首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Common beans (Phaseolus vulgaris L.) have centers of origin in both Mesoamerica and Andean South America, and have been domesticated in each region for perhaps 5000 years. A third major gene pool may exist in Ecuador and Northern Peru. The diversity of the rhizobia associated with beans has also been studied, but to date with an emphasis on the Mesoamerican center of origin. In this study we compared bean rhizobia from Mexico and Andean South America using both phenotypic and phylogenetic approaches. When differences between the rhizobia of these two regions were shown, we then examined the influence of bean cultivar on the most probable number (MPN) count and biodiversity of rhizobia recovered from different soils. Three clusters of bean rhizobia were distinguished using phenotypic analysis and principal-component analysis of Box AIR-PCR banding patterns. They corresponded principally to isolates from Mexico, and the northern and southern Andean regions, with isolates from southern Ecuador exhibiting significant genetic diversity. Rhizobia from Dalea spp., which are infective and effective on beans, may have contributed to the apparent diversity of rhizobia recovered from the Mesoamerican region, while the rhizobia of wild Phaseolus aborigineus from Argentina showed only limited similarity to the other bean rhizobia tested. Use of P. vulgaris cultivars from the Mesoamerican and Andean Phaseolus gene pools as trap hosts did not significantly affect MPN counts of bean rhizobia from the soils of each region, but did influence the diversity of the rhizobia recovered. Such differences in compatibility of host and Rhizobium could be a factor in the poor reputation for nodulation and N2 fixation in this crop.  相似文献   

2.
Genetic diversity within a common bean ( Phaseolus vulgaris L.) collection, comprising 343 accessions from the Iberian Peninsula, was examined using six allozyme markers. Two major clusters corresponding to the Andean and Mesoamerican gene pools were identified. Both gene pools were characterized by specific alleles, with the former exhibiting Skdh(100), Me(100), Rbcs(100 or 98) and Diap-1(100), and the latter exhibiting Skdh(103), Me(100), Rbcs(100) and Diap-1(95). Some accessions from both clusters, deviating from these allozyme patterns, exhibited Skdh(100), Me(100), Rbcs(100) and Diap-1(95) or Skdh(103), Me(100), Rbcs(100) and Diap-1(100) allozyme profiles and were considered as putative hybrids.The levels of genetic variation has not been eroded since the introduction of the common bean from the American centers of domestication to the Iberian Peninsula. Instead, obvious signs of introgression between the two gene pools were observed, mainly among white-seeded genotypes. The intermediate forms adapted to the Iberian Peninsula could have emerged from initial recombination between Mesoamerican and Andean gene pools. The Iberian common bean germplasm is therefore more complex than previously thought, and contains additional diversity that remains to be explored for genetic and breeding purposes. The Iberian Peninsula could be considered as a secondary center of genetic diversity of the common bean, especially the large white-seeded genotypes.  相似文献   

3.
Cultivated common bean germplasm is especially diverse due to the parallel domestication of two genepools in the Mesoamerican and Andean centers of diversity and introgression between these gene pools. Classification into morphological races has helped to provide a framework for utilization of this cultivated germplasm. Meanwhile, core collections along with molecular markers are useful tools for organizing and analyzing representative sets of these genotypes. In this study, we evaluated 604 accessions from the CIAT core germplasm collection representing wide genetic variability from both primary and secondary centers of diversity with a newly developed, fluorescent microsatellite marker set of 36 genomic and gene-based SSRs to determine molecular diversity and with seed protein analysis to determine phaseolin alleles. The entire collection could be divided into two genepools and five predominant races with the division between the Mesoamerica race and the Durango–Jalisco group showing strong support within the Mesoamerican genepool and the Nueva Granada and Peru races showing less diversity overall and some between-group admixture within the Andean genepool. The Chile race could not be distinguished within the Andean genepool but there was support for the Guatemala race within the Mesoamerican genepool and this race was unique in its high level of diversity and distance from other Mesoamerican races. Based on this population structure, significant associations were found between SSR loci and seed size characteristics, some on the same linkage group as the phaseolin locus, which previously had been associated with seed size, or in other regions of the genome. In conclusion, this study has shown that common bean has very significant population structure that can help guide the construction of genetic crosses that maximize diversity as well as serving as a basis for additional association studies.  相似文献   

4.
Anthracnose, one of the most important diseases of common bean (Phaseolus vulgaris), is caused by the fungus Colletotrichum lindemuthianum. A "candidate gene" approach was used to map anthracnose resistance quantitative trait loci (QTL). Candidate genes included genes for both pathogen recognition (resistance genes and resistance gene analogs [RGAs]) and general plant defense (defense response genes). Two strains of C. lindemuthianum, identified in a world collection of 177 strains, displayed a reproducible and differential aggressiveness toward BAT93 and JaloEEP558, two parental lines of P. vulgaris representing the two major gene pools of this crop. A reliable test was developed to score partial resistance in aerial organs of the plant (stem, leaf, petiole) under controlled growth chamber conditions. BAT93 was more resistant than JaloEEP558 regardless of the organ or strain tested. With a recombinant inbred line (RIL) population derived from a cross between these two parental lines, 10 QTL were located on a genetic map harboring 143 markers, including known defense response genes, anthracnose-specific resistance genes, and RGAs. Eight of the QTL displayed isolate specificity. Two were co-localized with known defense genes (phenylalanine ammonia-lyase and hydroxyproline-rich glycoprotein) and three with anthracnose-specific resistance genes and/or RGAs. Interestingly, two QTL, with different allelic contribution, mapped on linkage group B4 in a 5.0 cM interval containing Andean and Mesoamerican specific resistance genes against C. lindemuthianum and 11 polymorphic fragments revealed with a RGA probe. The possible relationship between genes underlying specific and partial resistance is discussed.  相似文献   

5.
Characterization of all chromosomes of the Andean G19833 bean genotype was carried out by fluorescent in situ hybridization. Eleven single-copy genomic sequences, one for each chromosome, two BACs containing subtelomeric and pericentromeric repeats and the 5S and 45S ribosomal DNA (rDNA) were used as probes. Comparison to the Mesoamerican accession BAT93 showed little divergence, except for additional 45S rDNA sites in four chromosome pairs. Altogether, the results indicated a relative karyotypic stability during the evolution of the Andean and Mesoamerican gene pools of P. vulgaris.  相似文献   

6.
The link between long-term host–parasite coevolution and genetic diversity is key to understanding genetic epidemiology and the evolution of resistance. The model of Red Queen host–parasite coevolution posits that high genetic diversity is maintained when rare host resistance variants have a selective advantage, which is believed to be the mechanistic basis for the extraordinarily high levels of diversity at disease-related genes such as the major histocompatibility complex in jawed vertebrates and R-genes in plants. The parasites that drive long-term coevolution are, however, often elusive. Here we present evidence for long-term balancing selection at the phenotypic (variation in resistance) and genomic (resistance locus) level in a particular host–parasite system: the planktonic crustacean Daphnia magna and the bacterium Pasteuria ramosa. The host shows widespread polymorphisms for pathogen resistance regardless of geographic distance, even though there is a clear genome-wide pattern of isolation by distance at other sites. In the genomic region of a previously identified resistance supergene, we observed consistent molecular signals of balancing selection, including higher genetic diversity, older coalescence times, and lower differentiation between populations, which set this region apart from the rest of the genome. We propose that specific long-term coevolution by negative-frequency-dependent selection drives this elevated diversity at the host''s resistance loci on an intercontinental scale and provide an example of a direct link between the host’s resistance to a virulent pathogen and the large-scale diversity of its underlying genes.  相似文献   

7.
Coevolution between hosts and pathogens is thought to occur between interacting molecules of both species. This results in the maintenance of genetic diversity at pathogen antigens (or so-called effectors) and host resistance genes such as the major histocompatibility complex (MHC) in mammals or resistance (R) genes in plants. In plant-pathogen interactions, the current paradigm posits that a specific defense response is activated upon recognition of pathogen effectors via interaction with their corresponding R proteins. According to the "Guard-Hypothesis," R proteins (the "guards") can sense modification of target molecules in the host (the "guardees") by pathogen effectors and subsequently trigger the defense response. Multiple studies have reported high genetic diversity at R genes maintained by balancing selection. In contrast, little is known about the evolutionary mechanisms shaping the guardee, which may be subject to contrasting evolutionary forces. Here we show that the evolution of the guardee RCR3 is characterized by gene duplication, frequent gene conversion, and balancing selection in the wild tomato species Solanum peruvianum. Investigating the functional characteristics of 54 natural variants through in vitro and in planta assays, we detected differences in recognition of the pathogen effector through interaction with the guardee, as well as substantial variation in the strength of the defense response. This variation is maintained by balancing selection at each copy of the RCR3 gene. Our analyses pinpoint three amino acid polymorphisms with key functional consequences for the coevolution between the guardee (RCR3) and its guard (Cf-2). We conclude that, in addition to coevolution at the "guardee-effector" interface for pathogen recognition, natural selection acts on the "guard-guardee" interface. Guardee evolution may be governed by a counterbalance between improved activation in the presence and prevention of auto-immune responses in the absence of the corresponding pathogen.  相似文献   

8.
Microsatellite marker diversity in common bean (Phaseolus vulgaris L.)   总被引:7,自引:0,他引:7  
A diversity survey was used to estimate allelic diversity and heterozygosity of 129 microsatellite markers in a panel of 44 common bean (Phaseolus vulgaris L.) genotypes that have been used as parents of mapping populations. Two types of microsatellites were evaluated, based respectively on gene coding and genomic sequences. Genetic diversity was evaluated by estimating the polymorphism information content (PIC), as well as the distribution and range of alleles sizes. Gene-based microsatellites proved to be less polymorphic than genomic microsatellites in terms of both number of alleles (6.0 vs. 9.2) and PIC values (0.446 vs. 0.594) while greater size differences between the largest and the smallest allele were observed for the genomic microsatellites than for the gene-based microsatellites (31.4 vs. 19.1 bp). Markers that showed a high number of alleles were identified with a maximum of 28 alleles for the marker BMd1. The microsatellites were useful for distinguishing Andean and Mesoamerican genotypes, for uncovering the races within each genepool and for separating wild accessions from cultivars. Greater polymorphism and race structure was found within the Andean gene pool than within the Mesoamerican gene pool and polymorphism rate between genotypes was consistent with genepool and race identity. Comparisons between Andean genotypes had higher polymorphism (53.0%) on average than comparisons among Mesoamerican genotypes (33.4%). Within the Mesoamerican parental combinations, the intra-racial combinations between Mesoamerica and Durango or Jalisco race genotypes showed higher average rates of polymorphism (37.5%) than the within-race combinations between Mesoamerica race genotypes (31.7%). In multiple correspondance analysis we found two principal clusters of genotypes corresponding to the Mesoamerican and Andean gene pools and subgroups representing specific races especially for the Nueva Granada and Peru races of the Andean gene pool. Intra population diversity was higher within the Andean genepool than within the Mesoamerican genepool and this pattern was observed for both gene-based and genomic microsatellites. Furthermore, intra-population diversity within the Andean races (0.356 on average) was higher than within the Mesoamerican races (0.302). Within the Andean gene pool, race Peru had higher diversity compared to race Nueva Granada, while within the Mesoamerican gene pool, the races Durango, Guatemala and Jalisco had comparable levels of diversity which were below that of race Mesoamerica.  相似文献   

9.
Leucine Rich Repeats (LRR) domains have been identified on most known plant resistance genes and appear to be involved in the specific recognition of pathogen strains. Here we explore the processes which may drive the evolution of this putative recognition domain. We developed AFLP markers specifically situated in the LRR domain of members of the PRLJ1 complex Resistance Gene Candidate (RGC) family identified in common bean (Phaseolus vulgaris). Diversity for these markers was assessed in ten wild populations of P. vulgaris and compared to locally co-occurring pathogen populations of Colletotrichum lindemuthianum. Nine PRLJ1 LRR specific markers were obtained. Marker sequences revealed that RGC diversity at PRLJ1 is similar to that at other complex R-loci. Wild bean populations showed contrasting levels of PRLJ1 LRR diversity and were all significantly differentiated. We could not detect an effect of local C. lindemuthianum population diversity on the spatial distribution of P. vulgaris PRLJ1 diversity. However, host populations have been previously assessed for neutral (RAPD) markers and for resistance phenotypes to six strains of C. lindemuthianum isolated from cultivated bean fields. A comparative analysis of PRLJ1 LRR diversity and host diversity for resistance phenotypes indicated that evolutionary processes related to the antagonistic C. lindemuthianum/P. vulgaris interaction are likely to have shaped molecular diversity of the putative recognition domains of the PRLJ1 RGC family members.  相似文献   

10.
A complex ancestral resistance (R) gene cluster, localized at the end of linkage group B4, and referred to as the B4 R gene cluster, has been previously genetically characterized. The B4 R gene cluster existed prior to the separation of the two major gene pools of cultivated common bean and contains several resistance specificities effective against the fungus Colletotrichum lindemuthianum. In this paper we report the molecular analysis of four expressed resistance gene candidates (RGCs) that map at the B4 R-cluster and co-localize with R-specificities or R-QTLs effective against C. lindemuthianum. These RGCs have been isolated from two genotypes that are representative of the two major gene pools of common bean: the BA8 and BA11 RGCs originating from the Mesoamerican BAT93 genotype, and the JA71 and JA78 RGCs originating from the Andean JaloEEP558 genotype. These RGCs encode NBS-LRR resistance-like proteins that are closely similar to the tomato I2 R-protein. Based upon sequence comparisons and genetic localization, we established that these four bean RGCs belong to two different subfamilies of R-sequences independently of their gene pool of origin. No feature discriminating the four RGCs according to their gene pool of origin has been observed yet. Comparative sequence analyses of the full-length RGCs and their flanking genomic sequences confirmed the ancestral origin of the B4 R-cluster.  相似文献   

11.
Brazil is the largest producer and consumer of common bean (Phaseolus vulgaris L.), which is the most important source of human dietary protein in that country. This study assessed the genetic diversity and the structure of a sample of 279 geo-referenced common bean landraces from Brazil, using molecular markers. Sixty-seven microsatellite markers spread over the 11 linkage groups of the common bean genome, as well as Phaseolin, PvTFL1y, APA and four SCAR markers were used. As expected, the sample showed lower genetic diversity compared to the diversity in the primary center of diversification. Andean and Mesoamerican gene pools were both present but the latter gene pool was four times more frequent than the former. The two gene pools could be clearly distinguished; limited admixture was observed between these groups. The Mesoamerican group consisted of two sub-populations, with a high level of admixture between them leading to a large proportion of stabilized hybrids not observed in the centers of domestication. Thus, Brazil can be considered a secondary center of diversification of common bean. A high degree of genome-wide multilocus associations even among unlinked loci was observed, confirming the high level of structure in the sample and suggesting that association mapping should be conducted in separate Andean and Mesoamerican Brazilian samples.  相似文献   

12.
Lectin-related polypeptides are a class of defence proteins found in seeds of Phaseolus species. In Lima bean (P. lunatus), these proteins and their genes have been well characterized in the Andean morphotype, which represents one of the two gene pools of this species. To study the molecular evolution of the lectin family in Lima bean we characterized the polypeptides belonging to this multigene family and cloned the genes belonging to the Mesoamerican gene pool. The latter gene pool contains components similar to those of the Andean pool, namely: an amylase inhibitor-like (AIL), an arcelin-like (ARL) lectin and the less abundant Lima bean lectin (LBL). These proteins originate from an ancestor gene of the lectin type which duplicated to yield the lectin gene and the progenitor of ARL and AIL. In this species. ARL represents an evolutionary intermediate form that precedes AIL. Phylogenetic analysis supports an Andean origin for Lima bean. The molecular evolutionary studies were extended to the genes of common bean and demonstrated that true lectin genes and the ancestor of lectin-related genes are the result of a duplication event that occurred before speciation. Lima and common bean followed different evolutionary pathways and in the latter species a second duplication event occurred that gave rise, in Mesoamerican wild genotypes, to arcelin genes.  相似文献   

13.
In common bean, the B4 disease resistance (R) gene cluster is a complex cluster localized at the end of linkage group (LG) B4, containing at least three R specificities to the fungus Colletotrichum lindemuthianum. To investigate the evolution of this R cluster since the divergence of Andean and Mesoamerican gene pools, DNA sequences were characterized from two representative genotypes of the two major gene pools of common bean (BAT93: Mesoamerican; JaloEEP558: Andean). Sequences encoding 29 B4-CC nucleotide-binding-site–leucine-rich-repeat (B4-CNL) genes were determined—12 from JaloEEP558 and 17 from BAT93. Although sequence exchange events were identified, phylogenetic analyses revealed that they were not frequent enough to lead to homogenization of B4-CNL sequences within a haplotype. Genetic mapping based on pulsed-field gel electrophoresis separation confirmed that the B4-CNL family is a large family specific to one end of LG B4 and is present at two distinct blocks separated by 26 cM. Fluorescent in situ hybridization on meiotic pachytene chromosomes revealed that two B4-CNL blocks are located in the subtelomeric region of the short arm of chromosome 4 on both sides of a heterochromatic block (knob), suggesting that this peculiar genomic environment may favor the proliferation of a large R gene cluster.  相似文献   

14.
Genetic diversity of 50 Phaeoisariopsis griseola isolates collected from different agroecological zones in Kenya was studied using group‐specific primers and amplified fragment length polymorphism (AFLP) markers. Group‐specific primers differentiated the isolates into Andean and Mesoamerican groups, corresponding to the two common‐bean gene pools. Significant polymorphisms were observed with all the AFLP primer combinations used, reflecting a wide genetic diversity in the P. griseola population. A total of 207 fingerprints was generated, of which 178 were polymorphic. Cluster analysis of the polymorphic bands also separated the isolates into the two groups defined by group‐specific primers. All the isolates examined were grouped into three virulence populations; Andean, Afro‐Andean and Mesoamerican, and their genetic diversity measured. On average, greater diversity (91%) was detected within populations than between populations (9%). The genetic distance between Andean and Mesoamerican populations was higher (D = 0.0269) than between Andean and Afro‐Andean (D = 0.0095). The wide genetic diversity reported here has significant implications in breeding for resistance to angular leaf spot and should be taken into consideration when screening and deploying resistant bean genotypes.  相似文献   

15.
Most studies on the genetic diversity of common bean (Phaseolus vulgaris L.) have focussed on accessions from the Mesoamerican gene pool compared to the Andean gene pool. A deeper knowledge of the genetic structure of Argentinian germplasm would enable researchers to determine how the Andean domestication event affected patterns of genetic diversity in domesticated beans and to identify candidates for genes targeted by selection during the evolution of the cultivated common bean. A collection of 116 wild and domesticated accessions representing the diversity of the Andean bean in Argentina was genotyped by means of 114 simple sequence repeat (SSR) markers. Forty-seven Mesoamerican bean accessions and 16 Andean bean accessions representing the diversity of Andean landraces and wild accessions were also included. Using the Bayesian algorithm implemented in the software STRUCTURE we identified five major groups that correspond to Mesoamerican and Argentinian wild accessions and landraces and a group that corresponds to accessions from different Andean and Mesoamerican countries. The neighbour-joining algorithm and principal coordinate clustering analysis confirmed the genetic relationships among accessions observed with the STRUCTURE analysis. Argentinian accessions showed a substantial genetic variation with a considerable number of unique haplotypes and private alleles, suggesting that they may have played an important role in the evolution of the species. The results of statistical analyses aimed at identifying genomic regions with consistent patterns of variation were significant for 35 loci (~20 % of the SSRs used in the Argentinian accessions). One of these loci mapped in or near the genomic region of the glutamate decarboxylase gene. Our data characterize the population structure of the Argentinian germplasm. This information on its diversity will be very valuable for use in introgressing Argentinian genes into commercial varieties because the majority of present-day common bean varieties are of Andean origin.  相似文献   

16.
Rose LE  Michelmore RW  Langley CH 《Genetics》2007,175(3):1307-1319
Disease resistance to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) in the host species Lycopersicon esculentum, the cultivated tomato, and the closely related L. pimpinellifolium is triggered by the physical interaction between the protein products of the host resistance (R) gene Pto and the pathogen avirulence genes AvrPto and AvrPtoB. Sequence variation at the Pto locus was surveyed in natural populations of seven species of Lycopersicon to test hypotheses of host-parasite coevolution and functional adaptation of the Pto gene. Pto shows significantly higher nonsynonymous polymorphism than 14 other non-R-gene loci in the same samples of Lycopersicon species, while showing no difference in synonymous polymorphism, suggesting that the maintenance of amino acid polymorphism at this locus is mediated by pathogen selection. Also, a larger proportion of ancestral variation is maintained at Pto as compared to these non-R-gene loci. The frequency spectrum of amino acid polymorphisms known to negatively affect Pto function is skewed toward low frequency compared to amino acid polymorphisms that do not affect function or silent polymorphisms. Therefore, the evolution of Pto appears to be influenced by a mixture of both purifying and balancing selection.  相似文献   

17.
Alleles or tightly linked genes at the soybean (Glycine max L. Merr.) Rpg1 locus confer resistance to strains of Pseudomonas syringae pv. glycinea that express the avirulence genes avrB or avrRpm1. We have previously mapped Rpg1-b (the gene specific for avrB) to a cluster of resistance genes (R genes) with diverse specificities in molecular linkage group F. Here, we describe the high-resolution physical and genetic mapping of Rpg1-b to a 0.16-cM interval encompassed by two overlapping BAC clones spanning approximately 270 kilobases. Rpg1-b is part of a complex locus containing numerous genes related to previously characterized coiled coil-nucleotide binding site-leucine rich repeat (CC-NBS-LRR)-type R genes that are spread throughout this region. Phylogenetic and Southern blot analyses group these genes into four distinct subgroups, some of which are conserved in the common bean, Phaseolus vulgaris, indicating that this R gene cluster may predate the divergence of Phaseolus and Glycine. Members from different subgroups are physically intermixed and display a high level of polymorphism between soybean cultivars, suggesting that this region is rearranging at a high frequency. At least five CC-NBS-LRR-type genes cosegregate with Rpg1-b in our large mapping populations.  相似文献   

18.
Pathogens are a main driving force of the evolution of plants and animals. Being resistant to diseases confers a high selective advantage to hosts, yet many host–pathogen systems show a remarkable degree of polymorphism of host resistance and pathogen virulence. The most common explanation of this phenomenon is that both resistance and virulence genes are costly and that there is selection against those genes when they are unnecessary. Here, we use stochastic multi‐locus simulations to show that the origin and the maintenance of genetic polymorphism in plant–pathogen systems can be explained without costs. In multi‐locus gene‐for‐gene systems, temporal domination of a super pathogen can cause polymorphism in resistance through neutral drift. With an increasing number of susceptible alleles in the host population, pathogen types other than the super race are able to cause infections and invade the population, leading to higher pathogen diversity and in turn to higher host diversity.  相似文献   

19.
Anthracnose, caused by the hemibiotrophic fungal pathogen Colletotrichum lindemuthianum is a devastating disease of common bean. Resistant cultivars are economical means for defense against this pathogen. In the present study, we mapped resistance specificities against 7 C. lindemuthianum strains of various geographical origins revealing differential reactions on BAT93 and JaloEEP558, two parents of a recombinant inbred lines (RILs) population, of Meso-american and Andean origin, respectively. Six strains revealed the segregation of two independent resistance genes. A specific numerical code calculating the LOD score in the case of two independent segregating genes (i.e. genes with duplicate effects) in a RILs population was developed in order to provide a recombination value (r) between each of the two resistance genes and the tested marker. We mapped two closely linked Andean resistance genes (Co-x, Co-w) at the end of linkage group (LG) B1 and mapped one Meso-american resistance genes (Co-u) at the end of LG B2. We also confirmed the complexity of the previously identified B4 resistance gene cluster, because four of the seven tested strains revealed a resistance specificity near Co-y from JaloEEP558 and two strains identified a resistance specificity near Co-9 from BAT93. Resistance genes found within the same cluster confer resistance to different strains of a single pathogen such as the two anthracnose specificities Co-x and Co-w clustered at the end of LG B1. Clustering of resistance specificities to multiple pathogens such as fungi (Co-u) and viruses (I) was also observed at the end of LG B2.  相似文献   

20.
In many plant-pathogen interactions resistance to disease is controlled by the interaction of plant-encoded resistance (R) genes and pathogen-encoded avirulence (Avr) genes. The interaction between tomato and the leaf mould pathogen Cladosporium fulvum is an ideal system to study the molecular basis of pathogen perception by plants. A total of four tomato genes for resistance to C. fulvum (Cf-2, Cf-4, Cf-5 and Cf-9) have been isolated from two genetically complex chromosomal loci. Their gene products recognize specific C. fulvum-encoded avirulence gene products (Avr2, Avr4, Avr5 and Avr9) by an unknown molecular mechanism. Cf genes encode extracellular membrane-anchored glycoproteins comprised predominantly of 24 amino acid leucine-rich repeats (LRRs). Cf genes from the same locus encode proteins which are more than 90% identical. Most of the amino-acid sequence differences correspond to the solvent-exposed residues within a beta-strand/beta-turn structural motif which is highly conserved in LRR proteins. Sequence variability within this motif is predicted to affect the specificity of ligand binding. Our analysis of Cf gene loci at the molecular level has shown they comprise tandemly duplicated homologous genes, and suggests a molecular mechanism for the generation of sequence diversity at these loci. Our analysis provides further insight into the molecular basis of pathogen perception by plants and the organization and evolution of R gene loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号