首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We assessed on Monte-Carlo simulated excitatory post-synaptic currents the ability of autoregressive (AR)-model fitting to evaluate their fluctuations. AR-model fitting consists of a linear filter describing the process that generates the fluctuations when driven with a white noise. Its fluctuations provide a filtered version of the signal and have a spectral density depending on the properties of the linear filter. When the spectra of the non-stationary fluctuations of excitatory post-synaptic currents were estimated by fitting AR-models to the segments of current fluctuations, assumed to be stationary and independent, the parameter and spectral estimates were scattered. The scatter was much reduced if the time-variant AR-models were fitted using stochastic adaptive estimators (Kalman, recursive least squares and least mean squares). The ability of time-variant AR-models to accurately fit the current fluctuations was monitored by comparing the fluctuations with predicted fluctuations, and by evaluating the model-learning rate. The median frequency of current fluctuations, which could be rapidly tracked and estimated from the individual quantal events (either Monte-Carlo simulated or recorded from pyramidal neurons of rat hippocampus), rose during the rise phase, before declining to a lower steady-state level during the decay phase of quantal event, whereas the variance showed a broad peak. The closing rate of AMPA channels directly affects the steady-state median frequency, whereas the transient peak can be modulated by a variety of factors—number of molecules released, ability of glutamate molecules to re-enter the synaptic cleft, diffusion constant of glutamate in the cleft and opening rate of AMPA channels. In each case, the effect on the amplitude and decay time of mEPSCs and on the current fluctuations differs. Each factor thus leaves its own kinetic fingerprint arguing that the contribution of such factors can be inferred from the combined kinetic properties of individual mEPSCs.  相似文献   

2.
用电生理学方法研究了灭多威对美洲大蠊Periplanetaamerwana腹六神经节(A6节)突触传递的影响。用灭多威溶液浸泡A6节,电刺激尾须神经粗支,用甘露醇间隙法记录兴奋性突触后电位(EPSP)和突触后动作电位。给予弱刺激只记录到EPSP时,灭多威作用初期EPSP幅度增加、时程延长,能诱发突触后动作电位,随后EPSP逐渐减小至消失,冲洗可恢复,突触前反应保持不变。增加电刺激强度记录到突触后动作电位时,灭多威可阻断A6节的突触传递,阻断时间是浓度依赖性的,阻断是可逆的,但冲洗30 min仍保留一定的后作用。对美洲大蠊雄性成虫腹腔注射灭多威测定致死中量(LD50)为(3.56±0.01) μg/g体重。根据灭多威的作用机理对其阻断A6节突触传递的特点以及对虫体的毒杀机制进行了讨论。  相似文献   

3.
Mathematical theory of chemical synaptic transmission is suggested in which the modes of operation of chemical synapses are given as consequencies of some fundamental theoretical principles presented in the form of systems of quantum and macroscopic postulates. These postulates establish transmitter transfer rules between 3 component parts — cytoplasmic, vesicular and external pools of neurotransmitter. The main features of the transfers are determined by special properties of the dividing membranes (synaptic and vesicle) which show high selectivity towards the direction of the transmitter quantum transfer. The formulation of a previously unknown effect of transmitter quantum transfer from the vesicular pool into the cytoplasmic one is introduced: it is postulated that each arriving presynaptic impulse not only releases a constant fraction of the current contents of the cytoplasmic pool into the synaptic cleft (external pool), but also realizes practically simultaneous transmitter transfer from the vesicular pool into the cytoplasmic one. Zone structure of the vesicular pool is postulated. In accordance with basic equations of the theory a nonlinear control system (dynamic synaptic modulator — DYSYM) of transmitter release from the terminal is constructed.Depending on the parameters relation two types of synapses are classified — those with rapid and slow demobilization. Analytical dependencies of the transmitter pools sizes on the stimulation frequency are introduced. By fitting the frequency dependencies to the empirical data model parameters are determined corresponding to a set of experimentally studied synaptic junctions. Different aspects of the chemical synapse behaviour under the influence of presynaptic stimulation are simulated.  相似文献   

4.
The excitatory synaptic function is subject to a huge amount of researches and fairly all the structural elements of the synapse are investigated to determine their specific contribution to the response. A model of an excitatory (hippocampal) synapse, based on time discretized Langevin equations (time-step = 40 fs), was introduced to describe the Brownian motion of Glutamate molecules (GLUTs) within the synaptic cleft and their binding to postsynaptic receptors. The binding has been computed by the introduction of a binding probability related to the hits of GLUTs on receptor binding sites. This model has been utilized in computer simulations aimed to describe the random dispersion of the synaptic response, evaluated from the dispersion of the peak amplitude of the excitatory post-synaptic current. The results of the simulation, presented here, have been used to find a reliable numerical quantity for the unknown value of the binding probability. Moreover, the same results have shown that the coefficient of variation decreases when the number of postsynaptic receptors increases, all the other parameters of the process being unchanged. Due to its possible relationships with the learning and memory, this last finding seems to furnish an important clue for understanding the basic mechanisms of the brain activity.  相似文献   

5.
Although the strength of quantal synaptic transmission is jointly controlled by pre- and post-synaptic mechanisms, the presynaptic mechanisms remain substantially less well characterized. Recent studies reveal that a single package of neurotransmitter is generally insufficient to activate all available postsynaptic receptors, whereas the sum of transmitter from multiple vesicles can result in receptor saturation. Thus, depending upon the number of vesicles released, a given synaptic pathway might be either 'reliable' or 'unreliable'. A lack of receptor saturation in turn makes it possible to modify quantal size by altering the flux of transmitter through the synaptic cleft. Studies are now illuminating several new mechanisms behind the regulation of this transmitter flux--characteristics that control how transmitter is loaded into vesicles, how it is released and the manner by which it interacts with postsynaptic receptors.  相似文献   

6.
A detailed mathematical analysis of the diffusion process of neurotransmitter inside the synaptic cleft is presented and the spatio-temporal concentration profile is calculated. Using information about the experimentally observed time course of glutamate in the cleft the effective diffusion coefficient Dnet is estimated as Dnet approximately 20-50 nm(2) microseconds(-1), implying a strong reduction compared with free diffusion in aqueous solution. The tortuosity of the cleft and interactions with transporter molecules are assumed to affect the transmitter motion. We estimate the transporter density to be 5170 to 8900 micrometer(-2) in the synaptic cleft and its vicinity, using the experimentally observed time constant of glutamate. Furthermore a theoretical model of synaptic transmission is presented, taking the spatial distribution of post-synaptic (AMPA-) receptors into account. The transmitter diffusion and receptor dynamics are modeled by Monte Carlo simulations preserving the typically observed noisy character of post-synaptic responses. Distributions of amplitudes, rise and decay times are calculated and shown to agree well with experiments. Average open probabilities are computed from a novel kinetic model and are shown to agree with averages over many Monte Carlo runs. Our results suggest that post-synaptic currents are only weakly potentiated by clustering of post-synaptic receptors, but increase linearly with the total number of receptors. Distributions of amplitudes and rise times are used to discriminate between different morphologies, e.g. simple and perforated synapses. A skew in the miniature amplitude distribution can be caused by multiple release of pre-synaptic vesicles at perforated synapses.  相似文献   

7.
Monte Carlo simulations of transmitter diffusion and its interactions with postsynaptic receptors have been used to study properties of quantal responses at central synapses. Fast synaptic responses characteristic of those recorded at glycinergic junctions on the teleost Mauthner cell (time to peak approximately 0.3-0.4 ms and decay time constant approximately 3-6 ms) served as the initial reference, and smaller contacts with fewer postsynaptic receptors were also modeled. Consistent with experimental findings, diffusion, simulated using a random walk algorithm and assuming a diffusion coefficient of 0.5-1.0 x 10(-5) cm2 s(-1), was sufficiently fast to account for transmitter removal from the synaptic cleft. Transmitter-receptor interactions were modeled as a two-step binding process, with the double-bound state having opened and closed conformations. Addition of a third binding step only slightly decreased response amplitude but significantly slowed both its rising and decay phases. The model allowed us to assess the sources of response variability and the likelihood of postsynaptic saturation as functions of multiple kinetic and spatial parameters. The method of nonstationary fluctuation analysis, typically used to estimate the number of functional channels at a synapse and single channel current, proved unreliable, presumably because the receptors in the postsynaptic matrix are not uniformly exposed to the same profile of transmitter concentration. Thus, the time course of the probability of channel opening most likely varies among receptors. Finally, possible substrates for phenomena of synaptic plasticity, such as long-term potentiation, were explored, including the diameter of the contact zone, defined by the region of pre- and postsynaptic apposition, the number and distribution of the receptors, and the degree of vesicle filling. Surprisingly, response amplitude is quite sensitive to the size of the receptor-free annulus surrounding the receptor cluster, such that expansion of the contact zone could produce an appreciable increase in quantal size, normally attributed to either the presence of more receptors or the release of more transmitter molecules.  相似文献   

8.
The epithelial cells that overlie the inner nerve ring of the hydrozoan jellyfish Aequorea aequorea were investigated ultrastructurally and electrophysiologically. The structurally unspecialized epithelial cells are interconnected by gap junctions and are electrically active during swimming as a single, long-duration action potential was recorded during each swim contraction. Intercellular electrical- and dye-coupling was demonstrated within the epithelial region extending into the velum and subumbrellar regions. Excitatory post-synaptic potentials were recorded from epithelial cells following swim motorneuron spikes with a short latency. Psps were up to 60 mV in amplitude and, when triggered in bursts, showed summation provided the interpulse interval was less than 25-35 ms. The initial gap in each of a series of bursts showed facilitation with the first few swim contractions following a period of inactivity. In actively swimming medusae, psp amplitude was relatively constant. The reversal potential for epithelial psp was estimated at between 0 and +20 mV. Spontaneous psps spread throughout the epithelial region electronically, but the amplitude decrease with conducting distance was less than that for current pulses injected into individual epithelial cells. This presumably represents the effect of widespread synaptic activation of epithelial cells via multiple input sites throughout the inner nerve ring as opposed to point-source input in current injection experiments. During a radial response, action potential amplitude was decreased and rise time increased due to decremental conduction through the inhibited region. It is postulated that conduction of a full action potential requires that electrotonic current spread from adjacent, active epithelial cells occur in synchrony with synaptic input from swim motoneurons.  相似文献   

9.
Using mathematical modeling of the process of generation of a miniature end-plate current (MEPC), we studied the effect of acetylcholinesterase (AChE) inhibition on the amplitude and frequency parameters of synaptic signals in the neuromuscular junction. The density of acetylcholine receptors on the postsynaptic membrane and the number of acetylcholine molecules in its quantum were varied. AChE inhibition against the background of a decreased receptor density was shown to result in a much higher increase in the amplitude of modeled MEPC than that in control and in the case of the changed transmitter amount released in the synaptic cleft. The simulation data can be used as a theoretical background for interpretation of the reason for different efficiencies of AChE inhibitors in certain pathological states of the neuromuscular apparatus.Neirofiziologiya/Neurophysiology, Vol. 28, No. 4/5, pp. 186–192, July–October, 1996.  相似文献   

10.
In the cockroach, a population of thoracic interneurons (TIs) receives direct inputs from a population of ventral giant interneurons (vGIs). Synaptic potentials in type-A TIs (TIAs) follow vGI action potentials with constant, short latencies at frequencies up to 200 Hz. These connections are important in the integration of directional wind information involved in determining an oriented escape response. The physiological and biochemical properties of these connections that underlie this decision-making process were examined. Injection of hyperpolarizing or depolarizing current into the postsynaptic TIAs resulted in alterations in the amplitude of the post-synaptic potential (PSP) appropriate for a chemical connection. In addition, bathing cells in zero-calcium, high-magnesium saline resulted in a gradual decrement of the PSP, and ultimately blocked synaptic transmission, reversibly. Single-cell choline acetyltransferase (ChAT) assays of vGI somata were performed. These assays indicated that the vGIs can synthesize acetylcholine. Furthermore, the pharmacological specificity of transmission at the vGI to TIA connections was similar to that previously reported for nicotinic, cholinergic synapses in insects, suggesting that the transmitter released by vGIs at these synapses is acetylcholine.  相似文献   

11.
Chemical synaptic transmission is a fundamental component of interneuronal communications in the central nervous system (CNS). Discharge of a presynaptic vesicle containing a few thousand molecules (a quantum) of neurotransmitter into the synaptic cleft generates a transmitter concentration signal that drives postsynaptic ion-channel receptors. These receptors exhibit multiple states, with state transition kinetics dependent on neurotransmitter concentration. Here, a novel and simple analytical approach for describing gating of multi-state receptors by signals with complex continuous time courses is used to describe the generation of glutamate-mediated quantal postsynaptic responses at brain synapses. The neurotransmitter signal, experienced by multi-state N-methyl-D-aspartate (NMDA)- and L-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)-type glutamate receptors at specific points in a synaptic cleft, is approximated by a series of step functions of different intensity and duration and used to drive a Markovian, multi-state kinetic scheme that describes receptor gating. Occupancy vectors at any point in time can be computed interatively from the occupancy vectors at the times of steps in transmitter concentration. Multi-state kinetic schemes for both the low-affinity AMPA subtype of glutamate receptor and for the high-affinity NMDA subtype are considered, and expected NMDA and AMPA components of synaptic currents are calculated. The amplitude of quantal responses mediated by postsynaptic receptor clusters having specific spatial distributions relative to foci of quantal neurotransmitter release is then calculated and related to the displacement between the center of the postsynaptic receptor cluster and the focus of synaptic vesicle discharge. Using this approach we show that the spatial relation between the focus of release and the center of the postsynaptic receptor cluster affects synaptic efficacy. We also show how variation in this relation contributes to variation in synaptic current amplitudes.  相似文献   

12.
M Jia  P G Nelson 《Peptides》1987,8(3):565-568
Monosynaptic excitatory post-synaptic potentials (EPSPs) evoked in spinal cord (SC) neurons by stimulation of dorsal root ganglion (DRG) neurons in cell cultures were reduced by perfusion application of the opiate peptide, Met-enkephalin (2-4 microM). In about 2/3 of cases examined, EPSPs evoked by stimulation of spinal cord cells were also reduced by Met-enkephalin. The effects were antagonized by concomitant perfusion with naloxone (1-2 microM) and recovered when perfusion with Met-enkephalin was stopped. Statistical analysis of synaptic responses indicated that the reduction of EPSP amplitude was due, at least to a major extent, to a decrease in presynaptic transmitter release.  相似文献   

13.
The present experiments tested whether preganglionic stimulation and direct depolarization of nerve terminals by tityustoxin could mobilize similar or different pools of acetylcholine (ACh) from the cat superior cervical ganglia in the presence of 2-(4-phenylpiperidino)cyclohexanol (vesamicol, AH5183), an inhibitor of ACh uptake into synaptic vesicles. In the absence of vesamicol, both nerve stimulation and tityustoxin increased ACh release. In the presence of vesamicol, the release of ACh induced by tityustoxin was inhibited, and just 16% of the initial tissue content could be released, a result similar to that obtained with electrical stimulation under the same condition. When the impulse-releasable pool of ACh had been depleted, tityustoxin still could release transmitter, amounting to some 10% of the ganglion's initial content. This pool of transmitter seemed to be preformed in the synaptic vesicles, rather than synthesized in response to stimuli, as tityustoxin could not release newly synthesized [3H]ACh formed in the presence of vesamicol, and hemicholinium-3 did not prevent the toxin-induced release. In contrast to the results with tityustoxin, preganglionic stimulation could not release transmitter when impulse-releasable or toxin-releasable compartments had been depleted. Our results confirm that vesamicol inhibits the mobilization of transmitter from a reserve to a more readily releasable pool, and they also suggest that, under these experimental conditions, there might be some futile transmitter mobilization, apparently to sites other than nerve terminal active zones.  相似文献   

14.
The study deals with synaptic and spike responses of neurones in the rat sensorimotor cortex to stimulation of the lateral and medial hypothalamus, locus coeruleus and raphe nuclei. The activity of 57 neurones was recorded, 41 of them intracellularly and quasi-intracellularly, in response to the stimulation of sites in these structures, which were previously identified as "emotionally/ significant. No considerable differences in the effects of the stimulation of different "emotiogenic" zones were found. The stimulation parameters, differing from the "behavioural" ones by a greater strength, elicited in the majority of neurones clear post-synaptic responses, often in the form of EPSP-IPSP. Latencies of the responses varied from 3 to 80 msec. The most stable and pronounced responses were obtained to the stimulation of the lateral hypothalamus. No significant correlations of the latencies of the responses to the stimulation of different "emotiogenic" structures were found.  相似文献   

15.
A study of activity recorded with intracellular micropipettes was undertaken in the caudal abdominal ganglion of the crayfish in order to gain information about central fiber to fiber synaptic mechanisms. This synaptic system has well developed integrative properties. Excitatory post-synaptic potentials can be graded, and synaptic potentials from different inputs can sum to initiate spike discharge. In most impaled units, the spike discharge fails to destroy the synaptic potential, thereby allowing sustained depolarization and multiple spike discharge following single pulse stimulation to an afferent input. Some units had characteristics which suggest a graded threshold for spike generation along the post-synaptic fiber membrane. Other impaled units responded to afferent stimulation with spike discharges of two distinct amplitudes. The smaller or "abortive" spikes in such units may represent non-invading activity in branches of the post-synaptic axon. On a few occasions one afferent input was shown to inhibit the spike discharge initiated by another presynaptic input.  相似文献   

16.
Navarrete M  Araque A 《Neuron》2010,68(1):113-126
Endocannabinoids and their receptor CB1 play key roles in brain function. Astrocytes express CB1Rs that are activated by endocannabinoids released by neurons. However, the consequences of the endocannabinoid-mediated neuron-astrocyte signaling on synaptic transmission are unknown. We show that endocannabinoids released by hippocampal pyramidal neurons increase the probability of transmitter release at CA3-CA1 synapses. This synaptic potentiation is due to CB1R-induced Ca(2+) elevations in astrocytes, which stimulate the release of glutamate that activates presynaptic metabotropic glutamate receptors. While endocannabinoids induce synaptic depression in the stimulated neuron by direct activation of presynaptic CB1Rs, they indirectly lead to synaptic potentiation in relatively more distant neurons by activation of CB1Rs in astrocytes. Hence, astrocyte calcium signal evoked by endogenous stimuli (neuron-released endocannabinoids) modulates synaptic transmission. Therefore, astrocytes respond to endocannabinoids that then potentiate synaptic transmission, indicating that astrocytes are actively involved in brain physiology.  相似文献   

17.
—Previous experiments on a giant neurone (R2) from Aplysia californica have shown that a prolonged electrical stimulation of ganglionic nerves, strong enough to elicit post-synaptic spikes in the giant neurone, caused a marked increase in the uptake of labelled nucleosides into the neuronal RNA. The results described in the present paper very strongly indicate that these effects of synaptic activation were not due to the discharge of spikes in the giant neurone itself. Spikes which were directly elicited in the giant neurone by current pulses injected into the cell through an intracellular microelectrode had no significant effect on RNA labelling. Weak stimulation of ganglionic nerves, eliciting post-synaptic potentials but few spikes in the giant neurone, produced a small but significant increase of RNA labelling.  相似文献   

18.
Neurotransmitter release is triggered by the influx of Ca(2+) into the presynaptic terminal through voltage gated Ca(2+)-channels. The shape of the presynaptic Ca(2+) signal largely determines the amount of released quanta and thus the size of the synaptic response. Ca(2+)-channel function is modulated in particular by the auxiliary beta-subunits that interact intracellularly with the pore-forming alpha(1)-subunit. Using retrovirus-mediated gene transfer in cultured hippocampal neurons, we demonstrate that functional GFP-beta(4) constructs colocalize with the synaptic vesicle marker synaptobrevin II and endogenous P/Q-type channels, indicating that beta(4)-subunits are localized to synaptic sites. Costaining with the dendritic marker MAP2 revealed that the beta(4)-subunit is transported to dendrites as well as axons. The nonconserved amino- and carboxyl-termini of the beta(4)-subunit were found to target the protein to the synapse. Physiological measurements in autaptic hippocampal neurons infected with green fluorescent protein (GFP)-beta(4) revealed an increase in both excitatory post-synaptic current amplitude and paired pulse facilitation ratio, whereas the GFP-beta(4) mutant, GFP-beta(4)(Delta50-407), which demonstrated a cytosolic localization pattern, did not alter these synaptic properties. In summary, our data suggest a pre-synaptic function of the Ca(2+)-channel beta(4)-subunit in synaptic transmission.  相似文献   

19.
The responses to local stimulation have been recorded from neurons in the intermediate part of the medial hyperstriatum ventrale (IMHV) of the domestic chick, by using an in vitro slice preparation. When the slice is bathed in gassed Krebs' solution, a single stimulus evokes a short-lasting diphasic response. The first phase is negative and lasts some 3 ms, whereas the second, positive phase is often of lower amplitude and usually persists for about 15 ms. The first phase is little altered by perfusion with either Ca2(+)-free Krebs' solution or Krebs' solution containing a high concentration of Mg2+. In contrast, the second phase is abolished by these procedures. The post-synaptic phase is positive when it is recorded anywhere between 0.1-1.25 mm from the stimulated point; however, in the immediate vicinity (0.0-0.1 mm) of the stimulating electrodes, the post-synaptic response is strongly negative. A pair of stimuli has to be separated by at least 10 s to guarantee complete recovery of excitability of the post-synaptic response. The recovery curve for this response shows a refractory period of some 5 ms, a peak of excitability at an interval of about 20 ms, and then a sharp trough of relative inexcitability at about 200 ms. The post-synaptic response is considerably reduced in magnitude and duration by the addition of AP-5 to the perfusion fluid; the remaining post-synaptic response is completely abolished by kynurenic acid. The addition of bicuculline methiodide in concentrations of at least 1 x 10(-6) M increases both the magnitude and duration of the second, positive phase of the response to single stimuli. This extended positive response (which may last from 500-800 ms) is abolished by perfusion with bicuculline dissolved in Ca2(+)-free Krebs' solution. For the entire duration of the extended post-synaptic positive response produced by bicuculline, the irregular discharge of single neurons can be recorded. Like the post-synaptic positive response in Krebs' solution, the much larger response produced by bicuculline shows a very localized negativity beneath the stimulating electrodes and displays an almost identical time-course for the recovery of excitability following a single stimulus. The bicuculline induced positive response is also considerably reduced by the presence of AP-5; the addition of kynurenic acid abolishes the remaining post-synaptic response completely. A post-synaptic response, similar to that produced under bicuculline, can be produced by the addition of a maximally effective dose of d-tubocurarine.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The effect of electrical stimulation of cardioaccelerator and cardioinhibitor nerves on the mechanically recorded heart beat of crayfish was studied. Similar experiments were performed with the lobster, Homarus americanus. Quantitative relationships between uni- and bilateral accelerator and/or inhibitor nerve stimulation and the resulting change in frequency and amplitude of the heart beat were established. With increasing frequency of stimulation the accelerator nerves show a relative decrease in their action, while that of the inhibitor nerves increases. It appears that left and right regulator nerves have synaptic contacts at the same areas of the postsynaptic cells within the heart ganglion. Similar results are obtained whether all impulses arrive over one, or over the other, or over both accelerator (or inhibitor) nerves; the resulting acceleration or inhibition depends strictly on the number of accelerator, or inhibitor impulses arriving at the ganglion. The ganglion cells can adapt to the inhibitor action. This is shown to be a postsynaptic phenomenon. Adaptation to accelerator stimulation is virtually absent. Characteristic after-effects of the accelerator and inhibitor action were observed and quantitatively evaluated. The interpretation of the results is based on the assumption of chemical transmitter substances. It is concluded that the accelerating transmitter decays slowly while the inhibitory transmitter is inactivated relatively rapidly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号