首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
In unwashed brain membranes taurine produced an inhibition of [3H]flunitrazepam [( 3H]FNZ) binding with IC50 ranging between 31.5 and 11.9 microM; the IC20 varied between 18 and 26 nM. This inhibitory effect was of a mixed type, with a reduction in Bmax and an increase in KD. Various precursors and metabolites of taurine have a less inhibitory effect. Taurine also has little inhibitory effect (IC50 above 500 microM) on the binding of [3H]ethyl-beta-carboline-3-carboxylate. In extensively washed membranes, 10(-5) M taurine produces a 16-21% increase in the binding of [3H]FNZ while 10(-5) M gamma-aminobutyric acid (GABA) increases it between 31 and 42%. However, if 10(-5) M GABA plus 10(-5) M taurine is included in the assay there is a dramatic inhibitory effect. Taurine causes an inhibition of the GABAergic enhancement of [3H]FNZ binding with an IC50 between 7.3 and 7.8 microM. Binding experiments with [3H]taurine done under different conditions failed to detect a Na+-independent and specific [3H]taurine receptor. These results suggest that endogenous taurine, the second most abundant free amino acid in brain, may play an important modulatory role in the GABA-benzodiazepine receptor complex.  相似文献   

2.
Binding of the benzodiazepine inverse agonist [3H]methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate [( 3H]DMCM) and the agonist [3H]flunitrazepam [( 3H]FNZ) was compared in rat cortical membranes. Halide ions enhanced [3H]DMCM binding three- to fourfold, increasing both the apparent affinity and the number of binding sites for this radioligand. The effect was present at both 0 and 37 degrees C. In contrast, the magnitude of halide stimulation of [3H]FNZ binding was much smaller, resulting solely from an increase in the apparent affinity for this radioligand, and was not observed at 37 degrees C. The potencies but not the efficacies of a series of anions to stimulate both [3H]DMCM and [3H]FNZ binding to benzodiazepine receptors were highly correlated with their relative permeabilities through gamma-aminobutyric acid (GABA)-gated chloride channels. Two stress paradigms (10 min of immobilization or ambient-temperature swim stress), previously shown to increase significantly the magnitude of halide-stimulated [3H]FNZ binding, did not significantly affect [3H]DMCM binding. Phospholipase A2 treatment of cortical membrane preparations was equipotent in preventing the stimulatory effect of chloride on both [3H]DMCM and [3H]FNZ binding. These data strongly suggest that anions modify the binding of [3H]DMCM and [3H]FNZ by acting at a common anion binding site that is an integral component of the GABA/benzodiazepine receptor chloride channel complex.  相似文献   

3.
The mechanisms of action of three different glycine-site antagonists of the N-methyl-D-aspartate (NMDA)-receptor channel were analyzed employing [3H]glycine direct binding assays, as well as functional glycine- and glutamate-induced uncompetitive blocker binding assays. The latter assays measure apparent channel opening. All three antagonists tested, viz., 7-chlorokynurenic acid (7-Cl-KYNA), kynurenic acid (KYNA), and 1-hydroxy-3-aminopyrrolidone-2 (HA-966), inhibited the binding of [3H]glycine to the NMDA receptor in a dose-dependent manner. These antagonists also inhibited the glycine-induced increase in accessibility of the uncompetitive blocker [3H]N-[1-(2-thienyl)cyclohexyl]-piperidine ([3H]TCP) to the channel. 7-Cl-KYNA and KYNA, but not HA-966, completely blocked the glutamate-induced binding of [3H]TCP, in a manner similar to the non-competitive manner in which the selective NMDA antagonist D-(-)-2-amino-5-phosphonovaleric acid (AP-5) inhibited glycine-induced [3H]TCP binding. The inhibitory effects of HA-966 and of AP-5 on glutamate-induced [3H]TCP binding were overcome when glutamate concentrations were increased. Of the three antagonists, 7-Cl-KYNA appears to be the most potent (Ki = 0.4-1.0 microM) and the most selective glycine antagonist. KYNA was found to act at both the glycine (Ki = 40-50 microM) and the glutamate sites. In contrast, HA-966 (Ki = 6-17 microM) appears to act either on a domain distinct from the glutamate and the glycine sites, but tightly associated with the latter, or at the glycine site, but according to a mechanism distinct from that of 7-Cl-KYNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
This report describes the membrane binding properties of [3H]hemicholinium-3 ([3H]HC-3), a selective inhibitor of sodium-dependent high-affinity choline uptake (SDHACU) in cholinergic nerve terminals. Under the described assay conditions, [3H]HC-3 bind with a saturable population of high-affinity (apparent Kd = 1.9 nM) CNS membrane sites having the regional distribution: striatum much greater than hippocampus greater than cerebral cortex greater than cerebellum. High-affinity [3H]HC-3 binding is entirely dependent upon the presence of sodium chloride (EC50 = 35-50 mM) and is markedly reduced when other salts of sodium or monovalent ions are substituted. [3H]HC-3 binding is inhibited by choline (Ki = 6 microM) and acetylcholine (Ki = 35 microM) but markedly less sensitive to other cholinergic agents and metabolic inhibitors. In light of the similar ionic dependencies, regional distributions and pharmacological specificities of [3H]HC-3 binding and SDHACU, closely associated sites may be involved in both processes.  相似文献   

5.
《Life sciences》1995,57(5):PL63-PL69
Changes in benzodiazepine binding sites labeled by [3H]flunitrazepam (FNZ) in twenty discrete brain regions of rats made tolerant to and dependent upon pentobarbital were examined. Animals were rendered tolerant by intracerebroventricular (i.c.v) infusion with pentobarbital (300 μg/ 10 μ1/ hr for six days) through pre-implanted cannulae connected to osmotic mini-pumps. The pentobarbital dependence was assessed 24 hr after abrupt withdrawal from pentobarbital. In the tolerant rats, a significant increase in [3H]FNZ binding sites was found in layer IV of frontal cortex and the molecular layer of olfactory bulb. [3H]FNZ binding sites in the pentobarbital dependent rats were significantly increased in layers I-III and V-VI of frontal cortex, caudate-putamen, olfactory tubercle, globus pallidus and ventral pallidum, in addition to those observed in the tolerant group. There was, however, no significant difference in the hippocampus and several regions in the hindbrain in either pentobarbital-treated group. Taken together with characteristics of subtypes of benzodiazepine receptors and changes in GABA-benzodiazepine receptor complexes elucidated in our previous studies, these findings suggest that both types of benzodiazepine receptors are involved in the development of pentobarbital intoxication mediated by GABAA receptors.  相似文献   

6.
In isolated rat hearts L-alphacetylmethadol (LAAM) produced a concentration-dependent decrease in the spontaneous beating rate. This effect was completely prevented by 1.0 microM atropine. Chronic treatment of rats with LAAM increased the number of striatal dopamine receptors measured by [3H]spiroperidol binding. The affinity of these binding sites for [3H]spiroperidol was unchanged by LAAM treatment. There were no significant changes in the number or affinity of binding sites for the labeled muscarinic antagonist [3H]quinuclidinyl benzilate ([3H]QNB) with chronic LAAM treatment. The ability of LAAM, nor-LAAM, or dinor-LAAM to antagonize the binding of [3H]spiroperidol (40 pM) or [3H]QNB (125 pM) to striatal membrane fragments was tested. The measured affinity constants for LAAM and metabolites were 100-3000 times higher than the affinity constants of unlabeled spiroperidol at [3H]spiroperidol binding sites. The affinity constants of LAAM and metabolites at muscarinic binding sites were 10-20 times higher than pilocarpine and 5000-8000 times higher than atropine. These results suggest that LAAM can produce some of its effects by acting as a weak agonist at muscarinic receptor sites.  相似文献   

7.
Muscarinic receptor stimulation increased the accumulation of 3H-inositol phosphates in PC12 cells whose phospholipids had been prelabeled with [3H]inositol. Muscarine also inhibited the increase in cyclic AMP (cAMP) accumulation caused by 5'-N-ethylcarboxamide adenosine or by vasoactive intestinal peptide. This effect of muscarine was apparently due to the inhibition of adenylate cyclase rather than to a stimulation of a cAMP specific phosphodiesterase. The muscarinic receptor antagonist pirenzepine inhibited both the stimulation of inositol-phospholipid metabolism and the inhibition of cAMP production with Ki values of 0.34 microM and 0.36 microM, respectively. PC12 cells contained a single class of N-[3H]methylscopolamine ([3H]NMS) binding sites. Competition studies with muscarine (KD, 15 microM) and pirenzepine (Ki, 0.12 microM) revealed no evidence for multiple muscarinic receptors. The Ki of pirenzepine for the inhibition of [3H]NMS binding and the inhibition of muscarinic actions is consistent with the possibility that this is not an M1 receptor. Muscarine inhibited cAMP accumulation in cells made deficient in protein kinase C; therefore, this protein kinase is probably not involved in mediating the inhibitory effect of muscarine. The phorbol ester 12-O-tetradecanoylphorbol 13-acetate also inhibited cAMP accumulation in PC12 cells but the mechanism of this effect differed from that of muscarine. Bradykinin caused a large increase in the accumulation of 3H-inositol phosphates and [3H]diacylglycerol relative to muscarine but did not inhibit cAMP production. Oxotremorine inhibited cAMP accumulation but it did not stimulate inositol-phospholipid metabolism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The possible role of immunomodulatory peptide somatostatin (SRIF) in measles virus (MV)-induced immunopathology was addressed by analysis of SRIF receptors and their coupling to adenylyl cyclase in mitogen-stimulated Jurkat T cells and human peripheral blood mononuclear cells (PBMC). SRIF-specific receptors were assayed in semipurified membrane preparations by using SRIF14 containing iodinated tyrosine at the first position in the amino acid chain ([125I]Tyr1) as a radioligand. A determination of receptor number by saturation of radioligand binding at equilibrium showed that in Jurkat cells, MV infection led to a dramatic decrease in the total receptor number. The virus-associated disappearance of one (Ki2 = 12 +/- 4 nM [mean +/- standard error of the mean [SEM]]; n = 4) of two somatostatin binding sites identified in control Jurkat cells (Ki1 = 78 +/- 3 pM and Ki2 = 12 +/- 4 nM [mean +/- SEM]; n = 4) was also observed. Almost identical results were obtained for phytohemagglutinin-activated human PBMC. In the absence of MV infection, two somatostatin binding sites were present (Ki1 = 111 +/- 31 pM and Ki2 = 17 +/- 2 nM [mean +/- SEM]; n = 2), whereas in MV-infected cells, only the high-affinity (Ki1 = 48 +/- 15 pM [mean +/- SEM]; n = 2) binding site remained. In addition, MV infection reinforced the inhibitory effects of SRIF on adenylyl cyclase activity, since maximal inhibition at 1 microM peptide was 11% +/- 4% in control cells versus 25% +/- 3% (P < 0.05) in infected Jurkat cells. Moreover, MV infection severely impaired the capacity of adenylyl cyclase to be activated directly (by forskolin) or indirectly (via Gs protein-coupled vasoactive intestinal peptide receptor). An assessment of [methyl-3H]thymidine incorporation showed that SRIF increased proliferative responses to mitogens only in control cells, not in MV-infected cells. Altogether, our data emphasize that MV-associated alteration of SRIF transduction appears to be related to the loss of SRIF-dependent increase of mitogen-induced proliferation.  相似文献   

9.
To investigate the, interaction between -aminobutyric acid (GABA) and benzodiazepine (BZD) receptor sites during development, the time-course of appearance of flunitrazepam (FNZ) binding sites and their pharmacological characterization were studied in developing chick optic lobe. At the earliest stage examined, embryonic day (Ed) 12, the receptor density was 30.9 % (0.05±0.01 pmol/mg protein) of that found in the chick optic lobes of adult chicks. The adult value was achieved on Ed 16 (0.16±0.01 pmol/mg protein). After this stage there was a sharp and transient increase in specific [3H]FNZ binding of about two-fold reaching a maximal value between hatching and the postnatal day (pnd) 2 (0.33±0.01 pmol/mg protein). Scatchard analysis at different stages of development revealed the presence of a single population of specific FNZ binding sites. The increase in [3H]FNZ binding during development was due to a large number of binding sites while their affinity remained unchanged. Competition experiments in the chick optic lobe revealed that the order of potency for displacement of specific [3H]FNZ binding paralleled the pharmacological potency of the BZDs tested. The IC50 s for clonazepam, flunitrazepam, Ro 15-1788 and chlordiazepoxide were 3.02, 4.30, 0.32, and 4778.64 nM respectively. Ro 5-4864, a potent inhibitor of BZD binding to peripheral tissues, had no effect on specific [3H]FNZ binding indicating that only central BZD binding sites are present in the chick optic lobe. The peak of maximal expression of BZD receptor sites precedes in 5–6 days the peak of GABA receptor sites indicating a precocious development of BZD receptor sites. The different appearance of both peaks may represent important events during development probably related to synaptogenesis.  相似文献   

10.
The binding of [3H]diazepam and [3H]ethyl-beta-carboline carboxylate (beta-CCE) to rat brain membranes has been studied following injection of the ligand via a tail vein. "Ex vivo" binding was avoided by homogenising the tissue in an excess of unlabelled ligand. The dissociation rate constant for [3H]diazepam and [3H]beta-CCE was approximately 0.46 min-1 at 0 degree C. Displacement of [3H]diazepam by beta-CCE in vivo showed regional variation: the dose of beta-CCE required to inhibit 50% of [3H]diazepam binding in the cerebellum was one quarter of that required in the cortex, hippocampus, or striatum. However, when diazepam was used to displace [3H]beta-CCE in vivo the converse occurred: the dose needed for 50% inhibition in the cerebellum was more than four times that required in the other three regions. These findings support suggestions from in vitro experiments that two receptors exist with different affinities for benzodiazepines and beta-carbolines. The benzodiazepine receptor antagonist Ro 15-1788 did not differentiate between the two receptor subtypes.  相似文献   

11.
Saturation experiments with the muscarinic antagonist [3H]N-methylscopolamine ([3H]NMS) indicated that cerebellar granule cells in primary culture possess a high density of muscarinic acetylcholine receptors (mAChRs): Bmax = 1.85 +/- 0.01 pmol/mg of protein at 10 days in culture; KD = 0.128 +/- 0.01 nM. The selective M1 antagonist pirenzepine displaced [3H]NMS binding with a low affinity (Ki = 273 +/- 13 nM), whereas the M2/M3 muscarinic antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide competed with [3H]NMS with Ki values in the nanomolar range, a result suggesting that some of the mAChRs on cerebellar granule cells belong to the M3 subtype. Methoctramine, which discriminates between M2 and M3 subtypes with high and low affinity, respectively, displayed a high and low affinity for [3H]NMS binding sites (Ki(H) = 31 +/- 5 nM; Ki(L) = 2,620 +/- 320 nM). These results provide the first demonstration that both M2 and M3 mAChR subtypes may be present on cultured cerebellar cells. In addition, complete death of neurons induced by N-methyl-D-aspartate (100 microM for 1 h) reduced by 85% the specific binding of [3H]NMS, a result indicating that most mAChRs were associated with neuronal components. Finally, the evolution of the density of mAChRs, labeled by [3H]NMS, correlated with the neuronal maturation during the in vitro development of these cells.  相似文献   

12.
Bicuculline Up-Regulation of GABAA Receptors in Rat Brain   总被引:2,自引:2,他引:0  
Effects of acute and subacute administration of bicuculline on [3H]muscimol, [3H]flunitrazepam, and t-[35S]butylbicyclophosphorothionate ([35S]TBPS) binding to various brain regions were studied in Sprague-Dawley rats. Acute administration of bicuculline affected neither the KD nor the Bmax of the three receptor sites. In rats treated subacutely with bicuculline (2 mg/kg, i.p., daily for 10 days), [3H]muscimol binding was increased in the frontal cortex, cerebellum, striatum, and substantia nigra. Scatchard analysis revealed that subacute treatment of rats with bicuculline resulted in a significantly lower KD of high-affinity sites in the striatum and in a significantly lower KD of high- and low-affinity sites in the frontal cortex. In the cerebellum, two binding sites were apparent in controls and acutely treated animals; however, only the high-affinity site was defined in subacutely treated animals, with an increase in the Bmax value. Triton X-100 treatment of frontal cortical membranes eliminated the difference in [3H]muscimol binding between control and subacute bicuculline treatments. On the other hand, [3H]muscimol binding was significantly increased in the cerebellum from bicuculline-treated animals even after Triton X-100 treatment. The apparent Ki of bicuculline for the GABAA receptor was also decreased in the frontal cortex and the striatum following the treatment. However, subacute administration of bicuculline affected neither the KD nor the Bmax of [3H]flunitrazepam and [35S]TBPS binding in the frontal cortex and the cerebellum. These results suggest that GABAA receptors are up-regulated after subacute administration of bicuculline, with no change in benzodiazepine and picrotoxin binding sites.  相似文献   

13.
The antagonistic effects of gallamine on muscarinic receptor-linked responses were investigated in N1E-115 neuroblastoma cells. M1 muscarinic receptor-mediated phosphoinositide hydrolysis induced by carbamylcholine was antagonized by gallamine, with a Ki value of 33 microM. By comparison, gallamine was four- to fivefold less potent in blocking noncardiac M2 muscarinic receptor-mediated inhibition of cyclic AMP formation, with a Ki value of 144 microM. The resulting Arunlakshana-Schild plots of the antagonism of both responses by gallamine were linear and exhibited slopes not differing from 1, a result indicative of a competitive mechanism. To elucidate further the nature of gallamine's inhibitory actions, experiments were performed where the effects of gallamine in combination with the known competitive muscarinic antagonist, N-methylscopolamine (NMS), were studied. In the presence of both antagonists, a supraadditive shift in the carbamylcholine dose-response curve was demonstrated for the two responses, a result suggestive of an allosteric mode of interaction between gallamine and NMS binding sites. Confirmation that gallamine allosterically modifies the muscarinic receptor was provided by radioligand binding studies. Gallamine competition curves with either [N-methyl-3H]scopolamine methyl chloride ([3H]NMS) or [N-methyl-3H]quinuclidinyl benzilate methyl chloride ([3H]NMeQNB) were unusually shallow. Furthermore, gallamine decelerated the rate of dissociation of receptor-bound [3H]NMS greater than [3H]NMeQNB in a dose-dependent manner. The present study demonstrates that whereas gallamine antagonizes carbamylcholine-mediated responses in N1E-115 cells in a competitive manner, an allosteric component of its action is revealed in the presence of muscarinic antagonists such as NMS.  相似文献   

14.
As shown by autoradiography, peripheral injections of N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) induced a dose-dependent decrease of [3H]SCH 23390 and [3H]prazosin high-affinity binding sites in the rat prefrontal cortex. EEDQ showed similar efficacy in inactivating cortical and striatal dopamine (DA) D1 receptors, whereas prazosin-sensitive alpha 1-adrenergic receptors were more sensitive to the action of the alkylating agent, as for all doses of EEDQ tested (from 0.8 to 3 mg/kg, i.p.), the decrease in cortical [3H]SCH 23390 binding was less pronounced than that of [3H]prazosin. The effects of EEDQ on [3H]SCH 23390 binding and DA-sensitive adenylate cyclase activity were then simultaneously compared in individual rats. In the striatum, whatever the dose of EEDQ used, the decrease of DA-sensitive adenylate cyclase activity was always lower than that of D1 binding sites, suggesting the occurrence of a large proportion of spare D1 receptors. In the prefrontal cortex, a significant increase in DA-sensitive adenylate cyclase activity was observed in rats treated with a low dose of EEDQ (0.8 mg/kg), this effect being associated with a slight reduction in [3H]SCH 23390 binding sites (-20%). Parallel decreases in the enzyme activity and D1 binding sites were observed with higher doses. The EEDQ-induced supersensitivity of DA-sensitive adenylate cyclase did not occur in rats in which the decrease in [3H]prazosin binding sites was higher than 35%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Photoaffinity labeling of brain benzodiazepine-receptors with [3H]flunitrazepam ([3H]FNZ) results in the covalent linking of the ligand to [3H]FNZ-binding site. The major findings in benzodiazepine-receptor studies employing photoaffinity labeling are described; the covalent linking of [3H]FNZ is compared to its reversible binding; and a mechanism for the labeling reaction is postulated.  相似文献   

16.
The tritium-labeled selective agonist of the nonopioid beta-endorphin receptor the decapeptide immunorphin ([3H]SLTCLVKGFY) with a specific activity of 24 Ci/mmol was prepared. It was shown that [3H]immunorphin binds with a high affinity to the non-opioid beta-endorphin receptor of mouse peritoneal macrophages (Kd 2.4 +/- 0.1 nM). The specific binding of [3H]immunorphin to macrophages was inhibited by unlabeled beta-endorphin (Ki of the [3H]immunorphin-receptor complex 2.9 +/- 0.2 nM) and was not inhibited by unlabeled naloxone, alpha-endorphin, gamma-endorphin, and [Met5]enkephalin (Ki > 10 microM). Thirty fragments of beta-endorphin were synthesized, and their ability to inhibit the specific binding of [3H]immunorphin to macrophages was studied. It was found that the shortest peptide having practically the same inhibitory activity as beta-endorphin is its fragment 12-19 (Ki 3.1 +/- 0.3 nM).  相似文献   

17.
The correlation between number of muscarinic cholinergic receptor sites as measured by binding of the muscarinic antagonist [3H]methylscopolamine ([3H]MS) and the ability of muscarinic agonists to mediate a physiologic response was determined in intact heart cells cultured from chick embryos 10 d in ovo. The increase in K+ permeability and the decrease in beating rate mediated by the muscarinic agonist carbamylcholine were the responses studied. Exposure to 10(-3) M carbamylcholine caused a 15% decrease in beating rate and a 33% increase in the rate of 42K+ efflux from cells labeled to equilibrium. An assay for binding of [3H]MS to intact cells was developed. [3H]MS bound specifically to intact heart cells (185 fmol/mg protein) with a Kd of 0.48 nM. Exposure of cells for various times to 10(-3) M carbamylcholine followed by binding of [3H]MS to intact cells demonstrated that a gradual loss of 70% of [3H]MS binding sites took place over the next 6 h with a T 1/2 of 30 min. A decrease in the ability of carbamylcholine to stimulate K+ efflux and to decrease beating rate was observed after pre-exposure of cells to muscarinic agonists. A close correlation was found between the loss of the subclass of muscarinic receptors subject to agonist control and the loss of physiologic responsiveness after agonist exposure. The data suggest the absence of significant numbers of "spare" receptors within this group.  相似文献   

18.
The evidence for direct muscle relaxant effects of benzodiazepines is controversial. We now show that a crude membrane preparation of rat diaphragm possesses binding sites for [3H]flunitrazepam (FNZ). Scatchard analysis gave a binding site density of 1689 +/- 143 fmol/mg protein (Kd = 25.6 +/- 2.6 nM). These sites are of the "peripheral" type since clonazepam fails to displace [3H]FNZ as effectively as R05-4864 (IC50 values: 7.5 x 10(-6) M and 8 x 10(-9) M, respectively). Diazepam is almost as effective as R05-4864 and potently displaces [3H]FNZ binding (IC50 = 3 x 10(-8) M). We propose that the previously described effects of diazepam on rat diaphragm are mediated through high-affinity binding sites.  相似文献   

19.
Abstract: The effects of chemical modification of a disulfide bond(s) (-SS-) or sulfhydryl group(s) (-SH) on the [3H]-flunitrazepam ([3H]FNZ) binding to membrane-bound or immunoprecipitated benzodiazepine (BZD) receptors (BZD-R) from bovine cerebral cortex were examined. Reduction of -SS- with dithiothreitol (DTT) brought about a reversible, time- and dose-dependent inhibition of [3H]FNZ binding to the membrane-bound BZD-R. Alkylation of the membranes with the -SH-modifying reagent iodoacetamide (IAA) or 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) produced a slight inhibition of [3H]FNZ binding in a dose-dependent manner. Scatchard analysis of saturation curves of [3H]FNZ binding in the presence and absence of 5 m M DTT revealed changes in affinity without modification in the maximal binding capacity, thus indicating a competitive mode of interaction. DTT pretreatment of both the membrane-bound and the immunoprecipitated BZD-R led to [3H]FNZ binding inhibition. Consistent with the modification of a binding site is the observation that reduction of -SS- does not bear on the binding affinity, but rather reduces the number of sites. Complete protection from DTT inhibition of [3H]FNZ binding by FNZ (an agonist) or by Ro 15–1788 (an antagonist) suggests the presence of -SS- at, or very close to, the BZD recognition binding site. No protection against IAA or DTNB inhibition was provided by FNZ. Photoaffinity labeling experiments with [3H]FNZ revealed a clear-cut band of 50 kDa in native and alkylated membranes but an extremely weak label in 5 m M DTT/IAA-treated membranes. The present results provide evidence for the participation of a disulfide bond in the recognition binding site of the bovine cerebral cortex BZD-R.  相似文献   

20.
We have identified in the DDT1 smooth muscle cell line a [3H]dihydroergocryptine-binding site having the characteristics of an alpha 1-adrenergic receptor. Specific binding of [3H]dihydroergocryptine to DDT1 cells grown either in monolayer or suspension culture was reversible, saturable, and of high affinity, and the binding site demonstrated stereoselectivity. [3H]Dihydroergocryptine dissociation constants of 1.4 +/- 0.2 nM and 1.4 +/- 0.3 nM were observed for suspension and monolayer cells, respectively. However, the concentration of binding sites in suspension-cultured cells (65,100 +/- 8,300 sites/cell) was significantly greater (p less than 0.001) than that found in monolayer cells (27,900 +/- 4,300 sites/cell). The order of agonist competition for the binding site was epinephrine (Ki = 0.92 +/- 0.32 microM) greater than or equal to norepinephrine (Ki = 2.2 +/- 1.0 microM) greater than isoproterenol (Ki = 137 +/- 17 microM), consistent with an alpha-adrenergic interaction. Results of competition experiments with specific antagonists prazosin (alpha 1-selective) or yohimbine (alpha 2-selective) and a computer modeling technique indicated that the alpha-adrenergic receptor of the DDT1 cell was predominantly (greater than 95%) the alpha 1-subtype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号