首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The crystal structures of the apo and mannose-bound Parkia platycephala seed lectin represent the first structure of a Mimosoideae lectin and a novel circular arrangement of beta-prism domains, and highlight the adaptability of the beta-prism fold as a building block in the evolution of plant lectins. The P.platycephala lectin is a dimer both in solution and in the crystals. Mannose binding to each of the three homologous carbohydrate-recognition domains of the lectin occurs through different modes, and restrains the flexibility of surface-exposed loops and residues involved in carbohydrate recognition. The planar array of carbohydrate-binding sites on the rim of the toroid-shaped structure of the P.platycephala lectin dimer immediately suggests a mechanism to promote multivalent interactions leading to cross-linking of carbohydrate ligands as part of the host strategy against phytopredators and pathogens. The cyclic structure of the P.platycephala lectin points to the convergent evolution of a structural principle for the construction of lectins involved in host defense or in attacking other organisms.  相似文献   

2.
A novel plant lectin has been isolated from the rhizomes of Calystegia sepium (hedge bindweed) and partially characterized. The lectin is a dimeric protein composed of two identical non-covalently linked subunits of 16kDa. Hapten inhibition studies indicate that the novel lectin is best inhibited by maltose and mannose and hence exhibits a sugar binding specificity that differs in some respects from that of all previously isolated plant lectins. Mitogenicity tests have shown that the Calystegia lectin is a powerful T-cell mitogen. Affinity purification of human, plant and fungal glycoproteins on immobilized C. sepium lectin demonstrates that this novel lectin can be used for the isolation of glycoconjugates from various sources. Moreover, it can be expected that by virtue of its distinct specificity, the new lectin will become an important tool in glycobiology. Abbreviations: Calsepa, lectin isolated from Calystegia sepium; ConA, concanavalin A; LPS, lipopolysaccharide; PBS, phosphate buffered saline (1.5 mMKH2PO4, 10 mM Na2HPO4, 3 mM KCl, 140 mM NaCl, pH 7.4) This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

3.
Fractalkine, or neurotactin, is a chemokine that is present in endothelial cells from several tissues, including brain, liver, and kidney. It is the only member of the CX(3)C class of chemokines. Fractalkine contains a chemokine domain (CDF) attached to a membrane-spanning domain via a mucin-like stalk. However, fractalkine can also be proteolytically cleaved from its membrane-spanning domain to release a freely diffusible form. Fractalkine attracts and immobilizes leukocytes by binding to its receptor, CX(3)CR1. The x-ray crystal structure of CDF has been solved and refined to 2.0 A resolution. The CDF monomers form a dimer through an intermolecular beta-sheet. This interaction is somewhat similar to that seen in other dimeric CC chemokine crystal structures. However, the displacement of the first disulfide in CDF causes the dimer to assume a more compact quaternary structure relative to CC chemokines, which is unique to CX(3)C chemokines. Although fractalkine can bind to heparin in vitro, as shown by comparison of electrostatic surface plots with other chemokines and by heparin chromatography, the role of this property in vivo is not well understood.  相似文献   

4.
Walker JR  Nagar B  Young NM  Hirama T  Rini JM 《Biochemistry》2004,43(13):3783-3792
Rattlesnake venom lectin (RSL) from the western diamondback rattlesnake (Crotalus atrox) is an oligomeric galactose-specific C-type lectin. The X-ray crystal structure of RSL, in complex with lactose and thiodigalactoside, at 2.2 and 2.3 A resolution, respectively, reveals a decameric protein composed of two 5-fold symmetric pentamers arranged in a staggered, back-to-back orientation. Each monomer corresponds to a single canonical C-type lectin carbohydrate recognition domain devoid of accessory domains and is disulfide-bonded to a monomer in the other pentamer. The structure is the first example of that of a carbohydrate complex of a vertebrate galactose-specific C-type lectin. The 10 carbohydrate-binding sites, located on the rim of the decamer, suggest a role for multivalent interactions and a mechanism for RSL's ability to promote receptor cross-linking and cell aggregation.  相似文献   

5.
dUTPase is an essential enzyme involved with nucleotide metabolism and replication. We report here the X-ray structure of Trypanosoma cruzi dUTPase in its native conformation and as a complex with dUDP. These reveal a novel protein fold that displays no structural similarities to previously described dUTPases. The molecular unit is a dimer with two active sites. Nucleotide binding promotes extensive structural rearrangements, secondary structure remodeling, and rigid body displacements of 20 A or more, which effectively bury the substrate within the enzyme core for the purpose of hydrolysis. The molecular complex is a trapped enzyme-substrate arrangement which clearly demonstrates structure-induced specificity and catalytic potential. This enzyme is a novel dUTPase and therefore a potential drug target in the treatment of Chagas' disease.  相似文献   

6.
BACKGROUND: S-Adenosylmethionine decarboxylase (AdoMetDC) is a critical regulatory enzyme of the polyamine synthetic pathway, and a well-studied drug target. The AdoMetDC decarboxylation reaction depends upon a pyruvoyl cofactor generated via an intramolecular proenzyme self-cleavage reaction. Both the proenzyme-processing and substrate-decarboxylation reactions are allosterically enhanced by putrescine. Structural elucidation of this enzyme is necessary to fully interpret the existing mutational and inhibitor-binding data, and to suggest further experimental studies. RESULTS: The structure of human AdoMetDC has been determined to 2.25 A resolution using multiwavelength anomalous diffraction (MAD) phasing methods based on 22 selenium-atom positions. The quaternary structure of the mature AdoMetDC is an (alpha beta)2 dimer, where alpha and beta represent the products of the proenzyme self-cleavage reaction. The architecture of each (alpha beta) monomer is a novel four-layer alpha/beta-sandwich fold, comprised of two antiparallel eight-stranded beta sheets flanked by several alpha and 3(10) helices. CONCLUSIONS: The structure and topology of AdoMetDC display internal symmetry, suggesting that this protein may be the product of an ancient gene duplication. The positions of conserved, functionally important residues suggest the location of the active site and a possible binding site for the effector molecule putrescine.  相似文献   

7.
Helix pomatia agglutinin (HPA) is a N-acetylgalactosamine (GalNAc) binding lectin found in the albumen gland of the roman snail. As a constituent of perivitelline fluid, HPA protects fertilized eggs from bacteria and is part of the innate immunity system of the snail. The peptide sequence deduced from gene cloning demonstrates that HPA belongs to a family of carbohydrate-binding proteins recently identified in several invertebrates. This domain is also present in discoidin from the slime mold Dictyostelium discoideum. Investigation of the lectin specificity was performed with the use of glycan arrays, demonstrating that several GalNAc-containing oligosaccharides are bound and rationalizing the use of this lectin as a cancer marker. Titration microcalorimetry performed on the interaction between HPA and GalNAc indicates an affinity in the 10(-4) M range with an enthalpy-driven binding mechanism. The crystal structure of HPA demonstrates the occurrence of a new beta-sandwich lectin fold. The hexameric quaternary state was never observed previously for a lectin. The high resolution structure complex of HPA with GalNAc characterizes a new carbohydrate binding site and rationalizes the observed preference for alphaGalNAc-containing oligosaccharides.  相似文献   

8.
Choline kinase catalyzes the ATP-dependent phosphorylation of choline, the first committed step in the CDP-choline pathway for the biosynthesis of phosphatidylcholine. The 2.0 A crystal structure of a choline kinase from C. elegans (CKA-2) reveals that the enzyme is a homodimeric protein with each monomer organized into a two-domain fold. The structure is remarkably similar to those of protein kinases and aminoglycoside phosphotransferases, despite no significant similarity in amino acid sequence. Comparisons to the structures of other kinases suggest that ATP binds to CKA-2 in a pocket formed by highly conserved and catalytically important residues. In addition, a choline binding site is proposed to be near the ATP binding pocket and formed by several structurally flexible loops.  相似文献   

9.
Colonization of the gastric mucosa with the spiral-shaped Gram-negative proteobacterium Helicobacter pylori is probably the most common chronic infection in humans. The genomes of H. pylori strains J99 and 26695 have been completely sequenced. Functional and three-dimensional structural information is available for less than one third of all open reading frames. We investigated the function and three-dimensional structure of a member from a family of cysteine-rich hypothetical proteins that are unique to H. pylori and Campylobacter jejuni. The structure of H. pylori cysteine-rich protein (Hcp) B possesses a modular architecture consisting of four alpha/alpha-motifs that are cross-linked by disulfide bridges. The Hcp repeat is similar to the tetratricopeptide repeat, which is frequently found in protein/protein interactions. In contrast to the tetratricopeptide repeat, the Hcp repeat is 36 amino acids long. HcpB is capable of binding and hydrolyzing 6-amino penicillinic acid and 7-amino cephalosporanic acid derivatives. The HcpB fold is distinct from the fold of any known penicillin-binding protein, indicating that the Hcp proteins comprise a new family of penicillin-binding proteins. The putative penicillin binding site is located in an amphipathic groove on the concave side of the molecule.  相似文献   

10.
Modification of GTPases with isoprenoid molecules derived from geranylgeranyl pyrophosphate or farnesyl pyrophosphate is an essential requisite for cellular signaling pathways. The synthesis of these isoprenoids proceeds in mammals through the mevalonate pathway, and the final steps in the synthesis are catalyzed by the related enzymes farnesyl pyrophosphate synthase and geranylgeranyl pyrophosphate synthase. Both enzymes play crucial roles in cell survival, and inhibition of farnesyl pyrophosphate synthase by nitrogen-containing bisphosphonates is an established concept in the treatment of bone disorders such as osteoporosis or certain forms of cancer in bone. Here we report the crystal structure of human geranylgeranyl pyrophosphate synthase, the first mammalian ortholog to have its x-ray structure determined. It reveals that three dimers join together to form a propeller-bladed hexameric molecule with a mass of approximately 200 kDa. Structure-based sequence alignments predict this quaternary structure to be restricted to mammalian and insect orthologs, whereas fungal, bacterial, archaeal, and plant forms exhibit the dimeric organization also observed in farnesyl pyrophosphate synthase. Geranylgeranyl pyrophosphate derived from heterologous bacterial expression is tightly bound in a cavity distinct from the chain elongation site described for farnesyl pyrophosphate synthase. The structure most likely represents an inhibitory complex, which is further corroborated by steady-state kinetics, suggesting a possible feedback mechanism for regulating enzyme activity. Structural comparisons between members of this enzyme class give deeper insights into conserved features important for catalysis.  相似文献   

11.
We have determined the 1.8 A X-ray crystal structure of a monoheme c-type cytochrome, cytochrome P460, from Nitrosomonas europea. The chromophore possesses unusual spectral properties analogous to those of the catalytic heme P460 of hydroxylamine oxidoreductase (HAO), the only known heme in biology to withdraw electrons from an iron-coordinated substrate. The analysis reveals a homodimeric structure and elucidates a new c-type cytochrome fold that is predominantly beta-sheet. In addition to the two cysteine thioether links to the porphyrin typical of c-type hemes, there is a third proteinaceous link involving a conserved lysine. The covalent bond is between the lysine side-chain nitrogen and the 13'-meso carbon of the heme, which, following cross-link formation, is sp3-hybridized, demonstrating the loss of conjugation at this position within the porphyrin. The structure has implications for the analogous tyrosine-heme meso carbon cross-link observed in HAO.  相似文献   

12.
The diheme cytochrome NapB constitutes the small subunit of a periplasmic nitrate reductase found in a wide variety of bacterial species, including pathogens. The NapB protein is essential in transferring electrons to the large catalytic subunit NapA, which subsequently reduces nitrate to nitrite. Here we present the crystal structure of a proteolyzed form of recombinant NapB from Haemophilus influenzae, which was determined by the multiple-wavelength anomalous dispersion (MAD) method at 1.25 A resolution. This structure shows an unprecedented fold, confirming that NapB proteins belong to a new class of cytochromes. The two heme groups have nearly parallel heme planes and are stacked at van der Waals distances with an iron-to-iron distance of only 9.9 A, two structural features that are also present in the split-Soret diheme cytochrome c from Desulfovibrio desulfuricans ATCC 27774, which is otherwise unrelated in the peptide chain folding pattern. The two propionate side chains on both heme groups are hydrogen-bonded to each other, a structural characteristic that to date also has not been reported in any other heme protein. The propionates of one of the heme groups are pulled toward the interior of the molecule due to a salt bridge and a number of hydrogen bonds between the propionates and conserved residues. We propose a hypothetical but plausible model of the NapAB complex in which the four redox centers are positioned in a virtually linear configuration which spans a distance of nearly 40 A, suggesting an efficient pathway for the transfer of electrons from NapC, the physiological electron donor of NapB, to a nitrate molecule at the catalytic site of NapA.  相似文献   

13.
14.
Haloacid dehalogenases catalyse the removal of halides from organic haloacids and are of interest for bioremediation and for their potential use in the synthesis of industrial chemicals. We present the crystal structure of the homodimer DehI from Pseudomonas putida strain PP3, the first structure of a group I α-haloacid dehalogenase that can process both l- and d-substrates. The structure shows that the DehI monomer consists of two domains of ∼ 130 amino acids that have ∼ 16% sequence identity yet adopt virtually identical and unique folds that form a pseudo-dimer. Analysis of the active site reveals the likely binding mode of both l- and d-substrates with respect to key catalytic residues. Asp189 is predicted to activate a water molecule for nucleophilic attack of the substrate chiral centre resulting in an inversion of configuration of either l- or d-substrates in contrast to d-only enzymes. These details will assist with future bioengineering of dehalogenases.  相似文献   

15.
The TonB-dependent complex of Gram-negative bacteria couples the inner membrane proton motive force to the active transport of iron.siderophore and vitamin B(12) across the outer membrane. The structural basis of that process has not been described so far in full detail. The crystal structure of the C-terminal domain of TonB from Escherichia coli has now been solved by multiwavelength anomalous diffraction and refined at 1.55-A resolution, providing the first evidence that this region of TonB (residues 164-239) dimerizes. Moreover, the structure shows a novel architecture that has no structural homologs among any known proteins. The dimer of the C-terminal domain of TonB is cylinder-shaped with a length of 65 A and a diameter of 25 A. Each monomer contains three beta strands and a single alpha helix. The two monomers are intertwined with each other, and all six beta-strands of the dimer make a large antiparallel beta-sheet. We propose a plausible model of binding of TonB to FhuA and FepA, two TonB-dependent outer-membrane receptors.  相似文献   

16.
In vitro selection has been used to isolate several RNA aptamers that bind specifically to biological cofactors. A well-characterized example in the ATP-binding RNA aptamer family, which contains a conserved 11-base loop opposite a bulged G and flanked by regions of double-stranded RNA. The nucleotides in the consensus sequence provide a binding pocket for ATP (or AMP), which binds with a Kd in the micromolar range. Here we present the three-dimensional solution structure of a 36-nucleotide ATP-binding RNA aptamer complexed with AMP, determined from NMR-derived distance and dihedral angle restraints. The conserved loop and bulged G form a novel compact, folded structure around the AMP. The backbone tracing of the loop nucleotides can be described by a Greek zeta (zeta). Consecutive loop nucleotides G, A, A form a U-turn at the bottom of the zeta, and interact with the AMP to form a structure similar to a GNRA tetraloop, with AMP standing in for the final A. Two asymmetric G. G base pairs close the stems flanking the internal loop. Mutated aptamers support the existence of the tertiary interactions within the consensus nucleotides and with the AMP found in the calculated structures.  相似文献   

17.
Banana lectin (Banlec) is a dimeric plant lectin from the jacalin-related lectin family. Banlec belongs to a subgroup of this family that binds to glucose/mannose, but is unique in recognizing internal alpha1,3 linkages as well as beta1,3 linkages at the reducing termini. Here we present the crystal structures of Banlec alone and with laminaribiose (LAM) (Glcbeta1, 3Glc) and Xyl-beta1,3-Man-alpha-O-Methyl. The structure of Banlec has a beta-prism-I fold, similar to other family members, but differs from them in its mode of sugar binding. The reducing unit of the sugar is inserted into the binding site causing the second saccharide unit to be placed in the opposite orientation compared with the other ligand-bound structures of family members. More importantly, our structures reveal the presence of a second sugar binding site that has not been previously reported in the literature. The residues involved in the second site are common to other lectins in this family, potentially signaling a new group of mannose-specific jacalin-related lectins (mJRL) with two sugar binding sites.  相似文献   

18.
Protein phosphatase 2A (PP2A) is a heterotrimeric Ser/Thr phosphatase that is involved in regulating a plethora of signaling pathways in the cell, making its regulation a critical part of the well being of the cell. For example, three of the non-catalytic PP2A subunits have been linked to carcinogenic events. Therefore, the molecular basis for the complicated protein-protein interaction pattern of PP2A and its regulators is of special interest. The PP2A phosphatase activator (PTPA) protein is highly conserved from humans to yeast. It is an activator of PP2A and has been shown to be essential for a fully functional PP2A, but its mechanism of activation is still not well defined. We have solved the crystal structure of human PTPA to 1.6A. It reveals a two-domain protein with a novel fold comprised of 13 alpha-helices. We have identified a highly conserved cleft as a potential region for interaction with peptide segments of other proteins. Binding studies with ATP and its analogs are not consistent with ATP being a cofactor/substrate for PTPA as had previously been proposed. The structure of PTPA can serve as a basis for structure-function studies directed at elucidating its mechanism as an activator of PP2A.  相似文献   

19.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) is involved in photosynthesis where it catalyzes the initial step in the fixation of carbon dioxide. The enzyme also catalyzes a competing oxygenation reaction leading to loss of fixed carbon dioxide, thus reducing the net efficiency of photosynthesis significantly. Rubisco has therefore been studied extensively, and a challenging goal is the engineering of a more photosynthetically efficient enzyme. Hexadecameric rubiscos fall in two distinct groups, "green-like" and "red-like". The ability to discriminate between CO2 and O2 as substrates varies significantly, and some algae have red-like rubisco with even higher specificity for CO2 than the plant enzyme. The structure of unactivated rubisco from Alcaligenes eutrophus has been determined to 2.7 A resolution by molecular replacement and refined to R and Rfree values of 26.6 and 32.2 %, respectively. The overall fold of the protein is very similar to the rubisco structures solved previously for green-like hexadecameric enzymes, except for the extended C-terminal domains of the small subunits which together form an eight-stranded beta-barrel which sits as a plug in the entrance to the central solvent channel in the molecule. The present structure is the first which has been solved for a red-like rubisco and is likely to represent a fold which is common for this group. The small subunits in general are believed to have a stabilizing effect, and the new quaternary structure in the oligomer of the present structure is likely to contribute even more to this stabilization of the assembled rubisco protein.  相似文献   

20.
IscA belongs to an ancient family of proteins responsible for iron-sulfur cluster assembly in essential metabolic pathways preserved throughout evolution. We report here the 2.3 A resolution crystal structure of Escherichia coli IscA, a novel fold in which mixed beta-sheets form a compact alpha-beta sandwich domain. In contrast to the highly mobile secondary structural elements within the bacterial Fe-S scaffold protein IscU, a protein which is thought to have a similar function, the great majority of the amino acids that are conserved in IscA homologues are located in elements that constitute a well-ordered fold. However, the 10-residue C-terminal tail segment that contains two invariant cysteines critical for the Fe-S-binding function of a cyanobacterial (Synechocystis PCC) IscA homologue is not ordered in our structure. In addition, the crystal packing reveals a helical assembly that is constructed from two possible tetrameric oligomers of IscA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号