首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A nuclear framework structure termed the nuclear matrix has been isolated and characterized. This matrix forms the major residual structure of isolated nuclei and consists largely of protein with smaller amounts of RNA, DNA, carbohydrate, and phospholipid. The nuclear matrix can be further resolved by combined treatment with DNase and RNase. The remaining nuclear protein structure, after extraction of 90 percent of the nuclear protein, 99.9 percent of the DNA, and 98 percent of the RNA and phospholipid, is termed the nuclear protein matrix. Electron microscopy of this final nuclear protein matrix reveals an interior framework structure composed of residual nucleolar structures associated with a granular and fibrous internal matrix structure. The internal matrix framework is derived from the interchromatinic structures of the nucleus, and is connected to a surrounding residual nuclear envelope layer containing residual nuclear pore complex structures. Sodium dodecyl sulfate-acrylamide gel electrophoresis of the nuclear matrix proteins demonstrates three major polypeptide fractions, P-1, P-2, and P-3, with average molecular weights of approximately 69,000, 66,000 and 62,000, as well as several minor polypeptides which migrate at approximately 50,000 and at higher molecular weights (>100,000). Polypeptides with molecular weights identical to those of P-1, P-2 and P-3 are also components of isolated nuclear envelopes and nucleoli, whereas isolated chromatin contains no detectable matrix polypeptides. This suggests that the major matrix polypeptides are localized in specific structural regions of the nucleus, i.e., nuclear envelope, nucleoli, and interchromatinic structures. The presence of cytochrome oxidase activity in the isolated nuclear matrix indicates that at least some integral proteins of the nuclear membrane are associated with the matrix.  相似文献   

2.
The structural filament network of the nucleus is prepared while still connected to the cytoskeleton. The relatively gentle procedure removes about 98% of the DNA and at least 86% of the histones. The matrix is bounded by an outer nuclear lamina connected to the cytoskeletal framework, as well as the inner filaments. The filaments range in diameter from 3 to 22 nm, and are organized in a three-dimensional anastomosing network in which nucleoli are enmeshed. The nuclear matrix is separated from the cytoskeletal framework by a double detergent and then partitioned into a chromatin fraction and a matrix fraction by nuclease and high salt. Two-dimensional gel electrophoresis shows that the proteins of the cytoskeleton, chromatin and nuclear matrix are very different. A major protein found in all fractions cofocuses with actin. Vimentin is largely associated with the nuclear matrix, probably as a corona external of filaments.  相似文献   

3.
Half a century of "the nuclear matrix"   总被引:11,自引:0,他引:11       下载免费PDF全文
A cell fraction that would today be termed "the nuclear matrix" was first described and patented in 1948 by Russian investigators. In 1974 this fraction was rediscovered and promoted as a fundamental organizing principle of eukaryotic gene expression. Yet, convincing evidence for this functional role of the nuclear matrix has been elusive and has recently been further challenged. What do we really know about the nonchromatin elements (if any) of internal nuclear structure? Are there objective reasons (as opposed to thinly veiled disdain) to question experiments that use harsh nuclear extraction steps and precipitation-prone conditions? Are the known biophysical properties of the nucleoplasm in vivo consistent with the existence of an extensive network of anastomosing filaments coursing dendritically throughout the interchromatin space? To what extent may the genome itself contribute information for its own quarternary structure in the interphase nucleus? These questions and recent work that bears on the mystique of the nuclear matrix are addressed in this essay. The degree to which gene expression literally depends on nonchromatin nuclear structure as a facilitating organizational format remains an intriguing but unsolved issue in eukaryotic cell biology, and considerable skepticism continues to surround the nuclear matrix fraction as an accurate representation of the in vivo situation.  相似文献   

4.
The molecular structure of the nuclear matrix is still poorly understood. We have tried to assess which proteins are important structural elements by examining the process of stabilization of the nuclear matrix by sodium tetrathionate. Sodium tetrathionate stabilizes the nuclear matrix by oxidizing sulfhydryl groups to disulfides. We show that tetrathionate-stabilized matrices are disassembled in buffers containing SDS, indicating that the stabilized nuclear matrix is not a continuous network of cross-linked proteins. Using monobromobimane, a thiol-specific fluorescent reagent, we show that many protein thiols in the stabilized matrix are oxidized. By chromatography on activated thiol-Sepharose we estimated that about 50% of the matrix proteins had oxidized sulfhydryl groups. The protein composition of the material bound to activated thiol-Sepharose was similar to that of the not-bound material. A few proteins are highly enriched in the fraction that was bound to the column. This indicates that many matrix protein species are partially oxidized and that some proteins are completely oxidized. The oxidized protein thiols are found in relatively large complexes as determined by SDS gel-electrophoresis under nonreducing conditions. These results are interpreted in terms of protein-protein interactions in the matrix. The possible role of thiols and disulfides in the in vivo organization of the nucleus is discussed.  相似文献   

5.
Despite the recent improvement in understanding the higher-order structure of chromatin fibers, the organization of interphase chromosomes in specific nuclear domains emerged only recently and it is still controversial. This study took advantage of an integrated approach using complementary techniques in order to investigate the structure and organization of chromatin in interphase nucleus. Native CHO-K1 cells were progressively heated from 310 K to 410 K and the effects of increasing temperatures on nuclear chromatin were analyzed in situ by means of cytometric and calorimetric techniques. Distribution and organization of chromatin domains were analyzed by Fluorescence microscopy, while the mean condensation of nuclear chromatin was measured by Differential scanning calorimetry. The results show as changes of nuclear structures (envelope and matrix, namely) affect significantly organization and condensation of in situ chromatin. Moreover when volume is modified by an external force (the temperature gradient in our case) we observe significant alterations of chromatin structure. These data are in accordance with the hypothesis of an inverse relationship between nuclear volume and chromatin condensation.  相似文献   

6.
7.
The gentle removal of chromatin uncovers a nuclear matrix consisting of two parts: a nuclear lamina connected to the intermediate filaments of the cytoskeleton and an internal matrix of thick, polymorphic fibers connecting the lamina to masses in the nuclear interior. This internal nuclear matrix can be further fractionated to uncover a highly branched network of 9 nm and 13 nm core filaments retaining some enmeshed bodies. The core filament network retains most of the nuclear RNA, as well as the fA12RNP antigen, and may be the most basic or core element of internal nuclear structure. One high molecular weight protein component of the core filament network, the H1B2 antigen, is normally masked in the interphase nucleus and is uncovered as the chromatin condenses at mitosis. This protein is associated with a fibrogranular network surrounding and connected to the chromosomes. The core filament-associated fA12 antigen also becomes associated with this perichromosomal network. We propose that the core filament nuclear matrix structure may not completely disassemble at mitosis but, rather, that parts remain as a structural network connected to chromosomes and other mitotic structures. These mitotic networks may, in turn, serve as the core structures on which the nuclear matrices of daughter cells are built.  相似文献   

8.
A new look at the nuclear matrix   总被引:9,自引:0,他引:9  
Hancock R 《Chromosoma》2000,109(4):219-225
  相似文献   

9.
Structural topography of simian virus 40 DNA replication.   总被引:8,自引:7,他引:1       下载免费PDF全文
Applying an in situ cell fractionation procedure, we analyzed structural systems of the cell nucleus for the presence of mature and replicating simian virus 40 (SV40) DNA. Replicating SV40 DNA intermediates were tightly and quantitatively associated with the nuclear matrix, indicating that elongation processes of SV40 DNA replication proceed at this structure. Isolated nuclei as well as nuclear matrices were able to continue SV40 DNA elongation under replication conditions in situ, arguing for a coordinated and functional association of SV40 DNA and large T molecules at nuclear structures. SV40 DNA replication also was terminated at the nuclear matrix. While the bulk of newly synthesized, mature SV40 DNA molecules then remained at this structure, some left the nuclear matrix and accumulated at the chromatin.  相似文献   

10.
A striking difference in structure can be revealed between the nuclear matrix isolated from the macronuclei of normal Tetrahymena cells and the nuclear matrix of cells pretreated with 50 μg/ml actinomycin D for 2 h. The latter matrix-type shows residual giant fusion-nucleoli, which are formed in the macronuclei of actinomycin-treated cells. Both nuclear matrix types, however, exhibit an identical qualitative protein pattern in 15% SDS-gel electrophoretograms, with only minor changes in the staining properties of a few peptides. These data support the view that the nuclear matrix represents the residual equivalent to an in situ existing nuclear protein framework, which must be regarded not as a rigid, but rather as a dynamic flexible framework.  相似文献   

11.
The nonchromatin structure or matrix of the nucleus has been studied using an improved fractionation in concert with resinless section electron microscopy. The resinless sections show the nucleus of the intact cell to be filled with a dense network or lattice composed of soluble proteins and chromatin in addition to the structural nuclear constituents. In the first fractionation step, soluble proteins are removed by extraction with Triton X-100, and the dense nuclear lattice largely disappears. Chromatin and nonchromatin nuclear fibers are now sharply imaged. Nuclear constituents are further separated into three well-defined, distinct protein fractions. Chromatin proteins are those that require intact DNA for their association with the nucleus and are released by 0.25 M ammonium sulfate after internucleosomal DNA is cut with DNAase I. The resulting structure retains most heterogeneous nuclear ribonucleoprotein (hnRNP) and is designated the RNP-containing nuclear matrix. The proteins of hnRNP are those associated with the nucleus only if RNA is intact. These are released when nuclear RNA is briefly digested with RNAase A. Ribonuclease digestion releases 97% of the hnRNA and its associated proteins. These proteins correspond to the hnRNP described by Pederson (Pederson, T., 1974, J. Mol. Biol., 83:163-184) and are distinct from the proteins that remain in the ribonucleoprotein (RNP)-depleted nuclear matrix. The RNP-depleted nuclear matrix is a core structure that retains lamins A and C, the intermediate filaments, and a unique set of nuclear matrix proteins (Fey, E. G., K. M. Wan, and S. Penman, 1984, J. Cell Biol. 98:1973-1984). This core had been previously designated the nuclear matrix-intermediate filament scaffold and its proteins are a third, distinct, and nonoverlapping subset of the nuclear nonhistone proteins. Visualizing the nuclear matrix using resinless sections shows that nuclear RNA plays an important role in matrix organization. Conventional Epon-embedded electron microscopy sections show comparatively little of the RNP-containing and RNP-depleted nuclear matrix structure. In contrast, resinless sections show matrix interior to be a three-dimensional network of thick filaments bounded by the nuclear lamina. The filaments are covered with 20-30-nm electron dense particles which may contain the hnRNA. The large electron dense bodies, enmeshed in the interior matrix fibers, have the characteristic morphology of nucleoli. Treatment of the nuclear matrix with RNAase results in the aggregation of the interior fibers and the extensive loss of the 20-30-nm particles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
13.
The nuclear matrix is the structure that persists after removal of chromatin and loosely bound components from the nucleus. It consists of a peripheral lamina-pore complex and an intricate internal fibrogranular structure. Little is known about the molecular structure of this proteinaceous internal network. Our aim is to identify the major proteins of the internal nuclear matrix of HeLa S3 cells. To this end, a cell fraction containing the internal fibrogranular structure was compared with one from which this structure had been selectively dissociated. Protein compositions were quantitatively analyzed after high-resolution two-dimensional gel electrophoresis. We have identified the 21 most abundant polypeptides that are present exclusively in the internal nuclear matrix. Sixteen of these proteins are heterogeneous nuclear ribonucleoprotein (hnRNP) proteins. B23 (numatrin) is another abundant protein of the internal nuclear matrix. Our results show that most of the quantitatively major polypeptides of the internal nuclear matrix are proteins involved in RNA metabolism, including packaging and transport of RNA. © 1996 Wiley-Liss, Inc.  相似文献   

14.
Cancer is diagnosed by examining the architectural alterations to cells and tissues. Changes in nuclear structure are among the most universal of these and include increases in nuclear size, deformities in nuclear shape, and changes in the internal organization of the nucleus. These may all reflect changes in the nuclear matrix, a non-chromatin nuclear scaffolding determining nuclear form, higher order chromatin folding, and the spatial organization of nucleic acid metabolism. Malignancy-induced changes in this structure may have profound effects on chromatin folding, on the fidelity of genome replication, and on gene expression. Elucidating the mechanisms and the biological consequences of nuclear changes will require the identification of the major structural molecules of the internal nuclear matrix and an understanding of their assembly into structural elements. If biochemical correlates to malignant alterations in nuclear structure can be identified then nuclear matrix proteins and, perhaps nuclear matrix-associated structural RNAs, may be an attractive set of diagnostic markers and therapeutic targets. J. Cell. Biochem. 70:172–180, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
16.
17.
18.
Reduction of DNA synthesis in aging but still proliferating cells   总被引:1,自引:0,他引:1  
It is well known that cell proliferation (and hence, DNA synthesis) declines in human diploid fibroblast-like cells with increasing passage number. It is not clear whether DNA synthesis declines in the remaining cells that are still actively proliferating. Estimations of cell kinetic parameters permitted extrapolations to be made that reflected the declining numbers of cells still capable of DNA replication. DNA synthesis declined with culture age in intact cells, permeabilized cells, and in the isolated nuclear matrix even when corrected for declining numbers of proliferating cells. With age, DNA polymerase alpha and beta activity in cell lysates declined, but when corrected for the remaining proliferating cells, only polymerase alpha activity declined; DNA polymerase alpha and beta activity bound to the nuclear matrix declined, but when corrected for declining proliferation, no decline was apparent for either enzyme. There was an increase in the number of S1-nuclease sensitive sites and breaks in the parental DNA of the dividing cells in older cultures. It is suggested that in aging cultures, not only does overall DNA synthesis decline owing to decreasing cell proliferation, but also that DNA synthesis declines in the remaining proliferating cells, that this decline is not due to decreasing amounts of DNA polymerase bound to the nuclear matrix, and that alterations in DNA structure occur.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号