首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Native mRNA editing complexes from Trypanosoma brucei mitochondria.   总被引:14,自引:0,他引:14       下载免费PDF全文
V W Pollard  M E Harris    S L Hajduk 《The EMBO journal》1992,11(12):4429-4438
The aim of this study was to identify multicomponent complexes involved in kinetoplastid mitochondrial mRNA editing. Mitochondrial extracts from Trypanosoma brucei were fractionated on 10-30% glycerol gradients and assayed for RNAs and activities potentially involved in editing, including pre-edited mRNA, guide RNA (gRNA), endonuclease, terminal uridylyltransferase (TUTase), RNA ligase and gRNA-mRNA chimera-forming activities. These experiments suggest that two distinct editing complexes exist. Complex I (19S) consists of gRNA, TUTase, RNA ligase and chimera-forming activity. Complex II (35-40S) is composed of gRNA, preedited mRNA, RNA ligase and chimera-forming activity. These studies provide the first evidence that editing occurs in a multicomponent complex. The possible roles of complex I, complex II and RNA ligase in editing are discussed.  相似文献   

2.
RNA editing in Trypanosoma brucei inserts and deletes uridines in mitochondrial mRNAs by a series of enzymatic steps that are catalyzed by a multiprotein complex, the editosome. KREPB1 and two related editosome proteins KREPB2 and KREPB3 contain motifs that suggest endonuclease and RNA/protein interaction functions. Repression of KREPB1 expression in procyclic forms by RNAi inhibited growth, in vivo editing, and in vitro endoribonucleolytic cleavage of deletion substrates. However, cleavage of insertion substrates and the exoUase, TUTase, and ligase catalytic activities of editing were retained by 20S editosomes. Repression of expression of an ectopic KREPB1 allele in bloodstream forms lacking both endogenous alleles or exclusive expression of KREPB1 with point mutations in the putative RNase III catalytic domain also blocked growth, in vivo editing, and abolished cleavage of deletion substrates, without affecting the other editing steps. These data indicate that KREPB1 is an endoribonuclease that is specific for RNA editing deletion sites.  相似文献   

3.
Kinetoplastid mitochondrial RNA editing, the insertion and deletion of U residues, is catalyzed by sequential cleavage, U addition or removal, and ligation reactions and is directed by complementary guide RNAs. We have purified a approximately 20S enzymatic complex from Trypanosoma brucei mitochondria that catalyzes a complete editing reaction in vitro. This complex possesses all four activities predicted to catalyze RNA editing: gRNA-directed endonuclease, terminal uridylyl transferase, 3' U-specific exonuclease, and RNA ligase. However, it does not contain other putative editing complex components: gRNA-independent endonuclease, RNA helicase, endogenous gRNAs or pre-mRNAs, or a 25 kDa gRNA-binding protein. The complex is composed of eight major polypeptides, three of which represent RNA ligase. These findings identify polypeptides representing catalytic editing factors, reveal the nature of this approximately 20S editing complex, and suggest a new model of editosome assembly.  相似文献   

4.
U-insertion/deletion RNA editing in the single mitochondrion of kinetoplastids, an ancient lineage of eukaryotes, is a unique mRNA maturation process needed for translation. Multisubunit editing complexes recognize many pre-edited mRNA sites and modify them via cycles of three catalytic steps: guide RNA (gRNA)-directed cleavage, insertion or deletion of uridylates at the 3′-terminus of the upstream cleaved piece, and ligation of the two mRNA pieces. While catalytic and many structural protein subunits of these complexes have been identified, the mechanisms and basic determinants of substrate recognition are still poorly understood. This study defined relatively simple single- and double-stranded determinants for association and gRNA-directed cleavage. To this end, we used an electrophoretic mobility shift assay to directly score the association of purified editing complexes with RNA ligands, in parallel with UV photocrosslinking and functional studies. The cleaved strand required a minimal 5′ overhang of 12 nt and an ∼ 15-bp duplex with gRNA to direct the cleavage site. A second protruding element in either the cleaved or the guide strand was required unless longer duplexes were used. Importantly, the single-stranded RNA requirement for association can be upstream or downstream of the duplex, and the binding and cleavage activities of purified editing complexes could be uncoupled. The current observations together with our previous reports in the context of purified native editing complexes show that the determinants for association, cleavage and full-round editing gradually increase in complexity as these stages progress. The native complexes in these studies contained most, if not all, known core subunits in addition to components of the MRP complex. Finally, we found that the endonuclease KREN1 in purified complexes photocrosslinks with a targeted editing site. A model is proposed whereby one or more RNase III-type endonucleases mediate the initial binding and scrutiny of potential ligands and subsequent catalytic selectivity triggers either insertion or deletion editing enzymes.  相似文献   

5.
Trypanosome RNA editing is a unique U insertion and U deletion process that involves cycles of pre-mRNA cleavage, terminal U addition or U removal, and religation. This editing can occur at massive levels and is directed by base pairing of trans-acting guide RNAs. Both U insertion and U deletion cycles are catalyzed by a single protein complex that contains only seven major proteins, band I through band VII. However, little is known about their catalytic functions, except that band IV and band V are RNA ligases and genetic analysis indicates that the former is important in U deletion. Here we establish biochemical approaches to distinguish the individual roles of these ligases, based on their distinctive ATP and pyrophosphate utilization. These in vitro analyses revealed that both ligases serve in RNA editing. Band V is the RNA editing ligase that functions very selectively to seal in U insertion (IREL), while band IV is the RNA editing ligase needed to seal in U deletion (DREL). In combination with our earlier findings about the cleavage and the U-addition/U-removal steps of U deletion and U insertion, these results show that all three steps of these editing pathways exhibit major differences and suggest that the editing complex could have physically separate regions for U deletion and U insertion.  相似文献   

6.
Twelve mitochondrial mRNAs are edited in Trypanosoma brucei, nine extensively, by addition and removal of uridines. The accumulation of the edited RNAs is regulated during the life cycle. Hundreds of different gRNAs, encoded three or four per minicircle, specify the editing and minicircle content accounts for variation in editing among species and in mutants. The current understanding of the process of gRNA utilization, the editing mechanism and the editing machinery is discussed.  相似文献   

7.
Trypanosoma brucei mitochondria contain RNA helicase activity.   总被引:5,自引:0,他引:5       下载免费PDF全文
  相似文献   

8.
9.
10.
RNA editing in kinetoplastid mitochondria occurs by a series of enzymatic steps that is catalyzed by a macromolecular complex. Four novel proteins and their corresponding genes were identified by mass spectrometric analysis of purified editing complexes from Trypanosoma brucei. These four proteins, TbMP81, TbMP63, TbMP42, and TbMP18, contain conserved sequences to various degrees. All four proteins have sequence similarity in the C terminus; TbMP18 has considerable sequence similarity to the C-terminal region of TbMP42, and TbMP81, TbMP63, and TbMP42 contain zinc finger motif(s). Monoclonal antibodies that are specific for TbMP63 and TbMP42 immunoprecipitate in vitro RNA editing activities. The proteins are present in the immunoprecipitates and sediment at 20S along with the in vitro editing, and RNA editing ligases TbMP52 and TbMP48. Recombinant TbMP63 and TbMP52 coimmunoprecipitate. These results indicate that these four proteins are components of the RNA editing complex and that TbMP63 and TbMP52 can interact.  相似文献   

11.
RNA editing in Trypanosoma brucei requires three different editosomes   总被引:1,自引:0,他引:1  
Trypanosoma brucei has three distinct ~20S editosomes that catalyze RNA editing by the insertion and deletion of uridylates. Editosomes with the KREN1 or KREN2 RNase III type endonucleases specifically cleave deletion and insertion editing site substrates, respectively. We report here that editosomes with KREPB2, which also has an RNase III motif, specifically cleave cytochrome oxidase II (COII) pre-mRNA insertion editing site substrates in vitro. Conditional repression and mutation studies also show that KREPB2 is an editing endonuclease specifically required for COII mRNA editing in vivo. Furthermore, KREPB2 expression is essential for the growth and survival of bloodstream forms. Thus, editing in T. brucei requires at least three compositionally and functionally distinct ~20S editosomes, two of which distinguish between different insertion editing sites. This unexpected finding reveals an additional level of complexity in the RNA editing process and suggests a mechanism for how the selection of sites for editing in vivo is controlled.  相似文献   

12.
RNA editing, catalyzed by the multiprotein editosome complex, is an essential step for the expression of most mitochondrial genes in trypanosomatid pathogens. It has been shown previously that Trypanosoma brucei RNA editing ligase 1 (TbREL1), a core catalytic component of the editosome, is essential in the mammalian life stage of these parasitic pathogens. Because of the availability of its crystal structure and absence from human, the adenylylation domain of TbREL1 has recently become the focus of several studies for designing inhibitors that target its adenylylation pocket. Here, we have studied new and existing inhibitors of TbREL1 to better understand their mechanism of action. We found that these compounds are moderate to weak inhibitors of adenylylation of TbREL1 and in fact enhance adenylylation at higher concentrations of protein. Nevertheless, they can efficiently block deadenylylation of TbREL1 in the editosome and, consequently, result in inhibition of the ligation step of RNA editing. Further experiments directly showed that the studied compounds inhibit the interaction of the editosome with substrate RNA. This was supported by the observation that not only the ligation activity of TbREL1 but also the activities of other editosome proteins such as endoribonuclease, terminal RNA uridylyltransferase, and uridylate-specific exoribonuclease, all of which require the interaction of the editosome with the substrate RNA, are efficiently inhibited by these compounds. In addition, we found that these compounds can interfere with the integrity and/or assembly of the editosome complex, opening the exciting possibility of using them to study the mechanism of assembly of the editosome components.  相似文献   

13.
14.
15.
Editing of mitochondrial mRNAs in kinetoplastid protozoa occurs by a series of enzymatic steps that insert and delete uridylates (U's) as specified by guide RNAs (gRNAs). The characteristics of the 3" exonuclease activity that removes the U's following cleavage during deletion editing were determined by using an in vitro precleaved deletion assay that is based on ATPase subunit 6 pre-mRNA and gA6[14] gRNA. The exonuclease in partially purified editing complexes is specific for U's. The specificity occurs in the absence of gRNA, but its activity is enhanced by the presence of gRNA. The 3" pre-mRNA fragment enhances the specificity, but not the efficiency, of U removal. The activity is sensitive to the 5" phosphate of the 3" fragment, which is not required for U removal. The ability of the 3" U's to base pair with purines in the gRNA protects them from removal, suggesting that the U-specific 3" exonuclease (exoUase) is specific for U's which are not base paired. ExoUase is stereospecific and cannot remove (Rp)α-thio-U. The specificity of the exoUase activity thus contributes to the precision of RNA editing.  相似文献   

16.
Each of the three similar RNA Editing Catalytic Complexes (RECCs) that perform gRNA-directed uridine insertion and deletion during Trypanosoma brucei mitochondrial (mt) mRNA editing has a distinct endonuclease activity that requires two related RNase III proteins, with only one competent for catalysis. We identified multiple loss-of-function mutations in the RNase III and other motifs of the non-catalytic KREPB6, KREPB7, and KREPB8 components by random mutagenesis and screening. These mutations had various effects on growth, editing, and both the abundances and RECC associations of these RNase III protein pairs in bloodstream form (BF) and procyclic form (PF) cells. Protein structure modelling predicted that the Zinc Finger (ZnF) of each paired RNase III protein contacts RNA positioned at the heterodimeric active site which is flanked by helices of a novel RNase III-Associated Motif (RAM). The results indicate that the protein domains of the non-catalytic subunits function together in RECC integrity, substrate binding, and editing site recognition during the multistep RNA editing process. Additionally, several mutants display distinct functional consequences in different life cycle stages. These results highlight the complementary roles of protein pairs and three RECCs within the complicated T. brucei mRNA editing machinery that matures mt mRNAs differentially between developmental stages.  相似文献   

17.
Most mitochondrial mRNAs are edited in Trypano soma brucei by a series of steps that are catalyzed by a multienzyme complex that is in its initial stages of characterization. RNA interference (RNAi)-mediated repression of the expression of TbMP81, a zinc finger protein component of the complex, inhibited growth of bloodstream and insect forms, and blocked in vivo RNA editing. This repression preferentially inhibited insertion editing compared with deletion editing in vitro. It resulted in reduced specific endoribonucleolytic cleavage and a greater reduction of U addition and associated RNA ligation activities than U removal and associated RNA ligation activities. The repressed cells retained 20S editing complexes with several demonstrable proteins and adenylatable TbMP52 RNA ligase, but adenlyatable TbMP48 was not detected. Elimination of TbMP48 by RNAi repression did not inhibit cell growth or in vivo editing in either bloodstream or procyclic forms. These results indicate that TbMP81 is required for RNA editing and suggest that the editing complex is functionally partitioned.  相似文献   

18.
The Trypanosoma brucei editosome catalyzes the maturation of mitochondrial mRNAs through the insertion and deletion of uridylates and contains at least 16 stably associated proteins. We examined physical and functional associations among these proteins using three different approaches: purification of complexes via tagged editing ligases TbREL1 and TbREL2, comprehensive yeast two-hybrid analysis, and coimmunoprecipitation of recombinant proteins. A purified TbREL1 subcomplex catalyzed precleaved deletion editing in vitro, while a purified TbREL2 subcomplex catalyzed precleaved insertion editing in vitro. The TbREL1 subcomplex contained three to four proteins, including a putative exonuclease, and appeared to be coordinated by the zinc finger protein TbMP63. The TbREL2 subcomplex had a different composition, contained the TbMP57 terminal uridylyl transferase, and appeared to be coordinated by the TbMP81 zinc finger protein. This study provides insight into the molecular architecture of the editosome and supports the existence of separate subcomplexes for deletion and insertion editing.  相似文献   

19.
In the mitochondria of kinetoplastid protozoa, including Trypanosoma brucei, RNA editing inserts and/or deletes uridines from pre-mRNAs to produce mature, translatable mRNAs. RNA editing is carried out by several related multiprotein complexes known as editosomes, which contain all of the enzymatic components required for catalysis of editing. In addition, noneditosome accessory factors necessary for editing of specific RNAs have also been described. Here, we report the in vitro and in vivo characterization of the mitochondrial TbRGG2 protein (originally termed TbRGGm) and demonstrate that it acts as an editing accessory factor. TbRGG2 is an RNA-binding protein with a preference for poly(U). TbRGG2 protein levels are up-regulated 10-fold in procyclic form T. brucei compared with bloodstream forms. Nevertheless, the protein is essential for growth in both life cycle stages. TbRGG2 associates with RNase-sensitive and RNase-insensitive mitochondrial complexes, and a small fraction of the protein co-immunoprecipitates with editosomes. RNA interference-mediated depletion of TbRGG2 in both procyclic and bloodstream form T. brucei leads to a dramatic decrease in pan-edited RNAs and in some cases a corresponding increase in the pre-edited RNA. TbRGG2 down-regulation also results in moderate stabilization of never-edited and minimally edited RNAs. Thus, our data are consistent with a model in which TbRGG2 is multifunctional, strongly facilitating the editing of pan-edited RNAs and modestly destabilizing minimally edited and never-edited RNAs. This is the first example of an RNA editing accessory factor that functions in the mammalian infective T. brucei life cycle stage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号