首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The concentration of gamma-hydroxybutyrate (GHB) in brain, kidney, and muscle as well as the clearance of [1-14C]GHB in plasma have been found to be altered by the administration of a number of metabolic intermediates and drugs that inhibit the NADP+-dependent oxidoreductase, "GHB dehydrogenase," an enzyme that catalyzes the oxidation of GHB to succinic semialdehyde. Administration of valproate, salicylate, and phenylacetate, all inhibitors of GHB dehydrogenase, significantly increased the concentration of GHB in brain; salicylate increased GHB concentration in kidney, and alpha-ketoisocaproate increased GHB levels in kidney and muscle. The half-life of [1-14C]GHB in plasma was decreased by D-glucuronate, a compound that stimulates the oxidation of GHB by this enzyme and was increased by a competitive substrate of the enzyme, L-gulonate. The results of these experiments suggest a role for GHB dehydrogenase in the regulation of tissue levels of endogenous GHB.  相似文献   

2.
Abstract: The conversion of γ-aminobutyrate (GABA) via succinic semialdehyde to γ-hydroxybutyrate has been examined in rat brain homogenates. A number of anticonvulsants, including sodium valproate and phenobarbitone, inhibited this metabolic pathway. These results are interpreted in the light of the characteristics of aldehyde reductases known to reduce succinic semialdehyde.  相似文献   

3.
Abstract: The possibility that γ-hydroxybutyrate (GHB), a metabolite of γ-aminobutyric acid (GABA), may play a role in the CNS has recently come to attention. We describe here a sensitive and specific mass fragmento-graphic technique that allows the measurement of picomole amounts of GHB in single rat brain areas. Moreover, we show that GHB can accumulate postmortem, an effect that is blocked by the use of microwave irradiation to kill the animals. To understand further the relationship between GABA and GHB formation, we treated rats with drugs known to inferfere with GABA metabolism at different levels and concomitantly measured GABA and GHB in cerebral cortex and cerebellum. Isoniazide, which blocks the formation of GABA, also decreases GHB. Blockers of the catabolism of GABA, such as aminooxyacetic acid and γ-acetylenic GABA, increase GABA levels and decrease those of GHB. Sodium dipropylacetate increases both GABA and GHB, supporting the hypothesis that this effective antiepileptic drug also blocks in vivo the enzyme that converts succinic semialdehyde to succinic acid.  相似文献   

4.
Gamma-Aminobutyric acid (GABA) was taken up by a MgATP-dependent mechanism into synaptic vesicles isolated by hypoosmotic shock and density gradient centrifugation. The properties of the vesicular uptake differed clearly from those of synaptosomal and glial uptake, both with respect to Na+, Mg2+, and ATP dependence and with respect to response to general GABA uptake inhibitors such as nipecotic acid, diaminobutyric acid, and beta-alanine. The uptake showed a Km of 5.6 mM and a net uptake rate of 1,500 pmol/min/mg of protein. It is suggested that the vesicular uptake of GABA is driven by an electrochemical proton gradient generated by a Mg2+-ATPase.  相似文献   

5.
Uptake of γ-Aminobutyric Acid by Brain Tissue Preparations: A Reevaluation   总被引:4,自引:3,他引:1  
The kinetic constants Km and Vmax for the uptake of gamma-aminobutyric acid (GABA) by various preparations from rat cerebral cortex were determined by means of Eadie-Hofstee plots and computer analysis. The Km values were much greater in 0.1-mm slices than in synaptosomal preparations, and the Km value increased further with the thickness of the slices. The apparent high Km values in slices were probably due to depletion of the GABA concentration in the extracellular fluid as the exogenous GABA ran the gauntlet of competing uptake sites on its way to sites deep within the slice, thereby bringing about a requirement for higher GABA concentrations in the incubation medium in order to maintain the internal GABA levels at the "Km level." Evidence was obtained for three GABA uptake systems with Km values (in synaptosomes) of 1.1 microM, 43 microM, and 3.9 mM, respectively. In contrast, only two uptake systems for D-aspartate were detected, with Km values of 1.8 microM and 1.8 mM, respectively. The implications of the findings in the study with respect to previous data in the literature are discussed.  相似文献   

6.
7.
The transport of taurine into membrane vesicles prepared from neuroblastoma x glioma hybrid cells 108CC5 was studied. A great part of the taurine uptake by the membrane preparation is due to the transport into an osmotically sensitive space of membrane vesicles. Taurine uptake by membrane vesicles is an active transport driven by the concentration gradient of Na+ across the membrane (outside concentration greater than inside). The Km value of 36 microM for Na+-dependent taurine uptake indicates a high-affinity transport system. The rate of taurine transport by the membrane vesicles is enhanced by the K+ gradient (inside concentration greater than outside) and the K+ ionophore valinomycin. Taurine transport is inhibited by several structural analogs of taurine: hypotaurine, beta-alanine, and taurocyamine. All these results indicate that the taurine transport system of the membrane vesicles displays properties almost identical to those of intact neuroblastoma X glioma hybrid cells.  相似文献   

8.
Synaptosomes prepared from frozen postmortem human brain accumulated the neurotransmitter gamma-aminobutyric acid (GABA) and the conformationally restricted GABA analogue cis-3-aminocyclohexanecarboxylic acid (ACHC) by a sodium-dependent, temperature-sensitive, high-affinity transport process into an osmotically sensitive compartment. This transport process could be inhibited by GABA analogues (ACHC, 2,4-diaminobutyric acid, nipecotic acid, arecaidine, guvacine) that have been shown in studies on other species to be relatively selective for neuronal rather than glial uptake systems, whereas the glial uptake inhibitor beta-alanine was ineffective. Synaptosomes prepared from frozen post-mortem human medulla and spinal cord, but not cerebral cortex, took up the neurotransmitter glycine by a sodium-dependent high-affinity transport process. The kinetic parameters for the high-affinity uptake of GABA, ACHC, and glycine were Km = 10 +/- 3, 49 +/- 19, and 35 +/- 19 microM; and Vmax = 98 +/- 15, 84 +/- 25, and 5.5 +/- 2.5 nmol/min/100 mg protein, respectively. These results demonstrate the feasibility of using human CNS preparations for studying GABA and glycine uptake, and suggest that such studies may be useful neurochemical markers for transmitter-specific presynaptic terminals in health and disease.  相似文献   

9.
The modification of dopamine release and accumulation induced by gamma-hydroxybutyrate (GHB) was studied using both striatal slices and in vivo microdialysis of caudate-putamen. GHB inhibited dopamine release for approximately 5-10 min in vitro, and this was associated with an accumulation of dopamine in the tissue. Subsequently, there was an increase in dopamine release. In the microdialysis experiments, low doses of GHB inhibited dopamine release, whereas higher doses strongly increased release; the initial decrease seen in slices could not be detected in vivo. Thus, GHB had a biphasic effect on the release of dopamine: An initial decrease in the release of transmitter was followed by an increase. A time-dependent biphasic effect was observed when GHB was added to brain slices, and a dose-dependent biphasic effect was seen in dialysate after systemic administration of GHB. Naloxone blocked GHB-induced dopamine accumulation and release both in vitro and in vivo. GHB also increased the release of opioid-like substances in the striatum. A specific antagonist of GHB receptors completely blocked both the dopamine response and the release of opioid-like substances. These data suggest that GHB increases dopamine release via specific receptors that may modulate the activity of opioid interneurons.  相似文献   

10.
Abstract: Rat brain contains two major NADPH-linked aldehyde reductases that can reduce succinate semialdehyde to 4-hydroxybutyrate. One of these enzymes appears to be fairly specific for succinate semialdehyde and is not significantly inhibited by classic aldehyde reductase inhibitors such as barbiturates. The other enzyme can reduce several aromatic aldehydes and is strongly inhibited by barbiturates and branched-chain fatty acids. Using one such inhibitor, it was possible to distinguish between and measure the two enzyme activities separately in various rat brain regions and in subcellular fractions. Both enzymes are mainly cytoplasmic but there is some activity in the synaptosomal fraction. The activity of the specific succinic semialdehyde reductase is highest in the cerebellum, where it represents 21% of the total activity, and lowest in the cortex, where it represents about 11% of the total activity.  相似文献   

11.
Mouse cortical synaptosomal structure and function are altered when exposed to hypoxanthine/xanthine oxidase (HPX/XOD)-generated active oxygen/free radical species. The structure of both the synaptic vesicle and plasma membrane systems are altered by HPX/XOD treatment. The alteration of synaptic vesicle structure is exhibited by a significant increase in the cumulative length of nonsynaptic vesicle membrane per nerve terminal. With respect to the nerve terminal plasma membrane, the length of the perimeter of the synaptosome is increased as the membrane pulls away from portions of the terminal in blebs. The functional lesion generated by HPX/XOD treatment results in a reduction in selective high-affinity gamma-[14C]aminobutyric acid (GABA) uptake. Kinetic analysis of the reduction in high-affinity uptake reveals that the Vmax is significantly altered whereas the Km is not. Preincubation with specific active oxygen/free radical scavengers indicates that the super-oxide radical is directly involved. This radical, most probably in the protonated perhydroxyl form, initiates lipid peroxidative damage of the synaptosomal membrane systems. Low-affinity [14C]GABA transport is unaltered by the HPX/XOD treatment. The apparent ineffectiveness of free radical exposure on low-affinity [14C]GABA transport coupled with its effectiveness in reducing high-affinity transport supports the idea that two separate and different amino acid uptake systems exist in CNS tissue, with the high-affinity being more sensitive (lipid-dependent) and/or more energy-dependent (Na+,K+-ATPase) than the low-affinity system.  相似文献   

12.
Na+-dependent uptake of dicarboxylic amino acids in membrane saccules, due to exchange diffusion and independent of ion gradients, was highly sensitive to inhibition by K+. The IC50 was 1-2 mM under a variety of conditions (i.e., whole tissue or synaptic membranes, frozen/thawed or fresh, D-[3H]aspartate (10-1000 nM) or L-[3H]glutamate (100 nM), phosphate or Tris buffer, NaCl or Na acetate, presence or absence of Ca2+ and Mg2+). The degree of inhibition by K+ was also not affected on removal of ion gradients by ionophores, or by extensive washing with H2O and reloading of membrane saccules with glutamate and incubation medium in the presence or absence of K+ (3 mM, i.e., IC70). Rb+, NH4+, and, to a lesser degree Cs+, but not Li+, could substitute for K+. [K+] showed a competitive relationship to [Na+]2. Incubation with K+ before or after uptake suggested that the ion acts in part by allowing net efflux, thus reducing the internal pool of amino acid against which D-[3H]aspartate exchanges, and in part by inhibiting the interaction of Na+ and D-[3H]aspartate with the transporter. The current model of the Na+-dependent high-affinity acidic amino acid transport carrier allows the observations to be explained and reconciled with previous seemingly conflicting reports on stimulation of acidic amino acid uptake by low concentrations of K+. The findings correct the interpretation of recent reports on a K+-induced inhibition of Na+-dependent "binding" of glutamate and aspartate, and partly elucidate the mechanism of action.  相似文献   

13.
Neutral amino acid transport is largely unexplored in astrocytes, although a role for these cells in blood-brain barrier function is suggested by their close apposition to cerebrovascular endothelium. This study examined the uptake into mouse astrocyte cultures of alpha-aminoisobutyric acid (AIB), a synthetic model substrate for Na+-dependent system A transport. Na+-dependent uptake of AIB was characteristic of system A in its pH sensitivity, kinetic properties, regulatory control, and pattern of analog inhibition. The rate of system A transport declined markedly with increasing age of the astrocyte cultures. There was an unexpectedly active Na+-independent component of AIB uptake that declined less markedly than system A transport as culture age increased. Although the saturability of the Na+-independent component and its pattern of analog inhibition were consistent with system L transport, the following properties deviated: (1) virtually complete inhibition of Na+-independent AIB uptake by characteristic L system substrates, suggesting unusually high affinity of the transporter; (2) apparent absence of trans-stimulation of AIB influx; (3) unusually concentrative uptake at steady state (the estimated distribution ratio for 0.2 mM AIB was 55); and (4) susceptibility to inhibition by N-ethylmaleimide. Direct study of the uptake of system L substrates in astrocytes is needed to confirm the present indications of high affinity and concentrative Na+-independent transport.  相似文献   

14.
Abstract: The effects of inhibitors of γ-aminobutyric acid (GABA) metabolism or uptake on GABA output from the cerebral cortex was studied by means of a collecting cup placed on the exposed cortex of rats anaesthetized with urethane. GABA was identified and quantified by a mass-fragmentographic method. Ethanolamine-O-sulphate (10−2 M ) applied directly on the cerebral cortex caused a long-lasting twofold increase in GABA output, whereas dl -2, 4-diaminobutyric acid (5 × 10−3 M ) caused a sevenfold increase and β -alanine was inactive. The results indicate that glial uptake has little effect on GABA inactivation in the cerebral cortex. The inhibition of neuronal uptake seems a more effective tool to increase GABA concentration in the synaptic cleft, and consequently also in GABA output, than the inhibition of GABA metabolism.  相似文献   

15.
A number of naturally occurring biological intermediates have been found to inhibit competitively the activity of a highly purified NADP+-dependent oxidore-ductase which catalyzes the simultaneous oxidation of γ-hydroxybutyrate to succinic semialdehyde, and the reduction of D-glucuronate to L-gulonate. Of the inhibitors studied, those with the lowest Ki are the α-keto analogues of the branched chain or aromatic amino acids. The Vmax and Km for this enzyme are affected by pH; consequently, changes in substrate concentration can markedly alter the pH optimum. The enzyme has been found to be inhibited by reducing agents such as dithiothreitol and mercapto-ethanol, protected against this inhibition by oxidizing agents such as oxidized glutathione or H2O2, and finally, protected against heat inactivation by the presence of either NADP+ or NADPH.  相似文献   

16.
The presence of gamma-hydroxybutyric acid (GHB) in synaptosome-enriched fractions of rat brain was ascertained using a GLC technique. The stability of GHB in synaptosomes was evaluated by addition of various gamma-aminobutyric acid (GABA) transaminase (GABA-T) inhibitors, GHB, or ethosuximide to the homogenizing medium. Furthermore, changes in whole brain GHB levels were compared with those in the synaptosomal fraction in animals treated with GABA-T inhibitors, GABA, or ethosuximide. GHB was present in synaptosome-enriched fractions in concentrations ranging from 40 to 70 pmol/mg of protein. There was no evidence for redistribution, leakage, or metabolism of GHB during the preparation of synaptosomes. The elevations of whole brain GHB level associated with GABA-T or ethosuximide treatment were reflected by a parallel increase in synaptosomal GHB content. These data add to the growing evidence that GHB may have neurotransmitter or neuromodulator function.  相似文献   

17.
Subcutaneous administration of methylmercuric chloride to neonatal rats resulted in movement and postural disorders during the fourth postnatal week. Sodium-dependent high-affinity uptake of radiolabeled choline, glutamate, and gamma-aminobutyric acid (GABA) was measured in homogenates of cerebral cortex and caudate-putamen. There was a significant decrease in the uptake of [3H]choline in the cerebral cortex, but not in the caudate-putamen, at the onset of neurological impairment (73-75%) and at one subclinical stage of toxicity (58-64%). No significant differences in [3H]glutamate uptake were detected in either region. The uptake of [3H]GABA in the presence of 1 mM beta-alanine, which was employed to inhibit the glial uptake process, was reduced significantly in both the cerebral cortex and caudate-putamen at the onset of neurological impairment (50-62%) and at one subclinical stage (40-51%). This decrease in [3H]GABA uptake is consistent with the results of previous studies using this animal model, which demonstrated a preferential degeneration of GABAergic neurons in the cerebral cortex and caudate-putamen of methylmercury-treated animals. Because the high-affinity uptake of choline is the rate-limiting step for acetylcholine synthesis by cholinergic neurons, the decrease in [3H]choline uptake may reflect an abnormal development of cholinergic innervation of the cerebral cortex.  相似文献   

18.
The presence of gamma-hydroxybutyrate (GHB) (300-600 microM) in the incubation medium of rat hippocampal slices led to an increase of intracellular cyclic GMP and inositol phosphates. This phenomenon is dependent on the time and the dose of GHB used and might be the result of the stimulation of GHB receptor sites which are abundant in rat hippocampus. The increase of cyclic GMP and inositol phosphates is blocked by some anticonvulsants and opiate antagonists. These results seems to indicate that, like many substances inducing epileptic phenomena, GHB provokes neuronal depolarization in hippocampus which is accompanied by formation of cyclic GMP and inositol phosphates. The effect of opiate antagonists can be explained by the possible implication of an opiate synapse which mediates GHB effects in rat hippocampus.  相似文献   

19.
Abstract: Polyclonal antibodies were raised to synthetic peptides having amino acid sequences corresponding with the N- or C-terminal part of the γ-aminobutyric acidA (GABAA) receptor α5-subunit. These anti-peptide α5(2–10) or anti-peptide α5(427–433) antibodies reacted specifically with GABAA receptors purified from the brains of 5–10-day-old rats in an enzyme-linked immunosorbent assay and were able to dose-dependently immunoprecipitate up to 6.3 or 13.1% of the GABAA receptors present in the incubation, respectively. In immunoblots, each of these antibodies reacted with the same two protein bands with apparent molecular mass of 53 or 57 kDa. After exhaustive treatment of purified GABAA receptors with N -Glycanase, each of these antibodies identified two proteins with apparent molecular masses of 46 and 48 kDa. Additional treatment of GABAA receptors with neuraminidase and O -Glycanase resulted in an apparently single protein with molecular mass of 47 kDa, which again was identified by both the anti-peptide α5(2–10) and the anti-peptide α5(427–433) antibody. These results indicate the existence of at least two different α5-sub-units of the GABAA receptor that differ in their carbohydrate content. In contrast to other α- or β-subunits of GABAA receptors so far investigated, at least one of these two α5-subunits contains O-linked carbohydrates.  相似文献   

20.
Arachidonic acid (AA; 20:4n-6) is one of the principal components of the phosphoglycerides in neural cell membranes. During the critical period of postnatal development in mammals, AA is supplied preformed, directly from the milk or derived from precursor fatty acids such as gamma-linolenic acid (GLA; 18:3n-6). In this study, 13C-NMR spectroscopy was applied to investigate the incorporation of [1-(13)C]AA and [3-(13)C]GLA into liver and brain lipids of 7-15-day-old rats. The main objective was to establish the importance of dietary GLA for tissue AA accretion relative to the contribution from preformed dietary AA. [1-(13)C]AA and [3-(13)C]GLA were injected into the stomach of 7-day-old rats as a mixture. 13C-NMR spectroscopy of lipid extracts revealed incorporation of [1-(13)C]AA and [5-(13)C]AA (the latter derived from metabolism of the injected [3-(13)C]GLA) into phosphoglycerides and triacylglycerols. Preformed AA was 10 (liver)-17 (brain) times more efficient in contributing to tissue AA than AA derived from precursor GLA. In separate experiments, NMR spectroscopy was used to assess uptake of [1-(13)C]AA directly in living rats and intact organs. Results showed that intact liver and brain contain an appreciable amount of NMR-detectable lipids. The in vivo/in vitro information obtained from organs provided details on the mobility and turnover of tissue lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号