high-spin ferrous heme with a neutral axial ligand, most likely a histidine. Subsequent addition of CO results in a six-coordinate low-spin ferrous heme also with histidine likely bound proximally. Reoxidation returns the tyrosine as the proximal ligand. 相似文献
11.
Lockwood CW Clarke TA Butt JN Hemmings AM Richardson DJ 《Biochemical Society transactions》2011,39(6):1871-1875
The decahaem homodimeric cytochrome c nitrite reductase (NrfA) is expressed within the periplasm of a wide range of Gamma-, Delta- and Epsilon-proteobacteria and is responsible for the six-electron reduction of nitrite to ammonia. This allows nitrite to be used as a terminal electron acceptor, facilitating anaerobic respiration while allowing nitrogen to remain in a biologically available form. NrfA has also been reported to reduce nitric oxide (a reaction intermediate) and sulfite to ammonia and sulfide respectively, suggesting a potential secondary role as a detoxification enzyme. The protein sequences and crystal structures of NrfA from different bacteria and the closely related octahaem nitrite reductase from Thioalkalivibrio nitratireducens (TvNir) reveal that these enzymes are homologous. The NrfA proteins contain five covalently attached haem groups, four of which are bis-histidine-co-ordinated, with the proximal histidine being provided by the highly conserved CXXCH motif. These haems are responsible for intraprotein electron transfer. The remaining haem is the site for nitrite reduction, which is ligated by a novel lysine residue provided by a CXXCK haem-binding motif. The TvNir nitrite reductase has five haems that are structurally similar to those of NrfA and three extra bis-histidine-coordinated haems that precede the NrfA conserved region. The present review compares the protein sequences and structures of NrfA and TvNir and discusses the subtle differences related to active-site architecture and Ca2+ binding that may have an impact on substrate reduction. 相似文献
12.
Conformation and calcium binding properties of a series of gastrin-related peptides, in which the glutamic acid sequence at
the N-terminal portion of the molecule has been elongated step by step, have been investigated using circular dichroism spectroscopy.
A working hypothesis about the structure of these hormones in trifluoroethanol has been proposed. The structure comprises
aβ-bend located at the level of the sequence Ala-Tyr-Gly-Trp. A correlation between chain elongation and increase of biological
potency has been observed. All examined peptides strongly interact with calcium ions in trifluoroethanol. The variation of
the circular dichroism spectra upon calcium addition provided some information about the groups involved in the coordination
of the ions. Our results allow the hypothesis of the presence of one binding site, located at the C-terminal portion of the
molecule in the gastrin octapeptide, and of an additional site at the N-terminus, in the longer fragments. The carboxyl function
of Asp and Glu side-chains, at the two ends of the molecules, are probably involved in the interaction with the metal ions. 相似文献
13.
Durba Mukhopadhyay Prabar K. Ghosh Aparna Sen Manju Mukherjea 《Journal of biosciences》1998,23(5):605-612
Two fatty acid binding proteins (FABPs) of identicalM
r, 13 kDa, have been isolated from developing human fetal brain. A delipidated 105,000 g supernatant was incubated with [1
-14C]oleate and subjected to a Sephacryl S-200 column followed by gel filtration chromatography on a Sephadex G-75 column and
ion-exchange chromatography using a DEAE-Sephacel column. Purity was checked by UV spectroscopy, SDS-PAGE, isoelectric focusing
and immunological cross-reactivity. The two FABPs designated as DE-I (pI 5.4) and DE-II (pI 6.9) showed cross-reactivity with
each other and no alteration at the antigenic site during intrauterine development. Anti-human fetal brain FABP does not cross-react
with purified human fetal heart, gut, lung or liver FABPs. The molecular mass of DE-I and DE-II is lower than those of fetal
lung and liver FABPs. Like liver FABP, these proteins bind organic anions, fatty acids and acyl CoAs but differ in their binding
affinities. Both DE-I and DE-II have been found to exhibit higher affinity for oleate (K
d = 0.23 μM) than palmitate (K
d = 0.9μM) or palmitoyl-CoA (K
d = 0.96 μM), with DE-I binding less fatty acids than DE-II. DE-II is more efficient in transferring fatty acid from phospholipid
vesjcles than DE-I indicating that human fetal brain FABPs may play a significant role in fatty acid transport in developing
fetal brain. 相似文献
14.
Characterization of the DNA binding properties of polyomavirus capsid protein. 总被引:4,自引:8,他引:4 下载免费PDF全文
The DNA binding properties of the polyomavirus structural proteins VP1, VP2, and VP3 were studied by Southwestern analysis. The major viral structural protein VP1 and host-contributed histone proteins of polyomavirus virions were shown to exhibit DNA binding activity, but the minor capsid proteins VP2 and VP3 failed to bind DNA. The N-terminal first five amino acids (Ala-1 to Lys-5) were identified as the VP1 DNA binding domain by genetic and biochemical approaches. Wild-type VP1 expressed in Escherichia coli (RK1448) exhibited DNA binding activity, but the N-terminal truncated VP1 mutants (lacking Ala-1 to Lys-5 and Ala-1 to Cys-11) failed to bind DNA. The synthetic peptide (Ala-1 to Cys-11) was also shown to have an affinity for DNA binding. Site-directed mutagenesis of the VP1 gene showed that the point mutations at Pro-2, Lys-3, and Arg-4 on the VP1 molecule did not affect DNA binding properties but that the point mutation at Lys-5 drastically reduced DNA binding affinity. The N-terminal (Ala-1 to Lys-5) region of VP1 was found to be essential and specific for DNA binding, while the DNA appears to be non-sequence specific. The DNA binding domain and the nuclear localization signal are located in the same N-terminal region. 相似文献
15.
16.
Silvia N. Fernndez Zulema C. Mansilla-Whitacre Dora C. Miceli 《Molecular reproduction and development》1994,38(4):364-372
Serum steroid binding properties of mature Bufo arenarum females were studied. Binding data obtained using charcoal adsorption assay and equilibrium dialysis methods indicates a single protein, named Bufo arenarum sex binding protein (Ba SBP), which binds 5 α-dihydrotestosterone (DHT), testosterone (T), and estradiol-17β (E2) with high affinity (107 M?1 – 108 M?1) and fair capacity (10?6 M). Scatchard plot analysis demonstrated the coexistence of two binding sites. Ba SBP has a sedimentation coefficient of 5.2 S in sucrose gradient centrifugation in low salt and under steady-state conditions. The specificity of this protein, determined by competitive binding experiments, is comparable to human SBP. DHT and T bind with higher affinity than E2. Estriol and estrone competed poorly, while diethylstilbestrol and C21 steroids did not compete. The binding capacity of this protein is under estrogenic control. © 1994 Wiley-Liss, Inc. 相似文献
17.
Conformation and ion binding properties of peptides related to calcium binding domain III of bovine brain calmodulin 总被引:1,自引:0,他引:1
The conformational and ion binding properties of the sequences 93-104, 96-104, and 93-98 of domain III of bovine brain calmodulin (CaM) have been studied by CD and Tb3+-mediated fluorescence. In aqueous solution the interaction of all fragments with Ca2+ and Mg2+ ions is very weak and without any effect on the peptide conformation, which remains always random. In trifluoroethanol the interaction is very strong and the different fragments exhibit very distinct binding properties. In particular, the dodecapeptide fragment 93-104, and its N-terminal hexapeptide 98-104, bind calcium and magnesium with a very high binding constant (Kb greater than 10(5) M-1), undergoing a substantial conformational change. The structural rearrangement is particularly evident in the hexapeptide fragment, which tend to form a beta-bend. The C-terminal nonapeptide fragment 96-104 interacts with calcium and magnesium more weakly, and the binding process causes a decrease of ordered structure. These results suggest that, even in the entire dodecapeptide sequence corresponding to the loop of domain III of CaM, the calcium binding site is shifted toward the N-terminal hexapeptide segment. This interpretation is consistent with the results of crystallographic studies of CaM, which show that the calcium ions are located toward the amino terminal portion of the loop. 相似文献
18.
When delipidated Mr>10,000 cut-off human fetal lung cytosol was separated on gel filtration and ion-exchange chromatography on Auto-FPLC system, two fatty acid-binding proteins (FABPs) of pI 6.9 and pI 5.4 were purified to homogeneity. On Western blotting analysis with the anti-human fetal lung pI 6.9 FABP, these two proteins showed immunochemical cross reactivity with each other and with purified hepatic FABPs but not with cardiac or gut FABP. These two FABPs have identical molecular mass of 15.2 kDa, which is slightly higher than that of the hepatic proteins (14.2 kDa). Carbohydrate covalently linked to FABPs, that may substantially add to the molecular mass, was not detected in the purified protein preparations. Amino acid analysis revealed that both the proteins have same amino acid composition each containing one Trp residue that is lacking in hepatic FABP. Different isoforms of lung FABP exhibited different binding ability for their natural ligands. These proteins bind palmitoyl CoA with higher affinity than oleic acid. pI 6.9 FABP can more rapidly and efficiently transfer fatty acid than can pI 5.4 FABP from unilammelar liposomes. Thus these FABPs may play a critical role in fatty acid transport during human fetal lung development.Abbreviations AO
anthroyloxy
- 12-AS
12-(9-anthroyloxy)stearic acid
- FABP
fatty acid-binding protein
- NBD-PE
[N-(4-nitrobenzo-2-oxa-1,3-diazole)phosphatidylethanolamine
- Pal-CoA
palmitoyl coenzyme A
- PITC
phenylisothiocyanate
- PBS
phosphate-buffered saline
- PtdCho
phosphatidylcholine
- SUV
small unilamellar vesicle
- Tris
tris(hydroxymethyl) amino methane 相似文献
19.
Kovalevskaya NV Bokhovchuk FM Vuister GW 《Journal of structural and functional genomics》2012,13(2):91-100
The epithelial Ca(2+) channels TRPV5/6 (transient receptor potential vanilloid 5/6) are thoroughly regulated in order to fine-tune the amount of Ca(2+) reabsorption. Calmodulin has been shown to be involved into calcium-dependent inactivation of TRPV5/6 channels by binding directly to the distal C-terminal fragment of the channels (de Groot et al. in Mol Cell Biol 31:2845-2853, 12). Here, we investigate this binding in detail and find significant differences between TRPV5 and TRPV6. We also identify and characterize in vitro four other CaM binding fragments of TRPV5/6, which likely are also involved in TRPV5/6 channel regulation. The five CaM binding sites display diversity in binding modes, binding stoichiometries and binding affinities, which may fine-tune the response of the channels to varying Ca(2+)-concentrations. 相似文献
20.
Characterization of inositol trisphosphate receptor binding in brain. Regulation by pH and calcium 总被引:48,自引:0,他引:48
P F Worley J M Baraban S Supattapone V S Wilson S H Snyder 《The Journal of biological chemistry》1987,262(25):12132-12136
Inositol 1,4,5-trisphosphate is an intracellular second messenger, produced upon stimulation of the phosphoinositide system, capable of mobilizing calcium from intracellular stores. We have recently identified high levels of specific binding sites for inositol 1,4,5-trisphosphate in brain membranes (Worley, P. F., Baraban, J. M., Colvin, J. S., and Snyder, S. H. (1987) Nature 325, 159-161) and have now further characterized these sites. In cerebellar membranes, inositol 1,4,5-trisphosphate binding sites are abundant (20 pmol/mg protein) and display high affinity and selectivity for inositol 1,4,5-trisphosphate (KD approximately equal to 40 nM), whereas other inositol phosphates such as inositol 1,3,4,5-tetrakisphosphate (Ki approximately equal to 10 microM) and inositol 1,4-bisphosphate (Ki approximately equal to 10 microM) exhibit much lower affinity for this site. Submicromolar concentrations of calcium strongly inhibit inositol 1,4,5-trisphosphate binding (IC50 approximately equal to 300 nM). A sharp increase in binding occurs at slightly alkaline pH. These results suggest that actions of inositol 1,4,5-trisphosphate are regulated by physiological alterations in intracellular pH and calcium concentrations. 相似文献