首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pituitary, gonadal and adrenal activity were compared in free-living, adult African buffalo bulls during the breeding and nonbreeding seasons. Frequent blood samples were collected for 2 h from anaesthetized bulls treated intravenously with saline, gonadotrophin-releasing hormone (GnRH, 200 micrograms), human chorionic gonadotrophin (hCG, 10,000 i.u.) or adrenocorticotrophic hormone (ACTH, 1.5 mg). Electroejaculates also were collected from anaesthetized bulls during the breeding and nonbreeding seasons. Pretreatment testosterone concentrations among bulls varied more during the breeding (0.17-23.0 ng/ml) than the nonbreeding (0.15-2.21 ng/ml) season. The variation within the breeding season was attributed to 8 of 25 bulls producing higher (P less than 0.05) serum testosterone (High-T; 16.28 +/- 2.03 ng/ml) and testicular LH receptor (1.53 +/- 0.22 fmol/mg testis) concentrations compared with their seasonal counterparts (Low-T; 0.95 +/- 0.26 ng/ml; 0.38 +/- 0.04 fmol/mg) or with all bulls during the nonbreeding season (0.90 +/- 0.27 ng/ml; 0.31 +/- 0.04 fmol/mg). The magnitude of GnRH- and hCG-induced increases in serum testosterone was similar (P greater than 0.05) between Low-T bulls and bulls during the nonbreeding season. In the High-T animals treated with GnRH or hCG, serum testosterone did not increase, suggesting that secretion was already maximal. Peak serum LH concentrations after GnRH were greater (P less than 0.05) in bulls during the nonbreeding than the breeding season; FSH responses were similar (P greater than 0.05). ACTH treatment did not increase serum cortisol concentrations above the 2-fold increase measured in bulls treated with saline, hCG and GnRH (P greater than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The present study investigated the peripheral plasma inhibin levels in relation to 1) the stage of estrous cycle and the effect of climatic variations. Blood samples were collected from cyclic buffalo (n=5) once daily for 32 consecutive days during the tropical hot humid (summer) and cold (winter) seasons. Estrus was recorded by parading a vasectomized bull as well as by plasma progesterone determination. In the winter season, peripheral inhibin concentrations which were lowest (0.35 +/- 0.02 ng/ml) during the mid-luteal phase of estrous cycle (Day 6 to Day 14, Day 0 = day of estrus) increased significantly (P < 0.02) to 0.47 +/- 0.04 ng/ml during the late luteal phase (Day -4 to Day -2) and then further to 0.52 +/- 0.03 ng/ml (P< 0.02) during the periestrus phase (Day -1 to Day 1). Inhibin concentrations then decreased significantly (P < 0.02) to 0.40 +/- 0.03 ng/ml during the early luteal phase (Day 2 to Day 5). In the summer season the differences in peripheral inhibin concentrations among different phases of estrous cycle were found to be nonsignificant. A comparison of the circulating inhibin concentrations between the two seasons indicated that inhibin concentrations were significantly higher in the late luteal phase (P < 0.01) and periestrus phase (P < 0.05) during the winter season compared with corresponding periods during the summer season. The present study suggests that peripheral inhibin concentrations change in the estrous cycle during cooler breeding season and that environmental heat stress can cause a reduction in peripheral inhibin concentrations.  相似文献   

3.
Seasonal changes in the hypothalamic-hypophyseal axis were investigated using tissue from 49 light-horse mares, of mixed breeding. Hypothalamic and pituitary tissues were collected at 5 intervals throughout the years 1981 and 1982, representing midbreeding season (July, n = 10), transition out of the breeding season (October, n = 11), midanestrus (December, n = 8), transition into the breeding season (March, n = 10), and again in the following midbreeding season (July, n = 10). The hypothalamic region was dissected into preoptic area, body and median eminence. Gonadotropin-releasing hormone (GnRH) was extracted from hypothalamic samples with methanol-formic acid and quantified by radioimmunoassay. The anterior pituitary was homogenized and receptors for GnRH were quantified in a crude membrane fraction. Concentrations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were measured in the resulting supernatant. Content of GnRH in each of the 3 hypothalamic areas varied with season (P less than 0.01) and was lowest during midanestrus (P less than 0.05). There was no effect of season (P greater than 0.01) on either concentration or total number of receptors for GnRH, or concentration of FSH in the anterior pituitary. Concentrations of LH in the anterior pituitary varied with season (P less than 0.001). Means (+/- SEM) for the 5 collection times were 15.5 +/- 2.7, 9.7 +/- 2.4, 2.3 +/- 0.5, 2.7 +/- 0.4 and 11.7 +/- 1.5 microgram LH/mg anterior pituitary, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Ovariectomized ewes received intramuscular (i.m.) injections of an H1-histamine receptor antagonist, diphenhydramine, or saline during the anestrous and breeding seasons to determine if histamine may regulate the estradiol-induced surge release of LH in ewes. In addition, concentrations of histamine and GnRH in hypothalamic regions and histamine and LH in the pituitary gland were determined during the estradiol-induced surge of LH. Pretreatment mean, basal, and estradiol-induced secretion of LH did not differ (P > 0.05) among seasons. However, the quantity of LH (ng) measured during the estradiol-induced surge of LH was less (P < 0.05) in ewes treated with diphenhydramine (411 ± 104) than saline (747 ± 133). Treatment with diphenhydramine did not (P > 0.05) influence steady-state concentrations of histamine in hypothalamic or pituitary gland tissues, hypothalamic concentrations of GnRH, or anterior pituitary concentrations of LH during the estradiol-induced surge of LH. It is concluded that histamine may modulate the estradiol-induced surge release of LH in ewes by affecting the secretion of GnRH.  相似文献   

5.
To determine what changes occur in the activity of gonadotropin-releasing hormone (GnRH) neurons during pubertal development in primate species we tested the hypotheses that there are morphologic differences between GnRH-containing neurons in juvenile versus adult monkeys, and the low activity of the reproductive axis is governed by hypothalamic GnRH release in monkeys prior to puberty. We removed the brains from 5 juvenile and 5 adult male monkeys (Macaca fascicularis) and blocked, sectioned, and prepared each hypothalamus for light microscopic immunocytochemistry for GnRH-containing cells. The distribution and number of GnRH-containing neurons were similar in adult and juvenile brains; however, GnRH-containing perikarya in adult brains were significantly larger in total cross-sectional area (200 +/- 12 vs. 169 +/- 8 micron 2, P less than 0.05) and in cross-sectional area of the cytoplasm (139 +/- 2 vs. 88 +/- 6 micron 2, P less than 0.05) than in juvenile brains. In another group of 10 juvenile male macaques, we administered an antiserum to GnRH (Fraser #94; 2 ml/kg, i.v.) and monitored the effects on plasma luteinizing hormone (LH) and testosterone concentrations. The percentage of plasma samples with detectable LH levels decreased significantly (from 26.67 +/- 8.3% to 5.3 +/- 3.4%, P less than 0.05) after GnRH antiserum administration; however, plasma testosterone concentrations (0.08 +/- 0.02 ng/ml) remained unchanged. We conclude that during pubertal maturation in primate species there is increased synthesis and release of GnRH from a population of GnRH neurons that are active prior to puberty.  相似文献   

6.
A study of species diversity of Stomoxys spp. and diurnal variations of activity of the most abundant was performed during a one year period at a local dairy cattle farm in Wang Nam Khiao District, Nakhon Ratchasima Province, Thailand. Four species of stomoxyine flies were morphologically identified, including Stomoxys indicus Picard 1908, S. calcitrans (Linnaeus 1758), S. sitiens Rondani 1873 and S. uruma Shinonaga and Kanao 1966. The most common species were S. indicus (50.2%) and S. calcitrans (49.5%). S. sitiens and S. uruma were found in small proportions (< 1%). The number of flies captured was significantly different among the three seasons with the greatest number in the rainy season (mean = 66%; df = 2, P < 0.05). The variations of diurnal activity were observed during different period of times (06:00 to 18:00) during three seasons. Both sexes of S. indicus and males of S. calcitrans showed unimodal activity pattern in cool and summer seasons. But a bimodal activity pattern was recorded in rainy season. For females S. calcitrans, a unimodal peak of activity was observed in cool season and a constant variation of activity all along the day in summer and rainy seasons, with an increase from the morning to the evening. A better understanding of stomoxyine fly behavior, especially the daily flight activity, can assist in prioritization and design of appropriate vector prevention and control strategies.  相似文献   

7.
The relationships among leaf traits often reflect plant adaptation for coping with nutrient resources. However, the seasonal variations in leaf traits and their relationship with soil nutrients are not well understood. We sampled seven major functional traits of thirty trees and nine shrubs (sorted into different plant functional groups, PFGs, based on their growth form, leaf lifespan, and leaf shape) at different seasons in a managed forest plantation of Southeastern China. Both green leaf nitrogen and phosphorus concentrations (Ngreen and Pgreen) decreased significantly from spring and summer to autumn, and varied significantly with PFGs (P?<?0.05) at different times of the year. Across all plants, specific leaf area correlated positively with Ngreen and Pgreen in spring, summer, and winter, but not in autumn; N resorption proficiency generally correlated positively with Ngreen in each season, while P resorption efficiency correlated positively with Pgreen in spring and summer, but not in autumn and winter. Soil nitrogen availability correlated negatively with leaf nutrient traits in some seasons. In conclusion, leaf trait relationships varied among the seasons and among PFGs. Seasonal dynamics of leaf traits as well as soil nutrients?? relations must be considered when exploring plant feedback to soil nutrients.  相似文献   

8.
The aim of this study was to evaluate the effects of summer and winter seasons on antioxidant status, body reserve mobilization and biomarkers of stress in Hariana and Sahiwal cows. Twelve lactating cows (six of each Hariana and Sahiwal cows) were included in summer (May to July) and winter season (November to January) study. Microclimatic observations were recorded on daily basis during the experimental period. In both seasons, blood samples were collected at fortnightly intervals for analysis of total antioxidant activity, non-esterified fatty acids (NEFA), β-Hydroxybutyric acid (BHBA), heat shock protein 70 and 90 (HSP70 and HSP90). Antioxidant activity reduced significantly (p < 0.05) in Hariana cattle during summers as compared to winters; whereas, seasonal variation exerts no effect on antioxidant activity in Sahiwal. Blood NEFA concentration was similar among both the breeds over both the seasons but reduced significantly (p < 0.05) during summer season as compared to winters in both the breeds. BHBA concentration was significantly higher (p < 0.05) in Hariana cows than Sahiwal cows during winters, however, no effect on BHBA level was observed during summer season in both the breeds. Significantly, lower plasma cortisol level (p < 0.05) was found during winter season in Sahiwal as well as Hariana cows. Further, Sahiwal exhibited lower plasma cortisol as compared to Hariana in both the seasons. HSP 70 and 90 showed non-significant differences between breeds within both the seasons. However, significantly, lower plasma HSP 70 levels (p < 0.05) were reported during winter season in Sahiwal as well as in Hariana cows. Results of present study revealed that indigenous Sahiwal is more heat tolerant as compared to Hariana breed.  相似文献   

9.
In castrated rams (Romney and Poll Dorset, n = 8 for each breed), inhibition by testosterone treatment (administered via Silastic capsules) of luteinizing hormone (LH) pulse frequency, basal and mean LH concentrations, mean follicle-stimulating hormone (FSH) concentration, and the peak and total LH responses to exogenous gonadotrophin-releasing hormone (GnRH) were significantly (P less than 0.01) greater during the nonbreeding than during the breeding season. Poll Dorset rams were less sensitive to testosterone treatment than Romney rams. In rams not receiving testosterone treatment, LH pulse frequency was significantly (P less than 0.05) lower during the nonbreeding season than during the breeding season in the Romneys (15.8 +/- 0.9 versus 12.0 +/- 0.4 pulses in 8 h), but not in the Poll Dorsets (13.6 +/- 1.2 versus 12.8 +/- 0.8 pulses in 8 h). It is concluded that, in rams, season influences gonadotrophin secretion through a steroid-independent effect (directly on hypothalamic GnRH secretion) and a steroid-dependent effect (indirectly on the sensitivity of the hypothalamo-pituitary axis to the negative feedback of testosterone). The magnitude of these effects appears to be related to the seasonality of the breed.  相似文献   

10.
In mares, the amount of gonadotrophin-releasing hormone (GnRH) is low in the hypothalamus during seasonal anoestrus, but by early spring, concentrations of GnRH are high. The timing of this response was characterized more precisely by determining concentrations of GnRH in hypothalamic tissue collected immediately before and at various times after the winter solstice (22 December 1986). Ovaries, pituitary gland, hypothalamus and a blood sample were collected from six groups of mares (6-12 mares per group) at death, 1 week before day of the winter solstice and 1, 2, 3 and 12 weeks afterwards. No significant changes in weight of the anterior pituitary gland or concentrations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were observed in the anterior pituitary gland (P > 0.1). Mean diameter of the largest follicle, number of follicles > or = 20 mm in diameter and concentrations of LH and FSH in serum remained unchanged for weeks -1 to +3 (P < 0.05), then increased significantly by week 12 (P < 0.001). Content and concentration of GnRH in the median eminence was low at -1 week, increased gradually (P < 0.05) to a maximum by +1 week, then decreased gradually (P < 0.05) to low values at 12 weeks. Means (+/- SEM) for -1, +1 and +12 weeks were 33.5 +/- 5.5, 117.7 +/- 18.6 and 29.8 +/- 3.7 ng GnRH, respectively. Mean content of GnRH in the preoptic area of the hypothalamus showed a reciprocal pattern.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Summary Responses of neurons in the preoptic area and ventral hypothalamus to conspecific mating calls or white noise bursts were examined in male green treefrogs (Hyla cinerea) during different seasons. In the winter, 34.3% of preoptic neurons and 46.7% of ventral hypothalamic cells demonstrated significant changes in activity level during presentation of a conspecific mating call. In contrast, only 13.3% of preoptic units and 16.7% of ventral hypothalamic cells responded to the white noise. The percentage of preoptic and hypothalamic units responding to the advertisement call did not differ significantly during the summer breeding season. Type I units exhibited a dramatic increase in activity during acoustic stimulation followed by a rapid return to baseline activity levels after stimulus offset. Type II cells showed a robust activity increase during stimulation, but maintained an intermediate activity level after stimulus offset. In the preoptic area, a third response type exhibited suppressed activity during acoustic stimulation. Although seasonal condition did not alter the percentage of acoustically responsive units within either nucleus, the proportion of Type I units in the ventral hypothalamus was greatest during the summer.Abbreviations MC mating call - NS no stimulus - POA preoptic area - VH ventral hypothalamus - WN white noise  相似文献   

12.
Gonadotropin-releasing hormone is intermittently released from the hypothalamus in consistent patterns from before birth to final maturation of the hypothalamic-pituitary-gonadal axis at puberty. Disruption of this signaling via GnRH vaccination during the neonatal period can alter reproduction at maturity. The objective of this study was to investigate the long-term effects of GnRH-antibody exposure on reproductive maturation and function in elk calves passively exposed to high concentrations of GnRH antibodies immediately after birth. Fifteen elk calves (eight males and seven females) born to females treated with GnRH vaccine or sham vaccine during midgestation were divided into two groups based on the concentration of serum GnRH antibodies measured during the neonatal period. Those with robust (>15 pmol 125I-GnRH bound per mL of serum) titers (N = 10; four females and six males) were designated as the exposed group, whereas those with undetectable titers (N = 5; three females and two males) were the unexposed group. Onset of puberty, reproductive development, and endocrine function in antibody-exposed and unexposed male and female elk calves were compared. Neonatal exposure to high concentrations of GnRH antibodies had no effect on body weight (P = 0.968), endocrine profiles (P > 0.05), or gametogenesis in either sex. Likewise, there were no differences between groups in gross or histologic structure of the hypothalamus, pituitary, testes, or ovaries. Pituitary stimulation with a GnRH analog before the second potential reproductive season induced substantial LH secretion in all experimental elk. All females became pregnant during their second reproductive season and all males exhibited similar mature secondary sexual characteristics. There were no differences between exposure groups in hypothalamic GnRH content (P = 0.979), pituitary gonadotropin content (P > 0.05) or gonadal structure. We concluded that suppressing GnRH signaling through immunoneutralization during the neonatal period likely does not alter long-term reproductive function in this species.  相似文献   

13.
Mechanisms governing the effect of polychlorinated biphenyl (PCB) toxicity on hypothalamic serotonergic function and the neuroendocrine system controlling LH secretion were investigated in Atlantic croaker (Micropogonias unulatus) exposed to the PCB mixture Aroclor 1254 (1 microg x g body weight(-1) x day(-1)) in the diet for 30 days. PCB treatment caused a decrease in hypothalamic 5-hydroxytryptamine (5-HT) concentrations and significant inhibition of hypothalamic tryptophan hydroxylase (TPH), the rate-limiting enzyme in 5-HT synthesis, but did not alter the activity of monoamine oxidase, the catabolic enzyme. Further, PCB treatment caused significant decreases in GnRH content in the preoptic-anterior hypothalamic area. Significant decreases in pituitary GnRH receptor concentrations and the LH response to the GnRH analogue (GnRHa) were also observed in PCB-exposed fish, possibly as a consequence of a decline in GnRH release. The possible association between impaired serotonergic and neuroendocrine functions after PCB treatment was explored using serotonergic drugs. Treatment of croaker with p-chlorophenylalanine, an irreversible TPH inhibitor, mimicked the effects of PCB on the GnRH system and the LH response to GnRHa. Bypassing the TPH-dependent hydroxylation step with the administration of 5-hydroxytryptophan restored 5-HT to control levels and prevented the deleterious effects of PCB on the neuroendocrine parameters. Moreover, slow-release GnRH implants prevented the PCB-induced decline in GnRH receptors and restored the LH response to GnRHa, suggesting that GnRH therapy can reverse PCB-induced disruption of LH secretion. These results demonstrate that TPH is one of the targets of PCB neurotoxicity and indicate that a decrease in 5-HT availability in PCB-exposed croaker results in disruption of the stimulatory 5-HT/GnRH pathway controlling LH secretion.  相似文献   

14.
Stress responses are thought to act within the hypothalamopituitary unit to impair the reproductive system, and the sites of action may differ between sexes. The effect of isolation and restraint stress on pituitary responsiveness to GnRH in sheep was investigated, with emphasis on possible sex differences. Experiments were conducted during the breeding season and the nonbreeding season. In both experiments, 125 ng of GnRH was injected i.v. every 2 h into hypothalamopituitary disconnected, gonadectomized rams and ewes on 3 experimental days, with each day divided into two periods. During the second period on Day 2, isolation and restraint stress was imposed for 5.5 h. Plasma concentrations of LH and cortisol were measured in samples of blood collected from the jugular vein. In the second experiment (nonbreeding season), plasma concentrations of epinephrine, norepinephrine, 3,4-dihydroxyphenylalanine, and 3,4-dihydroxyphenylglycol were also measured. In both experiments, there was no effect of isolation and restraint stress on plasma concentrations of cortisol in either sex. During the breeding season, there was no effect of isolation and restraint stress on plasma concentrations of LH in either sex. During the nonbreeding season, the amplitude of the first LH pulse after the commencement of stress was significantly reduced (P < 0.05) in rams and ewes. In the second experiment, during stress there was a significant increase (P < 0.05) in plasma concentrations of epinephrine in rams and ewes and significantly higher (P < 0.05) basal concentrations of norepinephrine in ewes than in rams. These results suggest that in sheep stress reduces responsiveness of the pituitary gland to exogenous GnRH during the nonbreeding season but not during the breeding season, possibly because of mediators of the stress response other than those of the hypothalamus-pituitary-adrenal gland axis.  相似文献   

15.
Lactating primiparous sows were used to examine relationships among hypothalamic gonadotropin releasing hormone (GnRH), serum, and anterior pituitary gonadotropins and follicular development after weaning or after administering GnRH pulses (1.5 ug) once hourly for 72 h before weaning. Control sows were either slaughtered at 0 or 72 h after weaning or were cannulated for collection of blood samples until 24 h after estrus. Sows pulsed with GnRH were either slaughtered 72 h after beginning of GnRH treatment or were cannulated for collection of blood samples until 24 h after estrus. Exogenous GnRH pulsed hourly during 72 h prior to weaning stimulated follicular growth as demonstrated by an increase in number of surface follicles >5 mm in diameter and a decrease in number of follicles <5 mm in diameter. Interval (h) from weaning to an increase in estradiol (>16 pg/ml) was less in GnRH-pulsed than in control sows (P < 0.05), but hours from weaning to estrus were similar between groups. Amounts of GnRH in the medial basal hypothalamus (MBH), stalk median eminence (SME), and hypophyseal portal area (HPA) were similar among control sows killed at 0 or 72 h and sows pulsed with GnRH. Serum concentrations of luteinizing hormone (LH) and frequency of release of LH were similar between GnRH-pulsed and control sows, but concentrations of LH and follicle stimulating hormone (FSH) in anterior pituitary were lower in GnRH-pulsed sows than control sows. Administration of GnRH for 72 h prior to weaning in primiparous sows stimulated follicular growth as manifested by increased secretion of estrogen; however, the amount of follicular growth was apparently inadequate to hasten the onset of estrus after weaning.  相似文献   

16.
Honey bees are important pollinators and take micronutrients from different natural floral resources and turbid water to adequately meet their nutritional requirements. But the role of micronutrients for honey bee health is not well understood. Here, the present study was conducted to determine honey bees' micronutrients preference in summer and winter seasons. Also, the impact of micronutrients on foraging behaviour and brood increase was studied in different honey bee colonies. The results elucidated that honey bees exhibited a strong preference for a salt solution compared to deionized water during the summer and winter seasons. However, there was a notable switch in salt preference between seasons. Overall, honey bees showed significantly more foraging activity, more pollen collection, and increased brood area after sodium consumption compared to other minerals in the summer season. Further, pollen collection and brood area were significantly higher after the use of potassium in the winter season. Thus, the food preference of honey bees is strongly linked with the seasons and the availability of the floral resources. Our data suggested that honey bees may seek specific nutrients during variation of the seasonal conditions.  相似文献   

17.
The presence of a fecundity gene (F) in Booroola Merino ewes increases the ovulation rate. To test how F gene expression affects the gonadotrophin-releasing hormone (GnRH) concentration in hypothalamic or extrahypothalamic regions of the brain, GnRH was measured by radioimmunoassay in acetic acid extracts of various brain tissues from Booroola ewes which were homozygous (FF), heterozygous (F+) or non-carriers (++) of the F gene. The GnRH concentration in brain tissues from FF, F+ and ++ animals which had been ovariectomized 5 months previously was also evaluated. No significant F gene-specific differences were noted in any of the brain areas tested, in intact or ovariectomized animals. However, in ovariectomized ewes, the concentrations of GnRH increased about 2-fold in the median eminence of the hypothalamus, remained unchanged in the medial basal hypothalamus and dropped to less than 10% of the values in intact ++ animals in the preoptic area. These studies suggest that the changed pituitary sensitivity and increased gonadotrophin release in Booroolas carrying the F gene(s) is not attributable to increased hypothalamic GnRH concentrations in these animals.  相似文献   

18.
The control of reproductive function is manifested centrally through the control of hypothalamic release of gonadotropin-releasing hormone (GnRH) in episodic events or pulses. For GnRH release to occur in pulses, GnRH neurons must coordinate release events periodically to elicit a bolus of GnRH. We used a perifusion culture system to examine the release of GnRH from both intact hypothalami and enzymatically dispersed hypothalamic cells after challenge with GnRH analogs to evaluate the role of anatomical neuronal connections on autocrine/paracrine signals by GnRH on GnRH neurons. The potent GnRH agonist des-Gly(10)-D-Ala(6)-GnRH N-ethylamide, potent GnRH antagonists D-Phe(2)-D-Ala(6)-GnRH and D-Phe(2,6)-Pro(3)-GnRH or vehicle were infused, whereas GnRH release from hypothalamic tissue and cells were measured. PULSAR analysis of GnRH release profiles was conducted to evaluate parameters of pulsatile GnRH release. Infusion of the GnRH agonist resulted in a decrease in mean GnRH (P < 0.001), pulse nadir (P < 0.01), and pulse frequency (P < 0.05) but no effect on pulse amplitude. Infusion of GnRH antagonists resulted in an increase in mean GnRH (P < 0.001), pulse nadir (P < 0.05), and pulse frequency (P < 0.05) and in GnRH pulse amplitude only in dispersed cells (P < 0.05). These results are consistent with the hypothesis that GnRH inhibits endogenous GnRH release by an ultrashort-loop feedback mechanism and that treatment of hypothalamic tissue or cells with GnRH agonist inhibits ultrashort-loop feedback, whereas treatment with antagonists disrupts normal feedback to GnRH neurons and elicits an increased GnRH signal.  相似文献   

19.
Changes in the frequency of GnRH and LH pulses have been shown to occur between the luteal and preovulatory periods in the ovine estrous cycle. We examined the effect of these different frequencies of GnRH pulses on pituitary concentrations of LH and FSH subunit mRNAs. Eighteen ovariectomized ewes were implanted with progesterone to eliminate endogenous GnRH release during the nonbreeding season. These animals then received 3 ng/kg body weight GnRH in frequencies of once every 4, 1, or 0.5 h for 4 days. These frequencies represent those observed during the luteal and follicular phases, and the preovulatory LH and FSH surge of the ovine estrous cycle, respectively. On day 4, the ewes were killed and their anterior pituitary glands were removed for measurements of pituitary LH, FSH, and their subunit mRNAs. Pituitary content of LH and FSH, as assessed by RIA, did not change (P greater than 0.10) in response to the three different GnRH pulse frequencies. However, subunit mRNA concentrations, assessed by solution hybridization assays and expressed as femtomoles per mg total RNA, did change as a result of different GnRH frequencies. alpha mRNA concentrations were higher (P less than 0.05) when the GnRH pulse frequency was 1/0.5 h and 1 h, whereas LH beta and FSH beta mRNA concentrations were maximal (P less than 0.05) only at a pulse frequency of 1/h. Additionally, pituitary LH and FSH secretory response to GnRH on day 4 was maximal (P = 0.05) when the pulse infusion was 1/h.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The objective of this experiment was to determine whether seasonal differences existed in estrous and LH responses to estradiol benzoate (EB) in ovariectomized sows. Sows were ovariectomized after weaning their first litter, and treatment was begun 120 d after ovariectomy. Sows were given 400 mug EB intramuscularly (i.m.) on July 24, 1982 (summer), October 24, 1984 (fall), January 29, 1985 (winter), and March 27, 1985 (spring). Beginning 24 h after EB, sows were checked for estrus four times daily. Proportion in estrus was affected by season, with all sows exhibiting estrus within 5 d after EB in summer, winter, and spring. Only three of five sows exhibited estrus within 5 d after EB in fall. Interval (h) to estrus was delayed in fall (80 h) compared to other seasons (62.6 h; SEM = 4.5). Concentrations of LH were suppressed within 6 h after EB in all seasons but rebounded to pre-injection levels more slowly in fall and spring than in winter and summer. Frequency of LH peaks (3.2 +/- .4 4 h ) was not affected by season, but amplitude (1.9 vs 0.9 ng/ml) and baseline (2.7 vs 1.6 ng/ml) were greater (P < 0.05) for summer than for the other seasons combined. At 6 h after injection, concentrations of estradiol-17beta (pg/ml) were greater in summer (58.3) than in fall (19.0), winter (32.4), or spring (16.6; SEM = 10.4). We conclude that environmental factors associated with season alter responsiveness of the brain to estradiol, thereby controlling sexual behavior and LH secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号