首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of salicylic acid (SA) counteracting the UV-A, UV-B, and UV-C-induced action on pepper (Capsicum annuum L.) plants was studied. For this purpose, the activities of antioxidant enzymes (peroxidase, polyphenol oxidase, ascorbate peroxidase, catalase, and glutathione reductase) were measured. Plants were sprayed with SA and treated with UV-A (320–390 nm), UV-B (312 nm), and UV-C (254 nm) radiation with a density of 6.1, 5.8, and 5.7 W/m2. The activities of antioxidant enzymes were enhanced in leaves in response to UV-B and UV-C radiation. SA treatment moderated an increase in the activities of some antioxidant enzymes (peroxidase, ascorbate peroxidase, catalase, and glutathione reductase) in plants that were treated with UV radiation. The activity of antioxidant enzyme polyphenol oxidase in plants that were treated with UV-B, UV-C, and SA was significantly increased. The aim of the present study was to investigate the possible protective effect of SA treatment on UV-A, UV-B, and UV-C stress.  相似文献   

2.
Tewari RK  Kumar P  Sharma PN 《Planta》2006,223(6):1145-1153
The aim of the study was to implicate the generation of reactive oxygen species (ROS) and altered cellular redox environment with the effects of Cu-deficiency or Cu-excess in mulberry (Morus alba L.) cv. Kanva 2 plants. A study of antioxidative responses, indicators of oxidative damage and cellular redox environment in Cu-deficient or Cu-excess mulberry plants was undertaken. While the young leaves of plants supplied with nil Cu showed chlorosis and necrotic scorching of laminae, the older and middle leaves of plants supplied with nil or 0.1 μM Cu showed purplish-brown pigmented interveinal areas that later turned necrotic along the apices and margins of leaves. The Cu-excess plants showed accelerated senescence of the older leaves. The Cu-deficient plants showed accumulation of hydrogen peroxide and superoxide anion radical. The accumulation of hydrogen peroxide was strikingly intense in the middle portion of trichomes on Cu-deficient leaves. Though the concentration of total ascorbate increased with the increasing supply of Cu, the ratio of the redox couple (DHA/ascorbic acid) increased in Cu-deficient or Cu-excess plants. The activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), peroxidase (EC 1.11.1.7), ascorbate peroxidase (EC 1.11.1.11) and glutathione reductase (EC 1.6.4.2) increased in both Cu-deficient and Cu-excess plants. The results suggest that deficiency of Cu aggravates oxidative stress through enhanced generation of ROS and disturbed redox couple. Excess of Cu damaged roots, accelerated the rate of senescence in the older leaves, induced antioxidant responses and disturbed the cellular redox environment in the young leaves of mulberry plants.  相似文献   

3.
4.
Exposure to ultraviolet-B (UV-B) radiation can lead to oxidative damage in plants. However, plants possess a number of UV-protection mechanisms including screening of potentially damaging UV-B and increased production or activities of antioxidants. The balance or trade-off between these two mechanisms has rarely been studied and is poorly understood. Two isolines of soybean (Glycine max [L.] Merr.) Clark cultivar, the normal line with moderate levels of flavonoids and the magenta line with reduced flavonoids levels, were grown in the field with or without natural levels of UV-B. Leaflet blades of the first trifoliate leaf were harvested after 4–12 days of exposure to the experimental conditions for analysis of active oxygen species (AOS) and antioxidant levels. Solar UV-B radiation caused oxidative stress in both lines and altered AOS metabolism primarily by decreasing superoxide dismutase activity and increasing the activities of ascorbate peroxidase, catalase and glutathione reductase. This resulted in decreased ascorbic acid content and increased dehydroascorbate content. The magenta line had greater oxidative stress than the normal line in spite of its enhanced oxidative defense capacity as compared to the normal line, even under UV-B exclusion. These results indicate enhanced sensitivity in the magenta line, especially under UV-B exclusion that was likely due to the absence of flavonoid epidermal screening compounds and subsequent increased penetration of solar ultraviolet radiation into the leaf.  相似文献   

5.
Ultraviolet-B (UV-B) radiation has a negative impact on plant cells, and results in the generation of reactive oxygen species (ROS). In order to increase our understanding of the effects of UV-B on antioxidant processes, we investigated the response of an ascorbate-deficient Arabidopsis thaliana mutant vtc1 to short-term increased UV-B exposure. After UV-B supplementation, vtc1 mutants exhibited oxidative damage. Evidence for damage included an increase in H(2)O(2) content and the production of thiobarbituric acid reactive substances (TBARS); a decrease in chlorophyll content and chlorophyll fluorescence parameters were also reported. The vtc1 mutants had higher total glutathione than the wild type (WT) during the first day of UV-B treatment. We found reduced ratio of glutathione/total glutathione and increased ratio of dehydroascorbate/total ascorbate in the vtc1 mutants, compared to the WT plants. In addition, the enzymes responsible for ROS scavenging, including superoxide dismutase, catalase, and ascorbate peroxidase, had insufficient activity in the vtc1 mutants, compared to the WT plants. The same reduced activity in the vtc1 mutants was reported for the enzymes responsible for the regeneration of ascorbate and glutathione (including monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase). These results suggest that the ascorbate-deficient mutant vtc1 is more sensitive to supplementary UV-B treatment than WT plants and ascorbate can be considered an important antioxidant for UV-B radiation.  相似文献   

6.
The response of the antioxidant system to salt stress was studied in the roots of the cultivated tomato Lycopersicon esculentum Mill. cv. M82 (Lem) and its wild salt-tolerant relative L. pennellii (Corr.) D'Arcy accession Atico (Lpa). Roots of control and salt (100 m M NaCl)-stressed plants were sampled at various times after commencement of salinization. A gradual increase in the membrane lipid peroxidation in salt-stressed root of Lem was accompanied with decreased activities of the antioxidant enzymes: superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6), ascorbate peroxidase (APX; EC 1.11.1.11) and decreased contents of the antioxidants ascorbate and glutathione and their redox states. In contrast, increased activities of the SOD, CAT, APX, monodehydroascorbate reductase (MDHAR; EC 1.6.5.4), and increased contents of the reduced forms of ascorbate and glutathione and their redox states were found in salt-stressed roots of Lpa, in which the level of membrane lipid peroxidation remained unchanged. It seems that the better protection of Lpa roots from salt-induced oxidative damage results, at least partially, from the increased activity of their antioxidative system.  相似文献   

7.
Iron deficiency differently affects peroxidase isoforms in sunflower   总被引:9,自引:0,他引:9  
The response of both specific (ascorbate peroxidase, APX) and unspecific (POD) peroxidases and H(2)O(2) content of sunflower plants (Helianthus annuus L. cv. Hor) grown hydroponically with (C) or without (-Fe) iron in the nutrient solution were analysed to verify whether iron deficiency led to cell oxidative status. In -Fe leaves a significant increase of H(2)O(2) content was detected, a result confirmed by electron microscopy analysis. As regards extracellular peroxidases, while APX activity significantly decreased, no change was observed in either soluble guaiacol or syringaldazine-dependent POD activity following iron starvation. Moreover, guaiacol-dependent POD activity was found to decrease in both ionically and covalently-cell-wall bound fractions, while syringaldazine-POD activity decreased only in the covalently-bound fraction. At the intracellular level both guaiacol-POD and APX activities underwent a significant decrease. The overall reduction of peroxidase activity was confirmed by the electrophoretic separation of POD isoforms and, at the extracellular level, by cytochemical localization of peroxidases by diaminobenzidine staining. The electrophoretic separation, besides quantitative differences, also revealed quantitative changes, particularly evident for ionically and covalently-bound fractions. Therefore, in sunflower plants, iron deficiency seems to affect the different peroxidase isoenzymes to different extents and to induce a secondary oxidative stress, as indicated by the increased levels of H(2)O(2). However, owing to the almost completely lack of catalytic iron capable of triggering the Fenton reaction, iron-deficient sunflower plants are probably still sufficiently protected against oxidative stress.  相似文献   

8.
A proven photocatalyst, titanium dioxide in the form of nano-anatase, is capable of undergoing electron transfer reactions under light. In previous studies, we had proven that nano-anatase could absorb ultraviolet light (UV-B) and convert light energy to stable chemistry energy finally via electron transport in spinach chloroplasts.The mechanisms by which nano-anatase promotes antioxidant stress in spinach chloroplasts under UV-B radiation are still not clearly understood. In the present paper, we investigate the effects of nano-anatase on the antioxidant stress in spinach chloroplasts under UV-B radiation. The results showed that nano-anatase treatment could significantly decrease accumulation of superoxide radicals, hydrogen peoxide (H2O2), and malonyldialdehyde (MDA) content, and increase activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), and elevate evolution oxygen rate in spinach chloroplasts under UV-B radiation. Together, nano-anatase could decrease the oxidative stress to spinach chloroplast caused by UV-B radiation.  相似文献   

9.
The aim of the study was to relate the effects of deficiency and excess of Mn with the generation of reactive oxygen species (ROS) and altered cellular redox environment in mulberry (Morus alba L.) cv. Kanva-2 plants. Mn deficiency symptom appeared as mild interveinal chlorosis in middle leaves. Mn-excess did not produce any specific symptom. Leaf water potential (Ψ) was increased in Mn-deficient and Mn-excess mulberry plants. Mn-deficient leaves contained less Mn, less chloroplastic pigments and high tissue Fe, Zn and Cu concentrations. Starch content was increased with increasing Mn supply. While reducing sugar content increased in Mn-deficient and Mn-excess plants as well, non-reducing sugars remained unaffected in Mn-deficient plants and decreased in Mn-excess plants. Moreover, study of antioxidative responses, oxidative stress (H2O2 and lipid peroxidation) and cellular redox environment [dehydroascorbate (DHA)/ascorbic acid (AsA) ratio] in Mn-stressed mulberry plants was also undertaken. Both hydrogen peroxide and lipid peroxidation were enhanced in the leaves of Mn-deficient plants. Increased H2O2 concentration in Mn-excess leaves did not induce oxidative damage as indicated by no change in lipid peroxidation. The ratio of the redox couple (DHA/AsA) was increased both in Mn-deficient or Mn-excess plants. The activities of superoxide dismutase (EC 1.15.1.1) and catalase (EC 1.11.1.6) increased in Mn-deficient plants. The activity of ascorbate peroxidase (EC 1.11.1.11) increased with increasing Mn supply. The results suggest that deficiency or excess of Mn induces oxidative stress through enhanced ROS generation and disturbed redox couple in mulberry plants.  相似文献   

10.
In wheat seedlings (Triticum aestivum L. cv. 2329) oxidative stress caused by UV-B radiation led to lipid peroxidation of thylakoid membrane; it was expressed in term of malondialdehyde (MDA) formation. The peroxidation of lipids of thylakoid membrane in isolated chloroplasts was prevented when flavonoids quercetin and rutin were supplied into the incubation medium. The activities of superoxide dismutase, ascorbate peroxidase, and catalase increased during the first hours of UV-B exposure. A comparative study of UV-B and temperature effects showed different profiles of the antioxidant enzymes and MDA, suggesting that these two stresses have distinct sites of action. In addition to quantitative increase in flavonoids, qualitative change in flavonoid composition was also marked during UV-B stress, and a new peak at 330 nm was found as compared to control. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Brooks et al. [Am. J. Physiol. 253 (Endocrinol. Metab. 16): E461-E466, 1987] demonstrated an elevated gluconeogenic rate in resting iron-deficient rats. Because physical exercise also imposes demand on this hepatic function, we hypothesized that exercise training superimposed on iron deficiency would augment the hepatic capacity for amino acid transamination/deamination and pyruvate carboxylation. Sprague-Dawley rats (n = 32) were obtained at weaning (21 days of age) and randomly assigned to iron-sufficient (dietary iron = 60 mg iron/kg diet) or iron-deficient (3 mg iron/kg) dietary groups. Dietary groups were subdivided into sedentary and trained subgroups. Treadmill training was 4 wk in duration, 6 days/wk, 1 h/day, 0% grade. Treadmill speed was initially 26.8 m/min and was decreased to 14.3 m/min over the 4-wk training period. The mild exercise-training regimen did not affect any measured variable in iron-sufficient rats. In contrast, in iron-deficient animals, training increased endurance capacity threefold and reduced blood lactate and the lactate-to-alanine ratio during submaximal exercise by 34 and 27%, respectively. The mitochondrial oxidative capacity of gastrocnemius muscle was increased 46% by training. However, the oxidative capacity of liver was not affected by either iron deficiency or training. Maximal rates of pyruvate carboxylation and glutamine metabolism by isolated liver mitochondria were also evaluated. Iron deficiency and training interacted to increase pyruvate carboxylation by intact mitochondria. Glutamine metabolism was increased roughly threefold by iron deficiency alone, and training amplified this effect to a ninefold increase over iron-sufficient animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Zaharieva TB  Abadía J 《Protoplasma》2003,221(3-4):269-275
Summary.  The effects of Fe deficiency stress on the levels of ascorbate and glutathione, and on the activities of the enzymes ferric chelate reductase, glutathione reductase (EC 1.6.4.2), ascorbate free-radical reductase (EC 1.6.5.4) and ascorbate peroxidase (EC 1.11.1.11), have been investigated in sugar beet (Beta vulgaris L.) roots. Plasma membrane vesicles and cytosolic fractions were isolated from the roots of the plants grown in nutrient solutions in the absence or presence of Fe for two weeks. Plants responded to Fe deficiency not only with a 20-fold increase in root ferric chelate reductase activity, but also with moderately increased levels of the general reductants ascorbate (2-fold) and glutathione (1.6-fold). The enzymes of the ascorbate-glutathione cycle in roots were also affected by Fe deficiency. Glutathione reductase activity was enhanced 1.4-fold with Fe deficiency, associated to an increased ratio of reduced to oxidized glutathione, from 3.1 to 5.2. The plasma membrane fraction from iron-deficient roots showed 1.7-fold higher ascorbate free-radical reductase activity, whereas in the cytosolic fraction the enzyme activity was not affected by Fe deficiency. The activity of the cytosolic hemoprotein ascorbate peroxidase decreased approximately by 50% with Fe deprivation. These results show that sugar beet responds to Fe deficiency with metabolic changes affecting components of the ascorbate-glutathione cycle in root cells. This suggests that the ascorbate-glutathione cycle would play certain roles in the general Fe deficiency stress responses in strategy I plants. Received November 19, 2001; accepted September 30, 2002; published online April 2, 2003 RID="*" ID="*" Correspondence and reprints: Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, CSIC, Apartado 202, 50080 Zaragoza, Spain.  相似文献   

13.
M V Rao  G Paliyath    D P Ormrod 《Plant physiology》1996,110(1):125-136
Earlier studies with Arabidopsis thaliana exposed to ultraviolet B (UV-B) and ozone (O3) have indicated the differential responses of superoxide dismutase and glutathione reductase. In this study, we have investigated whether A. thaliana genotype Landsberg erecta and its flavonoid-deficient mutant transparent testa (tt5) is capable of metabolizing UV-B- and O3-induced activated oxygen species by invoking similar antioxidant enzymes. UV-B exposure preferentially enhanced guaiacol-peroxidases, ascorbate peroxidase, and peroxidases specific to coniferyl alcohol and modified the substrate affinity of ascorbate peroxidase. O3 exposure enhanced superoxide dismutase, peroxidases, glutathione reductase, and ascorbate peroxidase to a similar degree and modified the substrate affinity of both glutathione reductase and ascorbate peroxidase. Both UV-B and O3 exposure enhanced similar Cu,Zn-superoxide dismutase isoforms. New isoforms of peroxidases and ascorbate peroxidase were synthesized in tt5 plants irradiated with UV-B. UV-B radiation, in contrast to O3, enhanced the activated oxygen species by increasing membrane-localized NADPH-oxidase activity and decreasing catalase activities. These results collectively suggest that (a) UV-B exposure preferentially induces peroxidase-related enzymes, whereas O3 exposure invokes the enzymes of superoxide dismutase/ascorbate-glutathione cycle, and (b) in contrast to O3, UV-B exposure generated activated oxygen species by increasing NADPH-oxidase activity.  相似文献   

14.
We investigated the effects of dietary iron deficiency on the redox system in the heart. Dietary iron deficiency increased heart weight and accumulation of carbonylated proteins. However, expression levels of heme oxygenase-1 and LC3-II, an antioxidant enzyme and an autophagic marker, respectively, in iron-deficient mice were upregulated compared to the control group, resulting in a surrogate phenomenon against oxidative stress.  相似文献   

15.
Arsenic induced oxidative stress in plants   总被引:3,自引:0,他引:3  
Iti Sharma 《Biologia》2012,67(3):447-453
Arsenic is a highly toxic metalloid for all forms of life including plants. Arsenic enters in the plants through phosphate transporters as a phosphate analogue or through aquaglycoporins. Uptake of arsenic in plant tissues adversely affects the plant metabolism and leads to various physiological and structural disorders. Photosynthetic apparatus, cell division machinery, energy production, and redox status are the major section of plant system that are badly affected by As (V). Similarly As (III) can react with thiol (-SH) groups of enzymes and inhibits various metabolic processes. Arsenic is also known to induce oxidative stress directly by generating reactive oxygen species (ROS) during conversion of its valence forms or indirectly by inactivating antioxidant molecules through binding with their -SH groups. As-mediated oxidative stress causes cellular, molecular and physiological disturbances in various plant species. Activation of enzymatic antioxidants namely, superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR), Glutathione s-transferase, glutathione peroxidase (GPX) as well as non antioxidant compounds such as, ascorbate, glutathione, carotenoids are reported to neutralize arsenic mediated oxidative stress. Understanding of biochemistry of arsenic toxicity would be beneficial for the development of arsenic tolerant crops and other economically important plants.  相似文献   

16.
Nitric oxide (NO) is a key molecule involved in many physiological processes. To characterize its roles in the tolerance of Arabidopsis thaliana to ultraviolet-B (UV-B), we investigated the effect of a reduced endogenous NO level on oxidative damage to wild-type and mutant (Atnoa1) plants. Under irradiation, hydrogen peroxide was accumulated more in mutant leaves than in the wild type. However, the amounts of UV-B-absorbing compounds (flavonoids and anthocyanin) and the activities of two antioxidant enzymes—catalase (CAT, EC 1.11.1.6) and ascorbate peroxidase (APX, EC 1.11.1.11)—were lower in leaves of the former. Supplementing with sodium nitroprusside, an NO donor, could alleviate the oxidative damage to mutant leaves by increasing flavonoid and anthocyanin contents and enzyme activities. In comparison, , an inhibitor of nitric oxide synthase, had the opposite effects on oxidation resistance in wild-type leaves. All these results suggest that nitric oxide acts as a signal for an active oxygen-scavenging system that protects plants from oxidative stress induced by UV-B irradiation.  相似文献   

17.
Wheat ( Triticum aestivum L.) seedlings of a drought-resistant cv. C306 were subjected to severe water deficit directly or through stress cycles of increasing intensity with intermittent recovery periods (drought acclimation). The antioxidant defense in terms of redox metabolites and enzymes in leaf cells, chloroplasts, and mitochondria was examined in relation to ROS-induced membrane damage. Drought-acclimated seedlings modulated growth by maintaining favorable turgor potential and RWC and were able to limit H2O2 accumulation and membrane damage as compared with non-acclimated plants during severe water stress conditions. This was due to systematic upregulation of H2O2-metabolizing enzymes especially ascorbate peroxidase (APX, EC 1.11.1.11) and by maintaining ascorbate–glutathione redox pool in acclimated plants. By contrast, failure in the induction of APX and ascorbate–glutathione cycle enzymes makes the chloroplast susceptible to oxidative stress in non-acclimated plants. Non-acclimated plants protected the leaf mitochondria from oxidative stress by upregulating superoxide dismutase (SOD, EC 1.15.1.1), APX, and glutathione reductase (GR, EC 1.6.4.2) activities. Rewatering led to rapid enhancement in all the antioxidant defense components in non-acclimated plants, which suggested that the excess levels of H2O2 during severe water stress conditions might have inhibited or downregulated the antioxidant enzymes. Hence, drought acclimation conferred enhanced oxidative stress tolerance by well-co-ordinated induction of antioxidant defense both at the chloroplast and at the mitochondrial level.  相似文献   

18.
Spartina densiflora , an invader cordgrass living in polluted salt marshes of the Odiel estuary (SW Spain), was collected and cultured under controlled laboratory conditions. After acclimation to non-polluted soils for 28 days, both metabolites and enzymes activities used as indicators of oxidative stress were reduced significantly. Then, plants were exposed to 500 and 1000 ppm Fe-ethylenediamine-N,N'-2-hydroxyphenyl acetic acid (EDDHA) for 28 days. Our data demonstrate that iron content in leaves was enhanced by iron exposure. This iron increase caused an enhancement in the concentration of H2O2, hydroperoxides and lipid peroxidation, and a decrease in chlorophyll levels. Thus, iron exposure led to oxidative stress conditions. However, oxidative indicators stabilised after first 2 weeks of exposure, although the highest iron levels in leaves were reached at the end of treatments. Iron exposure induced an enhancement of catalase, ascorbate peroxidase and guaiacol peroxidase activities, together with an increase in total and oxidised ascorbate. This response may be defensive against oxidative stress and thus help to explain why cell oxidative damages were stabilised. Thus, by using a sensitive long-time protocol, iron-dependent oxidative damages may be controlled and even reverted successfully by the activation of the antioxidative defences of S. densiflora . This efficient antioxidative system, rapidly modulated in response to excess iron and other environmental stressors, may account for S. densiflora 's successful adaptation to stress conditions in its habitat.  相似文献   

19.
The regulation of the antioxidant defence system by ultraviolet-B (UV-B) was determined in a marine macroalga Ulva fasciata Delile exposed to low (0.5, 1 W m(-2)), medium (2.5, 5 W m(-2)), and high (10, 20 W m(-2)) UV-B irradiance. UV-B > or =2.5 W m(-2) increased H2O2 contents that are positively correlated with lipid peroxidation and total peroxide contents. Inhibition of the UV-B-induced H2O2 increase by a specific O2.- scavenger, 1,2-dihydroxy-benzene-3,5-disulphonic acid, shows that O2.- is the primary source of H2O2. Superoxide dismutase activity was increased by UV-B with a peak at 2.5 W m(-2), which did not match the H2O2 pattern. Alleviation of UV-B-induced oxidative damage by a H2O2 scavenger, dimethylthiourea, and a free radical scavenger, sodium benzoate, which inhibited UV-B-induced H2O2 accumulation, suggests that oxidative damage caused by UV-B > or = 2.5 W m(-2) is ascribed to accumulated H2O2. However, a decrease in growth rate and TTC reduction ability only at high UV-B doses indicates that the defence and repairing systems operate at low and medium UV-B doses. H2O2 not only can be excreted but can also be detoxified via the ascorbate-glutathione cycle. Increases in catalase, peroxidase, ascorbate peroxidase, and glutathione reductase activities and ascorbate (AsA) and glutathione pools, as well as AsA regeneration ability, function to keep the balance of cellular H2O2 under low UV-B doses. Dehydroascorbate reductase and monodehydroascorbate reductase are responsible for AsA regeneration under low and medium UV-B radiation, respectively. The appearance of oxidative damage in medium and high UV-B flux is attributable to a lower induction of the ascorbate-glutathione cycle as an antioxidant defence system. Overall, the availability of antioxidants and the induction of antioxidant enzyme activities for detoxifying reactive oxygen species (ROS) are regulated in U. fasciata against UV-B-induced oxidative stress, and experiments using ROS scavengers demonstrate that the antioxidant defence system is modulated by O2.- or H2O2.  相似文献   

20.
Imazethapyr (IM) is an imidazolinone herbicide which inhibits the biosynthesis of branched chain amino acids, by blocking acetolactate synthase (ALS; EC 4.1.3.18), the first common enzyme of the pathway. To study new aspects of the mode of action of ALS-inhibiting herbicides, pea plants grown in hydroponic cultures were supplied with IM and were analysed with reference to the antioxidant system and oxidative markers. A slight lipid peroxidation was detected in leaves after IM treatment, but no changes were noted in electrolyte leakage or carbonyl content. The ascorbate pool of leaves was oxidized under IM treatment. The analysis of the antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), catalase (CAT) and guaiacol peroxidase (GPX), showed that IM treatment only caused an enhancement of GPX activity in leaves. In roots, the herbicide caused a decrease in lipid peroxidation. The enhancement of the reduced glutathione content detected in IM-treated roots can be related to the detected increase of GR activity. The lack of more noticeable effects on antioxidant enzymatic activities could be explained by the inability of IM-treated plants to respond to oxidative stress with modifications in their protein synthesis. Our results suggest that oxidative stress is not related to the mode of action of ALS-inhibitors. The slight changes detected in the antioxidative status of treated plants are too secondary in time and intensity to be related to the lethality caused by ALS-inhibitors  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号