首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mannose-specific lectins are widely distributed in higher plants and are believed to play a role in recognition of high-mannose type glycans of foreign micro-organisms or plant predators. Structural studies have demonstrated that the mannose-binding specificity of lectins is mediated by distinct structural scaffolds. The mannose/glucose-specific legume (e.g., Con A, pea lectin) exhibit the canonical twelve-stranded beta-sandwich structure. In contrast to legume lectins that interact with both mannose and glucose, the monocot mannose-binding lectins (e.g., the Galanthus nivalis agglutinin or GNA from bulbs) react exclusively with mannose and mannose-containing N-glycans. These lectins possess a beta-prism structure. More recently, an increasing number of mannose-specific lectins structurally related to jacalin (e.g., the lectins from the Jerusalem artichoke, banana or rice), which also exhibit a beta-prism organization, were characterized. Jacalin itself was re-defined as a polyspecific lectin which, in addition to galactose, also interacts with mannose and mannose-containing glycans. Finally the B-chain of the type II RIP of iris, which has the same beta-prism structure as all other members of the ricin-B family, interacts specifically with mannose and galactose. This structural diversity associated with the specific recognition of high-mannose type glycans highlights the importance of mannose-specific lectins as recognition molecules in higher plants.  相似文献   

2.
The crystal structures of the apo and mannose-bound Parkia platycephala seed lectin represent the first structure of a Mimosoideae lectin and a novel circular arrangement of beta-prism domains, and highlight the adaptability of the beta-prism fold as a building block in the evolution of plant lectins. The P.platycephala lectin is a dimer both in solution and in the crystals. Mannose binding to each of the three homologous carbohydrate-recognition domains of the lectin occurs through different modes, and restrains the flexibility of surface-exposed loops and residues involved in carbohydrate recognition. The planar array of carbohydrate-binding sites on the rim of the toroid-shaped structure of the P.platycephala lectin dimer immediately suggests a mechanism to promote multivalent interactions leading to cross-linking of carbohydrate ligands as part of the host strategy against phytopredators and pathogens. The cyclic structure of the P.platycephala lectin points to the convergent evolution of a structural principle for the construction of lectins involved in host defense or in attacking other organisms.  相似文献   

3.
The seeds of jack fruit (Artocarpus integrifolia) contain two tetrameric lectins, jacalin and artocarpin. Jacalin was the first lectin found to exhibit the beta-prism I fold, which is characteristic of the Moraceae plant lectin family. Jacalin contains two polypeptide chains produced by a post-translational proteolysis which has been shown to be crucial for generating its specificity for galactose. Artocarpin is a single chain protein with considerable sequence similarity with jacalin. It, however, exhibits many properties different from those of jacalin. In particular, it is specific to mannose. The structures of two crystal forms, form I and form II, of the native lectin have been determined at 2.4 and 2.5 A resolution, respectively. The structure of the lectin complexed with methyl-alpha-mannose, has also been determined at 2.9 A resolution. The structure is similar to jacalin, although differences exist in details. The crystal structures and detailed modelling studies indicate that the following differences between the carbohydrate binding sites of artocarpin and jacalin are responsible for the difference in the specificities of the two lectins. Firstly, artocarpin does not contain, unlike jacalin, an N terminus generated by post-translational proteolysis. Secondly, there is no aromatic residue in the binding site of artocarpin whereas there are four in that of jacalin. A comparison with similar lectins of known structures or sequences, suggests that, in general, stacking interactions with aromatic residues are important for the binding of galactose while such interactions are usually absent in the carbohydrate binding sites of mannose-specific lectins with the beta-prism I fold.  相似文献   

4.
Among other functions, lectins play an important role in the innate immune response of vertebrates and invertebrates by recognizing exposed glycans on the surface of potential pathogens. Despite the typically weak interaction of lectin domains with their carbohydrate ligands, they usually achieve high avidity through oligomeric structures or by the presence of tandem carbohydrate-binding domains along the polypeptide. The recently described structure of the fucose-binding European eel agglutinin revealed a novel lectin fold (the "F-type" fold), which is shared with other carbohydrate-binding proteins and apparently unrelated proteins from prokaryotes to vertebrates, and a unique fucose-binding sequence motif. Here we described the biochemical and molecular characterization of a unique fucose-binding lectin (MsaFBP32) isolated from serum of the striped bass (Morone saxatilis), composed of two tandem domains that exhibit the eel carbohydrate recognition sequence motif, which we designate F-type. We also described a novel lectin family ("F-type") constituted by a large number of proteins exhibiting greater multiples of the F-type motif, either tandemly arrayed or in mosaic combinations with other domains, including a putative transmembrane receptor, that suggests an extensive functional diversification of this lectin family. Among the tandem lectins, MsaFBP32 and other tandem binary homologues appear unique in that although their N-terminal domain shows close similarity to the fucose recognition domain of the eel agglutinin, their C-terminal domain exhibits changes that potentially could confer a distinct specificity for fucosylated ligands. In contrast with the amniotes, in which the F-type lectins appear conspicuously absent, the widespread gene duplication in the teleost fish suggests these F-type lectins acquired increasing evolutionary value within this taxon.  相似文献   

5.
BACKGROUND: Heltuba, a tuber lectin from the Jerusalem artichoke Helianthus tuberosus, belongs to the mannose-binding subgroup of the family of jacalin-related plant lectins. Heltuba is highly specific for the disaccharides Man alpha 1-3Man or Man alpha 1-2Man, two carbohydrates that are particularly abundant in the glycoconjugates exposed on the surface of viruses, bacteria and fungi, and on the epithelial cells along the gastrointestinal tract of lower animals. Heltuba is therefore a good candidate as a defense protein against plant pathogens or predators. RESULTS: The 2.0 A resolution structure of Heltuba exhibits a threefold symmetric beta-prism fold made up of three four-stranded beta sheets. The crystal structures of Heltuba in complex with Man alpha 1-3Man and Man alpha 1-2Man, solved at 2.35 A and 2.45 A resolution respectively, reveal the carbohydrate-binding site and the residues required for the specificity towards alpha 1-3 or alpha 1-2 mannose linkages. In addition, the crystal packing reveals a remarkable, donut-shaped, octahedral assembly of subunits with the mannose moieties at the periphery, suggesting possible cross-linking interactions with branched oligomannosides. CONCLUSIONS: The structure of Heltuba, which is the prototype for an extended family of mannose-binding agglutinins, shares the carbohydrate-binding site and beta-prism topology of its galactose-binding counterparts jacalin and Maclura pomifera lectin. However, the beta-prism elements recruited to form the octameric interface of Heltuba, and the strategy used to forge the mannose-binding site, are unique and markedly dissimilar to those described for jacalin. The present structure highlights a hitherto unrecognized adaptability of the beta-prism building block in the evolution of plant proteins.  相似文献   

6.
Raval S  Gowda SB  Singh DD  Chandra NR 《Glycobiology》2004,14(12):1247-1263
Lectins are known to be important for many biological processes, due to their ability to recognize cell surface carbohydrates with high specificity. Plant lectins have been model systems to study protein-carbohydrate recognition, because individually they exhibit high sensitivity and as a group large diversity in recognizing carbohydrate structures. Although extensive studies have been carried out for legume lectins that have led to interesting insights into the sequence determinants of sugar recognition in them, frameworks with such specific correlations are not available for other plant lectin families. This study reports a large-scale data acquisition and extensive analysis of sequences and structures of beta-prism-I or jacalin-related lectins (JRLs) and shows that hypervariability in the binding site loops generates carbohydrate recognition diversity, a strategy analogous to that in legume lectins. Analyses of the size, conformation, and sequence variability in key regions reveal the existence of a common theme, encoded as a set of structural features over a common scaffold, in defining specificity. This study also points to the remarkable range of domain architectures, often arising out of gene duplication events in lectins of this family. The data analyzed here also indicate a spectacular variety of quaternary associations possible in this family of lectins that have implications for glycan recognition. These results thus provide sequence-structure-function correlations, an understanding of the molecular basis of carbohydrate recognition by beta-prism-I lectins, and also a rationale for engineering specific recognition capabilities in relevant molecules.  相似文献   

7.
The beta-prism II fold lectins of known structure, all from monocots, invariably have three carbohydrate-binding sites in each subunit/domain. Until recently, beta-prism I fold lectins of known structure were all from dicots and they exhibited one carbohydrate-binding site per subunit/domain. However, the recently determined structure of the beta-prism fold I lectin from banana, a monocot, has two very similar carbohydrate-binding sites. This prompted a detailed analysis of all the sequences appropriate for two-lectin folds and which carry one or more relevant carbohydrate-binding motifs. The very recent observation of a beta-prism I fold lectin, griffthsin, with three binding sites in each domain further confirmed the need for such an analysis. The analysis demonstrates substantial diversity in the number of binding sites unrelated to the taxonomical position of the plant source. However, the number of binding sites and the symmetry within the sequence exhibit reasonable correlation. The distribution of the two families of beta-prism fold lectins among plants and the number of binding sites in them, appear to suggest that both of them arose through successive gene duplication, fusion and divergent evolution of the same primitive carbohydrate-binding motif involving a Greek key. Analysis with sequences in individual Greek keys as independent units lends further support to this conclusion.It would seem that the preponderance of three carbohydrate-binding sites per domain in monocot lectins, particularly those with the beta-prism II fold, is related to the role of plant lectins in defence.  相似文献   

8.
Banana lectin (Banlec) is a dimeric plant lectin from the jacalin-related lectin family. Banlec belongs to a subgroup of this family that binds to glucose/mannose, but is unique in recognizing internal alpha1,3 linkages as well as beta1,3 linkages at the reducing termini. Here we present the crystal structures of Banlec alone and with laminaribiose (LAM) (Glcbeta1, 3Glc) and Xyl-beta1,3-Man-alpha-O-Methyl. The structure of Banlec has a beta-prism-I fold, similar to other family members, but differs from them in its mode of sugar binding. The reducing unit of the sugar is inserted into the binding site causing the second saccharide unit to be placed in the opposite orientation compared with the other ligand-bound structures of family members. More importantly, our structures reveal the presence of a second sugar binding site that has not been previously reported in the literature. The residues involved in the second site are common to other lectins in this family, potentially signaling a new group of mannose-specific jacalin-related lectins (mJRL) with two sugar binding sites.  相似文献   

9.
Several novel structures of legume lectins have led to a thorough understanding of monosaccharide and oligosaccharide specificity, to the determination of novel and surprising quaternary structures and, most importantly, to the structural identification of the binding site for adenine and plant hormones. This deepening of our understanding of the structure/function relationships among the legume lectins is paralleled by advances in two other plant lectin families - the monocot lectins and the jacalin family. As the number of available crystal structures increases, more parallels between plant and animal lectins become apparent.  相似文献   

10.
Under consideration are some questions concerning participation of lectins in the plant pathogenesis, including their role in the recognition of microbes and elicitors, and as a protective agent limiting pathogenic growth and displacements. "Classical" lectins also probably play an important role in these processes along with lectin-like receptor kinases. The principal features of those "classical" lectins are their relativly high concentration in the plant tissues, monosaccharide specificity, and limited number of the isolecin forms. Therefore, in supposing their participation in the biological recognition, it is needed to clarify how does a limited number of lectins with a limited number of carbohydrate groups can provide recognition of a potentially huge number of pathogens. This task can be fulfilled by recognition of carbohydrate residues peculiar to a particular microbe group by the "classical" lectins. These recognition processes are similar to acivity of the animal inherited immune system responsible for a rapid primary protection even in animals with well developed antibody system. A mechanism widening the carbohydrate specificity of the carbohydrate-binding center includes interaction with hydrophobic substituents in a carbohydrate residue, as well as lectin modular organization allowing for regulation of lectin binding with oligo- and polysaccharides. The free lectins effect on the microbe growth in both plants and animals. Such an action may be inhibiting in pathogenesis, while in the case of symbiotic relations, the lectin can bear signal that readdresses metabolism of a future symbiont. So, lectins seem to serve as natural deciphering device for information contained in the carbohydrate polymers, and reading of this information is the main lectin function in the cell.  相似文献   

11.
The crystal structure of a β-prism II (BP2) fold lectin from Remusatia vivipara, a plant of traditional medicinal value, has been determined at a resolution of 2.4??. This lectin (RVL, Remusatia vivipara lectin) is a dimer with each protomer having two distinct BP2 domains without a linker between them. It belongs to the "monocot mannose-binding" lectin family, which consists of proteins of high sequence and structural similarity. Though the overall tertiary structure is similar to that of lectins from snowdrop bulbs and garlic, crucial differences in the mannose-binding regions and oligomerization were observed. Unlike most of the other structurally known proteins in this family, only one of the three carbohydrate recognition sites (CRSs) per BP2 domain is found to be conserved. RVL does not recognize simple mannose moieties. RVL binds to only N-linked complex glycans like those present on the gp120 envelope glycoprotein of HIV and mannosylated blood proteins like fetuin, but not to simple mannose moieties. The molecular basis for these features and their possible functional implications to understand the different levels of carbohydrate affinities in this structural family have been investigated through structure analysis, modeling and binding studies. Apart from being the first structure of a lectin to be reported from the Araceae/Arum family, this protein also displays a novel mode of oligomerization among BP2 lectins.  相似文献   

12.
The crystal structure of a complex of methyl-alpha-D-mannoside with banana lectin from Musa paradisiaca reveals two primary binding sites in the lectin, unlike in other lectins with beta-prism I fold which essentially consists of three Greek key motifs. It has been suggested that the fold evolved through successive gene duplication and fusion of an ancestral Greek key motif. In other lectins, all from dicots, the primary binding site exists on one of the three motifs in the three-fold symmetric molecule. Banana is a monocot, and the three motifs have not diverged enough to obliterate sequence similarity among them. Two Greek key motifs in it carry one primary binding site each. A common secondary binding site exists on the third Greek key. Modelling shows that both the primary sites can support 1-2, 1-3, and 1-6 linked mannosides with the second residue interacting in each case primarily with the secondary binding site. Modelling also readily leads to a bound branched mannopentose with the nonreducing ends of the two branches anchored at the two primary binding sites, providing a structural explanation for the lectin's specificity for branched alpha-mannans. A comparison of the dimeric banana lectin with other beta-prism I fold lectins, provides interesting insights into the variability in their quaternary structure.  相似文献   

13.
The complete amino acid sequence of the lectin KM+ from Artocarpus integrifolia (jackfruit), which contains 149 residues/mol, is reported and compared to those of other members of the Moraceae family, particularly that of jacalin, also from jackfruit, with which it shares 52% sequence identity. KM+ presents an acetyl-blocked N-terminus and is not posttranslationally modified by proteolytic cleavage as is the case for jacalin. Rather, it possesses a short, glycine-rich linker that unites the regions homologous to the alpha- and beta-chains of jacalin. The results of homology modeling implicate the linker sequence in sterically impeding rotation of the side chain of Asp141 within the binding site pocket. As a consequence, the aspartic acid is locked into a conformation adequate only for the recognition of equatorial hydroxyl groups on the C4 epimeric center (alpha-D-mannose, alpha-D-glucose, and their derivatives). In contrast, the internal cleavage of the jacalin chain permits free rotation of the homologous aspartic acid, rendering it capable of accepting hydrogen bonds from both possible hydroxyl configurations on C4. We suggest that, together with direct recognition of epimeric hydroxyls and the steric exclusion of disfavored ligands, conformational restriction of the lectin should be considered to be a new mechanism by which selectivity may be built into carbohydrate binding sites. Jacalin and KM+ adopt the beta-prism fold already observed in two unrelated protein families. Despite presenting little or no sequence similarity, an analysis of the beta-prism reveals a canonical feature repeatedly present in all such structures, which is based on six largely hydrophobic residues within a beta-hairpin containing two classic-type beta-bulges. We suggest the term beta-prism motif to describe this feature.  相似文献   

14.
The seed lectin (DBL) from the leguminous plant Dolichos biflorus has a unique specificity among the members of the legume lectin family because of its high preference for GalNAc over Gal. In addition, precipitation of blood group A+H substance by DBL is slightly better inhibited by a blood group A trisaccharide (GalNAc(alpha1-3)[Fuc(alpha1-2)]Gal) containing pentasaccharide, and about 40 times better by the Forssman disaccharide (GalNAc(alpha1-3)GalNAc) than by GalNAc. We report the crystal structures of the DBL-blood group A trisaccharide complex and the DBL-Forssman disaccharide complex.A comparison with the binding sites of Gal-binding legume lectins indicates that the low affinity of DBL for Gal is due to the substitution of a conserved aromatic residue by an aliphatic residue (Leu127). Binding studies with a Leu127Phe mutant corroborate these conclusions. DBL has a higher affinity for GalNAc because the N-acetyl group compensates for the loss of aromatic stacking in DBL by making a hydrogen bond with the backbone amide group of Gly103 and a hydrophobic contact with the side-chains of Trp132 and Tyr104.Some legume lectins possess a hydrophobic binding site that binds adenine and adenine-derived plant hormones, i.e. cytokinins. The exact function of this binding site is unknown, but adenine/cytokinin-binding legume lectins might be involved in storage of plant hormones or plant growth regulation. The structures of DBL in complex with adenine and of the dimeric stem and leaf lectin (DB58) from the same plant provide the first structural data on these binding sites. Both oligomers possess an unusual architecture, featuring an alpha-helix sandwiched between two monomers. In both oligomers, this alpha-helix is directly involved in the formation of the hydrophobic binding site. DB58 adopts a novel quaternary structure, related to the quaternary structure of the DBL heterotetramer, and brings the number of know legume lectin dimer types to four.  相似文献   

15.
Lectindb: a plant lectin database   总被引:1,自引:0,他引:1  
Lectins, a class of carbohydrate-binding proteins, are now widely recognized to play a range of crucial roles in many cell-cell recognition events triggering several important cellular processes. They encompass different members that are diverse in their sequences, structures, binding site architectures, quaternary structures, carbohydrate affinities, and specificities as well as their larger biological roles and potential applications. It is not surprising, therefore, that the vast amount of experimental data on lectins available in the literature is so diverse, that it becomes difficult and time consuming, if not impossible to comprehend the advances in various areas and obtain the maximum benefit. To achieve an effective use of all the data toward understanding the function and their possible applications, an organization of these seemingly independent data into a common framework is essential. An integrated knowledge base ( Lectindb, http://nscdb.bic.physics.iisc.ernet.in ) together with appropriate analytical tools has therefore been developed initially for plant lectins by collating and integrating diverse data. The database has been implemented using MySQL on a Linux platform and web-enabled using PERL-CGI and Java tools. Data for each lectin pertain to taxonomic, biochemical, domain architecture, molecular sequence, and structural details as well as carbohydrate and hence blood group specificities. Extensive links have also been provided for relevant bioinformatics resources and analytical tools. Availability of diverse data integrated into a common framework is expected to be of high value not only for basic studies in lectin biology but also for basic studies in pursuing several applications in biotechnology, immunology, and clinical practice, using these molecules.  相似文献   

16.
The legume lectins are widely used as a model system for studying protein-carbohydrate and protein-protein interactions. They exhibit a fascinating quaternary structure variation, which becomes important when they interact with multivalent glycoconjugates, for instance those on cell surfaces. Recently, it has become clear that certain lectins form weakly associated oligomers. This phenomenon may play a role in the regulation of receptor crosslinking and subsequent signal transduction. The crystal structure of DB58, a dimeric lectin from the legume Dolichos biflorus reveals a separate dimer of a previously unobserved type, in addition to a tetramer consisting of two such dimers. This tetramer resembles that formed by DBL, the seed lectin from the same plant. A single amino acid substitution in DB58 affects the conformation and flexibility of a loop in the canonical dimer interface. This disrupts the formation of a stable DBL-like tetramer in solution, but does not prohibit its formation in suitable conditions, which greatly increases the possibilities for the cross-linking of multivalent ligands. The non-canonical DB58 dimer has a buried symmetrical alpha helix, which can be present in the crystal in either of two antiparallel orientations. Two existing structures and datasets for lectins with similar quaternary structures were reconsidered. A central alpha helix could be observed in the soybean lectin, but not in the leucoagglutinating lectin from Phaseolus vulgaris. The relative position and orientation of the carbohydrate-binding sites in the DB58 dimer may affect its ability to crosslink mulitivalent ligands, compared to the other legume lectin dimers.  相似文献   

17.
We examined the carbohydrate-binding potential of the C-type lectin-like receptor Dectin-2 (Clecf4n). The carbohydrate-recognition domain (CRD) of Dectin-2 exhibited cation-dependent mannose/fucose-like lectin activity, with an IC(50) for mannose of approximately 20 mM compared to an IC(50) of 1.5 mM for the macrophage mannose receptor when assayed by similar methodology. The extracellular domain of Dectin-2 exhibited binding to live Candida albicans and the Saccharomyces-derived particle zymosan. This binding was completely abrogated by cation chelation and was competed by yeast mannans. We compared the lectin activity of Dectin-2 with that of two other C-type lectin receptors (mannose receptor and SIGNR1) known to bind fungal mannans. Both mannose receptor and SIGNR1 were able to bind bacterial capsular polysaccharides derived from Streptococcus pneumoniae, but interestingly they exhibited distinct binding profiles. The Dectin-2 CRD exhibited only weak interactions to some of these capsular polysaccharides, indicative of different structural or affinity requirements for binding, when compared with the other two lectins. Glycan array analysis of the carbohydrate recognition by Dectin-2 indicated specific recognition of high-mannose structures (Man(9)GlcNAc(2)). The differences in the specificity of these three mannose-specific lectins indicate that mannose recognition is mediated by distinct receptors, with unique specificity, that are expressed by discrete subpopulations of cells, and this further highlights the complex nature of carbohydrate recognition by immune cells.  相似文献   

18.
Lectins   总被引:1,自引:0,他引:1  
Lectins - carbohydrate-binding proteins involved in a variety of recognition processes - exhibit considerable structural diversity. Three new lectin folds and further elaborations of known folds have been described recently. Large variability in quaternary association resulting from small alterations in essentially the same tertiary structure is a property exhibited specially by legume lectins. The strategies used by lectins to generate carbohydrate specificity include the extensive use of water bridges, post-translational modification and oligomerization. Recent results pertaining to influenza and foot-and-mouth viruses further elaborate the role of lectins in infection.  相似文献   

19.
Protein-carbohydrate interactions are the language of choice for inter- cellular communication. The legume lectins form a large family of homologous proteins that exhibit a wide variety of carbohydrate specificities. The legume lectin family is therefore highly suitable as a model system to study the structural principles of protein-carbohydrate recognition. Until now, structural data are only available for two specificity families: Man/Glc and Gal/GalNAc. No structural data are available for any of the fucose or chitobiose specific lectins.The crystal structure of Ulex europaeus (UEA-II) is the first of a legume lectin belonging to the chitobiose specificity group. The complexes with N-acetylglucosamine, galactose and fucosylgalactose show a promiscuous primary binding site capable of accommodating both N-acetylglucos amine or galactose in the primary binding site. The hydrogen bonding network in these complexes can be considered suboptimal, in agreement with the low affinities of these sugars. In the complexes with chitobiose, lactose and fucosyllactose this suboptimal hydrogen bonding network is compensated by extensive hydrophobic interactions in a Glc/GlcNAc binding subsite. UEA-II thus forms the first example of a legume lectin with a promiscuous binding site and illustrates the importance of hydrophobic interactions in protein-carbohydrate complexes. Together with other known legume lectin crystal structures, it shows how different specificities can be grafted upon a conserved structural framework.  相似文献   

20.
Lung surfactant protein D (SP-D) shows calcium-dependent binding to specific saccharides, and is similar in domain structure to certain members of the calcium-dependent (C-type) lectin family. Using a degenerate oligomeric probe corresponding to a conserved peptide sequence derived from the amino-terminus of the putative carbohydrate binding domain of rat and bovine SP-D, we screened a human lung cDNA library and isolated a 1.4-kb cDNA for the human protein. The relationship of the cDNA to SP-D was established by several techniques including amino-terminal microsequencing of SP-D-derived peptides, and immunoprecipitation of translation products of transcribed mRNA with monospecific antibodies to SP-D. In addition, antibodies to a synthetic peptide derived from a predicted unique epitope within the carbohydrate recognition domain of SP-D specifically reacted with SP-D. DNA sequencing demonstrated a noncollagenous carboxy-terminal domain that is highly homologous with the carboxy-terminal globular domain of previously described C-type lectins. This domain contains all of the so-called "invariant residues," including four conserved cysteine residues, and shows high homology with the mannose-binding subfamily of C-type lectins. Sequencing also demonstrated an amino-terminal collagenous domain that contains an uninterrupted sequence of 59 Gly-X-Y triplets and that also contains the only identified consensus for asparagine-linked oligosaccharides. The studies demonstrate that SP-D is a member of the C-type lectin family, and confirm predicted structural similarities to conglutinin, SP-D, and the serum mannose binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号