首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method to detect and determine phospholipid peroxidation products in a biological system was developed using reversed-phase high performance liquid chromatography and normal-phase HPLC. Reversed-phase HPLC could separate phosphatidylcholine (PC) hydroperoxides and phosphatidylethanolamine (PE) hydroperoxides of rat liver from the respective phospholipids. A linear relationship was observed between these hydroperoxides and their peak areas on the chromatogram. In the experiment with rats administered CCl4, reversed-phase HPLC gave prominent, large peaks attributable to the peroxidation of phospholipids, and the peroxide level of the liver phospholipids was tentatively determined. Normal-phase HPLC analysis confirmed that both PC and PE in the liver phospholipids were peroxidized after CCl4 treatment. Neither the thiobarbituric acid value of the liver homogenate nor the fatty acid composition of the liver phospholipid fraction showed any significant difference between CCl4-treated and control rats. It is concluded that normal-phase HPLC and reversed-phase HPLC can complement each other to serve as a direct and sensitive method for the determination of lipid peroxide levels in a biological source. However, it was difficult to distinguish phospholipid hydroperoxides from their hydroxy derivatives.  相似文献   

2.
We describe a comprehensive approach to the separation, quantitation, and characterization of phospholipids and lysophospholipids present in complex biological samples. The central feature is a normal-phase HPLC separation of individual phospholipid and lysophospholipid classes. In this single chromatographic step, phospholipids and lysophospholipids are separated and recovered for quantitation by organic phosphate assay and characterization by acyl-group composition. Recovery of phospholipids and lysophospholipids from HPLC averages 80-90%. Isolated phospholipid and lysophospholipid fractions are available for separation of individual molecular species by second-dimension reverse-phase HPLC and characterization of individual molecular species by mass spectrometry.  相似文献   

3.
Docosahexaenoic acid (DHA, 22:6n-3)-containing phospholipids are a ubiquitous component of the central nervous system and retina, however their physiological and pharmacological functions have not been fully elucidated. Here, we report a novel DHA-containing phosphatidylcholine (PC) in a marine single cell eukaryote, Schizochytrium sp. F26-b. Interestingly, 31.8% of all the fatty acid in F26-b is DHA, which is incorporated into triacylglycerols and various phospholipids. In phospholipids, DHA was found to make up about 50% of total fatty acid. To identify phospholipid species containing DHA, the fraction of phospholipids from strain F26-b was subjected to normal phase high-performance liquid chromatography (HPLC). It was found that DHA was incorporated into PC, lyso-PC, phosphatidylethanolamine, and phosphatidylinositol. The major DHA-containing phospholipid was PC in which 32.5% of the fatty acid was DHA. The structure of PC was analyzed further by phospholipase A2 treatment, fast atom bombardment mass spectrometry, and 1H- and 13C-NMR after purification of the PC with reverse phase HPLC. Collectively, it was clarified that the major PC contains pentadecanoic acid (C15:0) at sn-1 and DHA at sn-2; the systematic name of this novel PC is therefore "1-pentadecanoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine."  相似文献   

4.
Derivatization of phospholipids   总被引:3,自引:0,他引:3  
Phospholipids are major components of biological membranes. Without chemical derivatization, it is difficult to identify and quantitate phospholipids in biological samples. Chemical derivatization can improve both the selectivity and sensitivity of the analytes. This paper gives a full review, through March, 2002, of derivatization methods used for phospholipids in HPLC, CE and GC as well as the spray reagent used for TLC in the early days.  相似文献   

5.
High performance liquid chromatography of platelet-activating factors   总被引:4,自引:0,他引:4  
Silica and C18 reverse phase high performance liquid chromatography (HPLC) were used to fractionate synthetic molecular species of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (AGEPC) and semi-synthetic platelet-activating factor (PAF) synthesized from beef heart plasmalogens. A single coincident peak from silica HPLC was observed for either a mixture of synthetic AGEPC's with alkyl chain lengths from C12 to C18 or for beef heart-derived PAF. This peak was well separated from other classes of phospholipid standards including 2-lysophosphatidylcholine and 3H-labeled lyso-PAF. Subsequently, the synthetic AGEPC mixture or beef heart PAF was separated into individual species on a C18 reverse phase column. Beef heart-derived PAF was fractionated into at least four molecular species of PAF activity which had similar retention times as the radioactivity of 3H-labeled beef heart PAF. Approximately 56% of the radioactivity of 3H-labeled PAF was found in the fraction with a similar retention time as 1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine, 10% as 1-O-octadecyl-2-acetyl-sn-glycero-3-phosphocholine, 11% as 1-O-pentadecyl-2-acetyl-sn-glycero-3-phosphocholine, and 13% in an unidentified fraction which eluted after C-16-AGEPC. The unidentified fraction did not correspond to any of the homologous series of synthetic AGEPCs with saturated alkyl chain lengths from C12 to C18. Recoveries of radioactive phospholipids from silica or reverse phase columns were greater than 95%.  相似文献   

6.
The pentapeptides with oplate-like properties, methionine-enkephalin (ME) and leucine enkephalin (LE) have been demonstrated in the brain and gut of animals from various species by means of radioimmunoassay (RIA), bioassay, radioreceptor binding, and immunohistochemical methods. Methods utilizing reverse phase high performance liquid chromatography (HPLC) to separate and quantitate peptides lacked the sensitivity and/or specificity for the determination of endogenous biological levels. This report provides an improved HPLC method having sufficient sensitivity and specificity to allow the separation and quantitation of biological tissue levels of ME and LE.  相似文献   

7.
Bovine serum albumin (BSA) is a potential source of biological contamination in cell culture medium. The aim of this work was to attempt to replace BSA in low serum and serum-free medium (SFM). BSA fraction V was subjected to a variety of processes in order to determine if the growth promoting activity observed for NRK cells could be extracted from the BSA molecule. These included solvent extractions, diafiltration, reverse phase HPLC and affinity chromatography using heparin sepharose. Solvent extraction and diafiltration failed to remove the activity from the BSA. Affinity chromatography using heparin sepharose indicated that all of the activity observed with BSA was retained in the 0.5 M NaCl fraction and was associated with less than 3% of the original protein. The major protein band in the 0.5 M NaCl fraction had the same apparent molecular weight as albumin (as seen by SDS-PAGE and analytical reverse phase HPLC). Unlike the untreated BSA, the 0.5 M NaCl fraction was partially susceptible to proteolytic digestion and to variations in pH.Abbreviations HS heparin sepharose - DHS donor horse serum - SFM serum free-medium  相似文献   

8.
1-O-Alk-1'-enyl-2-O-acetyl-glycerophosphocholine (vinyl form of PAF) was found with PAF in perfused rat and guinea pig hearts. The main molecular species of the vinyl form of PAF, after separation by reverse phase HPLC, were identified as 1-O-hexadec-, -octadec-, and -octadecen-1'-enyl-2-O-acetyl-GPCs (16:0, 18:0, and 18:1 vinyl forms of PAF) by mass spectrometry. The amounts of the predominant 16:0 species in rat and guinea pig hearts, respectively, were 46.4 and 22.5 ng per mg lipid-phosphorus of the original heart phospholipids.  相似文献   

9.
Application of some variants of HPLC for the step-by-step analysis of recombinant human insulin production was studied. Chromatographic columns with commercial and specially developed supports for size-exclusion, ion-exchange and reverse phase HPLC were used. Effective combinations of the chromatographic techniques for analysis of products and intermediates at every technological step were found and used for production of insulin. The authenticity of insulin obtained in the Shemyakin Institute of Bio-organic Chemistry by the scheme described in the present paper was confirmed by means of some physical and chemical methods and biological activity analysis.  相似文献   

10.
One antibacterial activity fraction from an immunized dipteran insect, Bactrocera dorsalis, was isolated and purified by prepurification, ion‐exchange chromatography, gel filtration chromatography and reverse‐phase high performance liquid chromatography (HPLC). The final purified fraction was checked on the Smart system HPLC and was judged as a pure fraction. The results of physical and biological analysis revealed that this fraction is heat stable and showed strong activities against Gram‐positive bacterial growth. It possesses antibicrobial peptide properties and is worth further investigation.  相似文献   

11.
A preparative reversed-phase HPLC system utilizing an isocratic mobile phase to purify up to 10-mg quantities of phospholipids is described. The method was developed to separate oxidation products of polyunsaturated phospholipids from intact, parent lipids. The method is useful for phosphatidylcholine and phosphatidylethanolamine on a preparative scale and for phosphatidylserine and phosphatidic acid on an analytical scale. Both intact phospholipids and oxidized phospholipids were monitored by absorbance at 206 nm. The oxidation products were simultaneously monitored at 234 nm where the intact phospholipids have only a very slight end absorption. Second-derivative uv spectroscopy proved to be extremely useful to identify the presence or to verify the absence of oxidation products in phospholipid samples. For autoxidized docosahexaenoic acid containing phospholipids, the absorbance maximum of diene oxidation products is 237 nm for the trans,trans (t,t) isomer and 246 nm for the cis,trans (c,t) isomers. Similarly, five classes of triene oxidation product stereoisomers have distinct absorbance maxima detected by second-derivative spectroscopy ranging from 269 to 292 nm.  相似文献   

12.
N-(2-Mercaptopropionyl)-glycine (MPG) is a synthetic aminothiol antioxidant that is used in the treatment of cystinuria, rheumatoid arthritis, liver and skin disorders. Recent studies have shown that MPG can function as a chelating, cardioprotecting and a radioprotecting agent. Several other studies have shown that it may also act as a free radical scavenger because of its thiol group. Thiol-containing compounds have been detected in biological samples by various analytical methods such as spectrophotometric and colorimetric methods. However, these methods require several milliliters of a sample, time-consuming procedures and complicated derivatization steps, as well as having high detection limits. The present study describes a rapid, sensitive and relatively simple method for detecting MPG in biological tissues by using reverse-phase HPLC. With ThioGlo 3 [3H-Naphto[2,1-b] pyran, 9-acetoxy-2-(4-(2,5-dihydro-2,5-dioxo-1H-pyrrol-1-yl) phenyl-3-oxo-)] as the reagent, highly fluorescent derivatives of thiols can be obtained that are suitable for HPLC. MPG is derivatized with ThioGlo 3 and is then detected flourimetrically by reverse phase HPLC using a C18 column as the stationary phase. Acetonitrile: Water (75:25) with acetic acid and phosphoric acid (1 mL/L) is used as the mobile phase (excitation wavelength, 365 nm; emission wavelength, 445 nm). The calibration curve for MPG is linear over a range of 10-2500 nM (r=0.999) and the coefficients of the variation of within-run and between-run precision were found to be 0.3 and 2.1%, respectively. The detection limit was 5.07 nM per 20 microL injection volume. Quantitative relative recovery of MPG in the biological samples (plasma, lung, liver, kidney and brain) ranged from 90+/-5.3 to 106.7+/-9.3 %. Based on these results, we have concluded that this method is suitable for determining MPG in biological samples.  相似文献   

13.
Previous attempts to physically separate the cell cycle inhibitory and protease in activities in preparations of a purified cell regulatory sialoglycopeptide (CeReS) inhibitor were largely unsuccessful. Gradient elution of the inhibitor preparation from a DEAE HPLC column separated the cell growth inhibitor from the protease, and the two activities have been shown to be distinct and non-overlapping. The additional purification increased the specific biological activity of the CeReS preparation by approximately two-fold. The major inhibitory fraction that eluted from the DEAE column was further analyzed by tricine-SDS-PAGE and microbore reverse phase HPLC and shown to be homogeneous in nature. Two other fractions separated by DEAE HPLC, also devoid of protease activity, were shown to be inhibitory to cell proliferation and most likely represented modified relatives of the CeReS inhibitor. The highly purified CeReS was chemically characterized for amino acid and carbohydrate composition and the role of the carbohydrate in cell proliferation inhibition, stability, and protease resistance was assessed. © 1995 Wiley-Liss, Inc.  相似文献   

14.
Physicochemical investigations on the aggregation of phospholipids (mainly phosphatidylcholines) in organic solvents are reviewed and compared with the aggregation behaviour of phospholipids in aqueous medium. In particular we review the data showing that phosphatidylcholines (lecithins) form reverse micellar structures in certain apolar solvents. In these systems not only low molecular weight compounds but also catalytically active enzymes and entire cells can be solubilized. In addition, highly viscous phosphatidylcholine gels can be obtained in organic solvents upon solubilizing a critical amount of water. Generally, phospholipid-based reverse micelles can be regarded as thermodynamically stable models for inverted micellar lipid structures possibly occurring in biological membranes.  相似文献   

15.
Platelet activating factor (PAF) synthesized by human neutrophils challenged by opsonized zymosan or calcium ionophore was isolated from cells and buffer using Bligh and Dyer extraction following the addition of tracer amounts of tritiated-PAF. The extract was subjected to TLC separation of phospholipid classes, followed by reverse phase HPLC for molecular species separation. All fractions were measured for radioactivity, biological activity and fast atom bombardment mass spectrometry. While the radioactive tracer PAF could be separated into three molecular species, PAF biological activity eluted as a single component which was characterized as 1-O-hexadecyl-2-acetyl-glycero-3-phosphocholine. The lack of molecular species heterogeneity of PAF produced in response to stimuli implies a higher degree of control of biosynthesis than previously suspected.  相似文献   

16.
A new eGH molecular species was isolated and purified by reverse phase HPLC. SDS-polyacrylamide gel electrophoresis, amino acid composition, and C- and N-terminal determinations support a primary structure identical to that described by Zakin et al. (1976), except for the lack of the 76-92 peptidic fragment and the maintaining of 30% of its biological activity.  相似文献   

17.
Different molecular species of phospholipids exhibit distinctly different patterns of biologic behavior. In this minireview, the utility of HPLC for analysis of molecular species of phospholipids is illustrated in studies in which it has been demonstrated that molecular species are selectively synthesized, selectively transported, and selectively participate in enzymatic reactions. HPLC appears to be more adaptable for routine use than older procedures used to separate phospholipid molecular species. Since the metabolism of intact molecules can be characterized with HPLC, this procedure promises to provide particularly novel information with respect to changes in composition brought about by remodelling reactions during the biologic life of specific phospholipids.  相似文献   

18.
To investigate the biological significance of GDP-L-fucose, we established a unique method for the determination of GDP-L-fucose levels in microsomal fractions, using an HPLC assay of alpha 1-6-fucosyltransferase (alpha1-6-FucT), an enzyme that catalyzes the synthesis of core fucosylation in N-glycans. A microsomal protein and a large excess of fluorescence-labeled synthetic oligosaccharide (a substrate) were incubated with a large excess of alpha1-6-FucT. The fluorescent intensity of the fucosylated reaction product, which was analyzed by isocratic reverse phase HPLC, was proportional to the level of GDP-L-fucose in the microsomal fractions over the range 0.20-10 pmol. This assay is applicable to the determination of the GDP-L-fucose content in various cancer cell lines as well as rat liver and would be useful in developing a better understanding of the fucosylation potential of such cells and tissues.  相似文献   

19.
A simple isocratic high performance liquid chromatograph (HPLC) system is described to perform a rapid separation, identification and quantitative determination of vitamin E (alpha-tocopherol) in biological membranes. It makes use of a reverse phase C18 column with pure methanol as the mobile phase, and an ultraviolet detector which enables its quantification in the nanogram scale. This procedure was applied to lipid extracts from whole muscle homogenate and from a preparation of sarcoplasmic reticulum vesicles from skeletal muscle, where the vitamin E contents was determined.  相似文献   

20.
Gelonin, purified from the seeds of Gelonium multiflorum, using cation-exchange and gel-filtration chromatography was characterised for its purity, homogeneity and molecular weight by reverse-phase HPLC (RP-HPLC) and SDS-PAGE analysis. The HPLC purified gelonin was used for entrapment studies in the liposomes. Liposomes were prepared by reverse phase evaporation (REV) technique using three different types of lipid composition in the same molar ratio. The method resulted in 75–80% entrapment efficiency of gelonin in the liposomes. Entrapped and unentrapped gelonin was characterized for physico-chemical, immunochemical and biological properties. The immunoreactivity of entrapped gelonin was fully preserved but the ribosome-inactivating property was slightly inhibited. The method involved mild conditions, highly reproducible and the liposomes produced appeared to be stable for several months. It has important implications in the development of cell type specific cytotoxic agents where a chemical cross-linking is involved which significantly inhibits both immunoreactivity and ribosome-inactivating ability of the toxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号