首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
NRAGE (also known as Maged1, Dlxin) is a member of the MAGE gene family that may play a role in the neuronal apoptosis that is regulated by the p75 neurotrophin receptor (p75NTR). To test this hypothesis in vivo, we generated NRAGE knockout mice and found that NRAGE deletion caused a defect in developmental apoptosis of sympathetic neurons of the superior cervical ganglia, similar to that observed in p75NTR knockout mice. Primary sympathetic neurons derived from NRAGE knockout mice were resistant to apoptosis induced by brain-derived neurotrophic factor (BDNF), a pro-apoptotic p75NTR ligand, and NRAGE-deficient sympathetic neurons show attenuated BDNF-dependent JNK activation. Hair follicle catagen is an apoptosis-like process that is dependent on p75NTR signaling; we show that NRAGE and p75NTR show regulated co-expression in the hair follicle and that identical defects in hair follicle catagen are present in NRAGE and p75NTR knockout mice. Interestingly, NRAGE knockout mice have severe defects in motoneuron apoptosis that are not observed in p75NTR knockout animals, raising the possibility that NRAGE may facilitate apoptosis induced by receptors other than p75NTR. Together, these studies demonstrate that NRAGE plays an important role in apoptotic-signaling in vivo.  相似文献   

2.
Nerve growth factor (NGF) promotes proliferation via its high affinity receptor (TrkA). Its precursor proNGF promotes apoptosis via the pan-neurotrophin-receptor p75. Recently, we have identified NGF and p75 as important hair growth terminators. However, if proNGF is involved or if NGF can also promote hair growth via TrkA is unclear. By RT-PCR we found that NGF/proNGF mRNA levels peak during early anagen in murine back skin, whereas NGF/proNGF protein levels peak during catagen, indicating high turnover in early anagen and protein accumulation in catagen. By immunohistochemistry, NGF and TrkA are found in the proliferating compartments of the epidermis and hair follicle throughout the cycle. In contrast, strong proNGF is found in the highly differentiated inner root sheath and adjacent to the p75+ regressing epithelial strand in catagen. Commercial 7S NGF, which contains both NGF and proNGF, promotes anagen development in organ-cultured early anagen mouse skin, whereas it promotes catagen development in late anagen skin. Together, our findings suggest an anagen-promoting or anagen-supporting role for NGF/TrkA, and a catagen-promoting role for proNGF/p75 interactions. This has important implications for the future design of specific neurotrophin receptor ligands as novel pharmaceuticals in the modification of tissue remodeling processes such as hair growth or wound healing.  相似文献   

3.
During hair follicle (HF) morphogenesis, p75 neurotrophin receptor (p75NTR) reportedly is the first growth factor receptor found to be expressed by those fibroblasts that later develop into the dermal papilla (DP) of the HF. However, the functional role of p75NTR in HF morphogenesis is still unknown. Studying HF development in fetal and neonatal C57BL/6 murine back skin, we show that p75NTR-immunoreactivity (IR) is prominently expressed by DP fibroblasts as well as by skin nerves during the early steps of HF development. In contrast, p75NTR-IR disappears from the DP in the fully developed HF and it is expressed only in the epithelial outer root sheath of the HF. Compared to age-matched wild-type animals, p75NTR knockout (-/-) mice show significant acceleration of HF morphogenesis, and DP fibroblasts of p75NTR knockout mice show reduced proliferative activity in situ, indicating alterations in their transition from proliferation to differentiation. Although no significant differences in the expression of adhesion molecules (NCAM), selected morphogens (TGFbeta-2, HGF/SF, FGF-2, KGF), or their receptors (TGFbetaR-II, m-met, FGFR-1) were seen between DP of p75NTR knockout and wild-type mice, p75NTR mutants showed a prominent upregulation of FGFR-2, a high-affinity receptor for KGF, in both follicular DP and epithelium. Furthermore, the administration of anti-KGF neutralizing antibody significantly inhibited acceleration of HF morphogenesis in p75NTR knockout mice in vivo. These observations suggest that p75NTR plays an important role during HF morphogenesis, functioning as a receptor that negatively controls HF development, most likely via alterations in DP fibroblast proliferation/differentiation and via downregulation of KGF/FGFR-2 signaling in the HF.  相似文献   

4.
Control of murine hair follicle regression (catagen) by TGF-beta1 in vivo.   总被引:14,自引:0,他引:14  
The regression phase of the hair cycle (catagen) is an apoptosis-driven process accompanied by terminal differentiation, proteolysis, and matrix remodeling. As an inhibitor of keratinocyte proliferation and inductor of keratinocyte apoptosis, transforming growth factor beta1 (TGF-beta1) has been proposed to play an important role in catagen regulation. This is suggested, for example, by maximal expression of TGF-beta1 and its receptors during late anagen and the onset of catagen of the hair cycle. We examined the potential involvement of TGF-beta1 in catagen control. We compared the first spontaneous entry of hair follicles into catagen between TGF-beta1 null mice and age-matched wild-type littermates, and assessed the effects of TGF-beta1 injection on murine anagen hair follicles in vivo. At day 18 p.p., hair follicles in TGF-beta1 -/- mice were still in early catagen, whereas hair follicles of +/+ littermates had already entered the subsequent resting phase (telogen). TGF-beta1-/- mice displayed more Ki-67-positive cells and fewer apoptotic cells than comparable catagen follicles from +/+ mice. In contrast, injection of TGF-beta1 into the back skin of mice induced premature catagen development. In addition, the number of proliferating follicle keratinocytes was reduced and the number of TUNEL + cells was increased in the TGF-beta1-treated mice compared to controls. Double visualization of TGF-beta type II receptor (TGFRII) and TUNEL reactivity revealed colocalization of apoptotic nuclei and TGFRII in catagen follicles. These data strongly support that TGF-beta1 ranks among the elusive endogenous regulators of catagen induction in vivo, possibly via the inhibition of keratinocyte proliferation and induction of apoptosis. Thus, TGF-betaRII agonists and antagonists may provide useful therapeutic tools for human hair growth disorders based on premature or retarded catagen development (effluvium, alopecia, hirsutism).  相似文献   

5.
Reactive astrocytes frequently surround degenerating motor neurons in patients and transgenic animal models of amyotrophic lateral sclerosis (ALS). We report here that reactive astrocytes in the ventral spinal cord of transgenic ALS-mutant G93A superoxide dismutase (SOD) mice expressed nerve growth factor (NGF) in regions where degenerating motor neurons expressed p75 neurotrophin receptor (p75(NTR)) and were immunoreactive for nitrotyrosine. Cultured spinal cord astrocytes incubated with lipopolysaccharide (LPS) or peroxynitrite became reactive and accumulated NGF in the culture medium. Reactive astrocytes caused apoptosis of embryonic rat motor neurons plated on the top of the monolayer. Such motor neuron apoptosis could be prevented when either NGF or p75(NTR) was inhibited with blocking antibodies. In addition, nitric oxide synthase inhibitors were also protective. Exogenous NGF stimulated motor neuron apoptosis only in the presence of a low steady state concentration of nitric oxide. NGF induced apoptosis in motor neurons from p75(NTR +/+) mouse embryos but had no effect in p75(NTR -/-) knockout embryos. Culture media from reactive astrocytes as well as spinal cord lysates from symptomatic G93A SOD mice-stimulated motor neuron apoptosis, but only when incubated with exogenous nitric oxide. This effect was prevented by either NGF or p75(NTR) blocking-antibodies suggesting that it might be mediated by NGF and/or its precursor forms. Our findings show that NGF secreted by reactive astrocytes induce the death of p75-expressing motor neurons by a mechanism involving nitric oxide and peroxynitrite formation. Thus, reactive astrocytes might contribute to the progressive motor neuron degeneration characterizing ALS.  相似文献   

6.
HGF/SF and its receptor (Met) are principal mediators of mesenchymal-epithelial interactions in several different systems and have recently been implicated in the control of hair follicle (HF) growth. We have studied their expression patterns during HF morphogenesis and cycling in C57BL/6 mice, whereas functional hair growth effects of HGF/SF were assessed in vivo by analysis of transgenic mice and in skin organ culture. In normal mouse skin, follicular expression of HGF/SF and Met was strikingly localized: HGF/SF was found only in the HF mesenchyme (dermal papilla fibroblasts) and Met in the neighboring hair bulb keratinocytes. Both HGF/SF and Met expression peaked during the initial phases of HF morphogenesis, the stage of active hair growth (early and mid anagen), and during the apoptosis-driven HF regression (catagen). Met+ cells in the regressing epithelial strand appeared to be protected from undergoing apoptosis. Compared to wild-type controls, transgenic mice overexpressing HGF/SF under the control of the MT-1 promoter had twice as many developing HF and displayed accelerated HF development on postnatal day 3. They also showed significant catagen retardation on P17. In organ culture and in vivo, HGF/SF i.c. resulted in a significant catagen retardation. These results demonstrate an important role of HGF/SF and Met in murine hair growth control and suggest that Met-mediated signaling might be exploited for therapeutic manipulation of human hair growth disorders.-Lindner, G., Menrad, A., Gherardi, E., Merlino, G., Welker, P., Handjiski, B., Roloff, B., Paus, R. Involvement of hepatocyte growth factor/scatter factor and Met receptor signaling in hair follicle morphogenesis and cycling.  相似文献   

7.
SK-N-BE neuroblastoma cell clones transfected with p75(NTR) and lacking Trk neurotrophin receptors, previously reported to undergo extensive spontaneous apoptosis and to be protected by nerve growth factor (NGF) (Bunone, G., Mariotti, A., Compagni, A., Morandi, E., and Della Valle, G. (1997) Oncogene 14, 1463-1470), are shown to exhibit (i) increased levels of the pro-apoptotic lipid metabolite ceramide and (ii) high activity of caspases, the proteases of the cell death cascade. In the p75(NTR)-expressing cells, these parameters were partially normalized by prolonged NGF treatment, which, in addition, decreased apoptosis, similar to caspase blockers. Conversely, exogenous ceramide increased caspase activity and apoptosis in both wild-type and p75(NTR)-expressing cells. A new p75(NTR)-expressing clone characterized by low spontaneous apoptosis exhibited high endogenous ceramide and low caspase levels. A marked difference between the apoptotic and resistant clones concerned the very low and high activities of nitric-oxide (NO) synthase, respectively. Protection from apoptosis by NO was confirmed by results with the NO donor S-nitrosoacetylpenicillamine and the NO-trapping agent hemoglobin. We conclude that the p75(NTR) receptor, while free of NGF, triggers a cascade leading to apoptosis; the cascade includes generation of ceramide and increased caspase activity; and the protective role of NO occurs at step(s) in between the latter events.  相似文献   

8.
During development, neurons pass through a critical phase in which survival is dependent on neurotrophin support. In order to dissect the potential role of p75NTR, the common neurotrophin receptor, in neurotrophin dependence, we expressed wild-type and mutant p75NTR in cells that do not express endogenous p75NTR or Trk family members (NIH3T3). Expression of wild-type p75NTR created a state of neurotrophin dependence: cells could be rescued by nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), or neurotrophin-3 (NT-3), but not by a mutant NGF that binds well to Trk A but poorly to p75NTR. Similarly, expression of p75NTR in human prostate cancer cells in culture rendered a metastatic tumor cell line (PC-3) sensitive to the availability of neurotrophins for survival. Moreover, expression of mutant p75NTR's in another neurotrophin-insensitive cell line (HEK293T) showed that a domain within the intracellular domain governs alternate responses to neurotrophins: the carboxy terminus of the intracellular domain of p75NTR including the sixth alpha helix domain is necessary for rescue by BDNF, but not NGF. These results, when considered with previous studies of the timing of p75NTR expression, support the hypothesis that p75NTR is a mediator of neurotrophin dependence during the critical phase of developmental cell death and during the progression of carcinogenesis in prostate cancer.  相似文献   

9.
The mechanisms employed by the p75 neurotrophin receptor (p75NTR) to mediate neurotrophin-dependent apoptosis are poorly defined. Two-hybrid analyses were used to identify proteins involved in p75NTR apoptotic signaling, and a p75NTR binding partner termed NRAGE (for neurotrophin receptor-interacting MAGE homolog) was identified. NRAGE binds p75NTR in vitro and in vivo, and NRAGE associates with the plasma membrane when NGF is bound to p75NTR. NRAGE blocks the physical association of p75NTR with TrkA, and, conversely, TrkA overexpression eliminates NRAGE-mediated NGF-dependent death, indicating that interactions of NRAGE or TrkA with p75NTR are functionally and physically exclusive. NRAGE overexpression facilitates cell cycle arrest and permits NGF-dependent apoptosis within sympathetic neuron precursors cells. Our results show that NRAGE contributes to p75NTR-dependent cell death and suggest novel functions for MAGE family proteins.  相似文献   

10.
Abstract. To determine whether the p75 neurotrophin receptor (p75NTR) plays a role in naturally occurring neuronal death, we examined neonatal sympathetic neurons that express both the TrkA tyrosine kinase receptor and p75NTR. When sympathetic neuron survival is maintained with low quantities of NGF or KCl, the neurotrophin brain-derived neurotrophic factor (BDNF), which does not activate Trk receptors on sympathetic neurons, causes neuronal apoptosis and increased phosphorylation of c-jun. Function-blocking antibody studies indicate that this apoptosis is due to BDNF-mediated activation of p75NTR. To determine the physiological relevance of these culture findings, we examined sympathetic neurons in BDNF−/− and p75NTR−/− mice. In BDNF−/− mice, sympathetic neuron number is increased relative to BDNF+/+ littermates, and in p75NTR−/− mice, the normal period of sympathetic neuron death does not occur, with neuronal attrition occurring later in life. This deficit in apoptosis is intrinsic to sympathetic neurons, since cultured p75NTR−/− neurons die more slowly than do their wild-type counterparts. Together, these data indicate that p75NTR can signal to mediate apoptosis, and that this mechanism is essential for naturally occurring sympathetic neuron death.  相似文献   

11.
The low affinity neurotrophin receptor p75NTR can mediate cell survival as well as cell death of neural cells by NGF and other neurotrophins. To elucidate p75NTR-mediated signal transduction, we screened p75NTR-associated proteins by a yeast two-hybrid system. We identified one positive clone and named NADE (p75NTR-associated cell death executor). Mouse NADE has marked homology to the human HGR74 protein. NADE specifically binds to the cell-death domain of p75NTR. Co-expression of NADE and p75NTR induced caspase-2 and caspase-3 activities and the fragmentation of nuclear DNA in 293T cells. However, in the absence of p75NTR, NADE failed to induce apoptosis, suggesting that NADE expression is necessary but insufficient for p75NTR-mediated apoptosis. Furthermore, p75NTR/NADE-induced cell death was dependent on NGF but not BDNF, NT-3, or NT-4/5, and the recruitment of NADE to p75NTR (intracellular domain) was dose-dependent. We obtained similar results from PC12 cells, nnr5 cells, and oligodendrocytes. Taken together, NADE is the first signaling adaptor molecule identified in the involvement of p75NTR-mediated apoptosis induced by NGF, and it may play an important role in the pathogenesis of neurogenetic diseases.  相似文献   

12.
13.
p75 neurotrophin receptor (p75NTR) belongs to the TNF-receptor superfamily and signals apoptosis in many cell settings. In human epidermis, p75NTR is mostly confined to the transit-amplifying (TA) sub-population of basal keratinocytes. Brain-derived neurotrophic factor (BDNF) or neurotrophin-4 (NT-4), which signals through p75NTR, induces keratinocyte apoptosis, whereas β-amyloid, a ligand for p75NTR, triggers caspase-3 activation to a greater extent in p75NTR transfected cells. Moreover, p75NTR co-immunoprecipitates with NRAGE, induces the phosphorylation of c-Jun N-terminal kinase (JNK) and reduces nuclear factor kappa B (NF-κB) DNA-binding activity. p75NTR also mediates pro-NGF-induced keratinocyte apoptosis through its co-receptor sortilin. Furthermore, BDNF or β-amyloid cause cell death in TA, but not in keratinocyte stem cells (KSCs) or in p75NTR silenced TA cells. p75NTR is absent in lesional psoriatic skin and p75NTR levels are significantly lower in psoriatic than in normal TA keratinocytes. The rate of apoptosis in psoriatic TA cells is significantly lower than in normal TA cells. BDNF or β-amyloid fail to induce apoptosis in psoriatic TA cells, and p75NTR retroviral infection restores BDNF- or β-amyloid-induced apoptosis in psoriatic keratinocytes. These results demonstrate that p75NTR has a pro-apoptotic role in keratinocytes and is involved in the maintenance of epidermal homeostasis.  相似文献   

14.
Recent evidence suggests that apoptosis of endothelial cells contributes to lumen formation during angiogenesis, but the biological mechanism remains obscure. In this study, we investigated the effect of nerve growth factor (NGF), a member of the neurotrophin family and a potential angiogenic factor, on human umbilical vein endothelial cells (HUVEC) apoptosis and the formation of lumen-like structures (LLS) by cultured HUVEC on Matrigel. We demonstrate that NGF induces cell apoptosis. NGF treatment has no significant effect on the expression level of its two receptors, TrkA and p75NTR. Blockade of both TrkA and p75NTR, but not that of either receptor alone significantly decreases NGF-induced cell apoptosis. NGF significantly increases formation of LLS which consist substantially of apoptotic cells. Application of NGF-neutralizing antibody or simultaneous blockade of TrkA and p75NTR significantly blocks spontaneous and NGF-induced LLS formation. These data support a role for NGF-induced cell apoptosis in LLS formation in vitro.  相似文献   

15.
One of the most common side effects of treatment with cyclosporin A (CsA) is hypertrichosis. This study shows that calcineurin activity is associated with hair keratinocyte differentiation in vivo, affecting nuclear factor of activated T cells (NFAT1) activity in these cells. Treatment of nude or C57BL/6 depilated normal mice with CsA inhibited the expression of keratinocyte terminal differentiation markers associated with catagen, along with the inhibition of calcineurin and NFAT1 nuclear translocation. This was associated with induction of hair growth in nude mice and retardation of spontaneous catagen induction in depilated normal mice. Furthermore, calcineurin inhibition blocked the expression of p21(waf/cip1) and p27(kip1), which are usually induced with differentiation. This was also associated with an increase in interleukin-1alpha expression (nude mice), a decrease in transforming growth factor-beta (nude and normal mice), and no change in keratinocyte growth factor expression in the skin. Retardation of catagen in CsA-treated mice was accompanied by significant alterations in apoptosis-related gene product expression in hair follicle keratinocytes. The ratio of the anti-apoptotic Bcl-2 to proapoptotic Bax expression increased, and expression of p53 and interleukin-1beta converting enzyme activity decreased. These data provide the first evidence that calcineurin is functionally active in follicular keratinocytes and that inhibition of the calcineurin-NFAT1 pathway in these cells in vivo by CsA enhances hair growth.  相似文献   

16.
Developmental sympathetic neuron death is determined by functional interactions between the TrkA/NGF receptor and the p75 neurotrophin receptor (p75NTR). A key question is whether p75NTR promotes apoptosis by directly inhibiting or modulating TrkA activity, or by stimulating cell death independently of TrkA. Here we provide evidence for the latter model. Specifically, experiments presented here demonstrate that the presence or absence of p75NTR does not alter Trk activity or NGF- and NT-3-mediated downstream survival signaling in primary neurons. Crosses of p75NTR-/- and TrkA-/- mice indicate that the coincident absence of p75NTR substantially rescues TrkA-/- sympathetic neurons from developmental death in vivo. Thus, p75NTR induces death regardless of the presence or absence of TrkA expression. These data therefore support a model where developing sympathetic neurons are "destined to die" by an ongoing p75NTR-mediated apoptotic signal, and one of the major ways that TrkA promotes neuronal survival is by silencing this ongoing death signal.  相似文献   

17.
The common neurotrophin receptor p75(NTR) has been shown to initiate intracellular signaling that leads either to cell survival or to apoptosis depending on the cell type examined; however, the mechanism by which p75(NTR) initiates its intracellular transduction remains unclear. We show here that the tumor necrosis factor receptor-associated death domain protein (TRADD) interacts with p75(NTR) upon nerve growth factor (NGF) stimulation. TRADD could be immunodetected after p75(NTR) immunoprecipitation from MCF-7 breast cancer cells stimulated by nerve growth factor. In addition, confocal microscopy indicated that NGF stimulation induced the plasma membrane localization of TRADD. Using a dominant negative form of TRADD, we also show that interactions between p75(NTR) and TRADD are dependent on the death domain of TRADD, thus demonstrating its requirement for binding. Furthermore, the p75(NTR)-mediated activation of NF-kappaB was inhibited by transfection with a dominant negative TRADD, resulting in an inhibition of NGF antiapoptotic activity. These results thus demonstrate that TRADD is involved in the p75(NTR)-mediated antiapoptotic activity of NGF in breast cancer cells.  相似文献   

18.
The p75 neurotrophin receptor (p75NTR) is a death domain (DD) containing receptor of the TNF/FAS(APO-1) family. p75NTR has recently been shown to mediate apoptosis in certain types of neurons as well as in oligodendrocytes. The molecular mechanisms by which p75NTR stimulates apoptosis are still unknown. Here, we have tested whether overexpression of p75NTR could modulate survival of sympathetic neurons cultured in the presence or absence of NGF. Moreover, using the yeast two-hybrid system, we tested whether p75NTR intracellular domain was able to dimerize or interact with known DD-containing proteins including FADD, RIP, RAIDD and TRADD. We found that over-expression of p75NTR had no effect on the survival of sympathetic neurons cultured in the presence of NGF but instead delayed neuronal death following NGF deprivation. These results strongly support the finding that p75NTR is not involved in the apoptosis process induced by NGF deprivation in sympathetic neurons. We also foun d that the intracellular domain of p75NTR failed to associate either with itself or with other known DD-containing proteins. This suggests that the mechanisms by which p75NTR triggers apoptosis in certain cell types are different from those used by other receptors of the TNF/FAS family.  相似文献   

19.
Malignant gliomas are highly invasive, proliferative, and resistant to treatment. Previously, we have shown that p75 neurotrophin receptor (p75NTR) is a novel mediator of invasion of human glioma cells. However, the role of p75NTR in glioma proliferation is unknown. Here we used brain tumor-initiating cells (BTICs) and show that BTICs express neurotrophin receptors (p75NTR, TrkA, TrkB, and TrkC) and their ligands (NGF, brain-derived neurotrophic factor, and neurotrophin 3) and secrete NGF. Down-regulation of p75NTR significantly decreased proliferation of BTICs. Conversely, exogenouous NGF stimulated BTIC proliferation through α- and γ-secretase-mediated p75NTR cleavage and release of its intracellular domain (ICD). In contrast, overexpression of the p75NTR ICD induced proliferation. Interestingly, inhibition of Trk signaling blocked NGF-stimulated BTIC proliferation and p75NTR cleavage, indicating a role of Trk in p75NTR signaling. Further, blocking p75NTR cleavage attenuated Akt activation in BTICs, suggesting role of Akt in p75NTR-mediated proliferation. We also found that p75NTR, α-secretases, and the four subunits of the γ-secretase enzyme were elevated in glioblastoma multiformes patients. Importantly, the ICD of p75NTR was commonly found in malignant glioma patient specimens, suggesting that the receptor is activated and cleaved in patient tumors. These results suggest that p75NTR proteolysis is required for BTIC proliferation and is a novel potential clinical target.  相似文献   

20.
Neurotrophins induce neural cell survival and differentiation during retinal development and regeneration through the high-affinity tyrosine kinase (Trk) receptors. On the other hand, nerve growth factor (NGF) binding to the low-affinity neurotrophin receptor p75 (p75(NTR)) might induce programmed cell death (PCD) in the early phase of retinal development. In the present study, we examined the retinal cell types that experience p75(NTR)-induced PCD and identify them to be postmitotic retinal ganglion cells (RGCs). However, retinal morphology, RGC number, and BrdU-positive cell number in p75(NTR) knockout (KO) mouse were normal after embryonic day 15 (E15). In chick retina, migratory RGCs express p75(NTR), whereas layered RGCs express the high-affinity NGF receptor TrkA, which may switch the pro-apoptotic signaling of p75(NTR) into a neurotrophic one. In contrast to the chick model, migratory RGCs express TrkA, while stratified RGCs express p75(NTR) in mouse retina. However, RGC number in TrkA KO mouse was also normal at birth. We next examined the expression of transforming growth factor beta (TGFbeta) receptor, which modulates chick RGC number in combination with p75(NTR), but was absent in mouse RGCs. p75(NTR) and TrkA seem to be involved in the regulation of mouse RGC number in the early phase of retinal development, but the number may be later adjusted by other molecules. These results suggest the different mechanism of RGC number control between mouse and chick retina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号