首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The development of muscle spindles, with respect to the expression of myosin heavy chain isoforms was studied in rat hind limbs from 17 days of gestation up to seven days after birth. Serial cross-sections were labelled with antibodies against slow tonic, slow twitch and neonatal isomyosins, myomesin, laminin and neurofilament protein.At 17–18 days of gestation, a small population of primary myotubes expressing slow tonic myosin were identified as the earliest spindle primordia. These myotubes also expressed slow twitch and, to a lesser extent, neonatal myosin. At 19–20 days of gestation a second myotube became apparent; this staining strongly with anti-neonatal myosin. A day later this secondary myotube acquired reactivity to anti-slow tonic and anti-slow twitch myosins. By birth, a third myotube was present; this staining strongly with anti-neonatal myosin but otherwise unreactive with the other antibodies against myosin heavy chains. Three days after birth a fourth myotube, with identical reactivity to the third one, became apparent. Regional variation in the expression of isomyosins, which was present since birth in the two nuclear bag fibers was further enhanced: the nuclear bag2 staining strongly with anti-slow tonic and antineonatal in the equatorial region and with decreasing intensity towards the poles, whilst with anti-slow twitch the stainability was low in the equatorial and high in the polar region. The nuclear bag1 fiber showed a homogeneous staining: high with anti-slow tonic, moderate with anti-neonatal, and displayed stainability to antislow twitch myosin in the polar regions only. No regional variation was found along the chain fiber/myotube. At seven days after birth, the pattern of reactivity was similar to that found in the adult spindles, except for the bag1 fiber which still expressed neonatal myosin.We show that slow tonic myosin is expressed from early development and it is a reliable marker of developing bag fibers. We suggest that muscle spindles are formed from special cell lineages of which the primary generation myotubes expressing slow tonic myosin represent the primordium of muscle spindles.  相似文献   

2.
The composition of adult rat soleus muscle spindles, with respect to myosin heavy chain isoforms and M-band proteins, was studied by light-microscope immunohistochemistry. Serial sections were labelled with antibodies against slow tonic, slow twitch, fast twitch and neonatal myosin isoforms as well as against myomesin, M-protein and the MM form of creatine kinase. Intrafusal fiber types were distinguished according to the pattern of ATPase activity following acid and alkaline preincubations. Nuclear bag1 fibers were always strongly stained throughout with anti-slow tonic myosin, were positive for anti-slow twitch myosin towards and in the C-region but were unstained with anti-fast twitch and anti-neonatal myosins. The staining of nuclear bag2 fibers was in general highly variable. However, they were most often strongly stained by anti-slow tonic myosin in the A-region and gradually lost this reactivity towards the poles, whereas a positive reaction with anti-slow twitch myosins was found along the whole fiber. Regional staining variability with anti-neonatal and anti-fast myosins was apparent, often with decreasing intensity towards the polar regions. Nuclear chain fibers showed strong transient reactivity with anti-slow tonic myosin in the equatorial region, did not react with anti-slow twitch and were always evenly stained by anti-fast twitch and anti-neonatal myosins. All three intrafusal fiber types were stained with anti-myomesin. Nuclear bag1 fibers lacked staining for M-protein, whereas bag2 fibers displayed intermediate staining, with regional variability, often increasing in reactivity towards the polar regions. Chain fibers were always strongly stained by anti-M-protein. The MM form of creatine kinase was present in all three fiber types, but bag1 fibers were less reactive and clear striations were not observed, in contrast to bag2 and chain fibers. Out of 38 cross sectioned spindles two were found to have an atypical fiber composition (lack of chain fibers) and a rather diverse staining pattern for the different antibodies tested. Taken together, the data show that in adult rat soleus, slow tonic and neonatal myosin heavy chain isoforms are only expressed in the muscle spindle fibers and that each intrafusal fiber type has a unique, although variable, composition of myosin heavy chain isoforms and M-band proteins. We propose that both motor and sensory innervation might be the determining factors regulating the variable expression of myosin heavy chain isoforms and M-band proteins in intrafusal fibers of rat muscle spindles.  相似文献   

3.
Summary The composition of adult rat soleus muscle spindles, with respect to myosin heavy chain isoforms and M-band proteins, was studied by light-microscope immunohistochemistry. Serial sections were labelled with antibodies against slow tonic, slow twitch, fast twitch and neonatal myosin isoforms as well as against myomesin, M-protein and the MM form of creatine kinase. Intrafusal fiber types were distinguished according to the pattern of ATPase activity following acid and alkaline preincubations.Nuclear bag1 fibers were always strongly stained throughout with anti-slow tonic myosin, were positive for anti-slow twitch myosin towards and in the C-region but were unstained with anti-fast twitch and anti-neonatal myosins. The staining of nuclear bag2 fibers was in general highly variable. However, they were most often strongly stained by anti-slow tonic myosin in the A-region and gradually lost this reactivity towards the poles, whereas a positive reaction with anti-slow twitch myosins was found along the whole fiber. Regional staining variability with antineonatal and anti-fast myosins was apparent, often with decreasing intensity towards the polar regions. Nuclear chain fibers showed strong transient reactivity with anti-slow tonic myosin in the equatorial region, did not react with anti-slow twitch and were always evenly stained by anti-fast twitch and anti-neonatal myosins. All three intrafusal fiber types were stained with anti-myomesin. Nuclear bag1 fibers lacked staining for M-protein, whereas bag2 fibers displayed intermediate staining, with regional variability, often increasing in reactivity towards the polar regions. Chain fibers were always strongly stained by anti-M-protein. The MM form of creatine kinase was present in all three fiber types, but bag1 fibers were less reactive and clear striations were not observed, in contrast to bag2 and chain fibers. Out of 38 cross sectioned spindles two were found to have an atypical fiber composition, (lack of chain fibers) and a rather diverse staining pattern for the different antibodies tested.Taken together, the data show that in adult rat solcus, slow tonic and neonatal myosin heavy, chain isoforms are only expressed in the muscle spindle fibers and that each intrafusal fiber type has a unique, although variable, composition of myosin heavy chain isoforms and M-band proteins. We propose that both motor and sensory innervation might be the determining factors regulating the variable expression of myosin heavy chain isoforms and M-band proteins in intrafusal fibers of rat muscle spindles.  相似文献   

4.
J Kucera  J M Walro 《Histochemistry》1991,96(5):381-389
The pattern of regional expression of a slow-tonic myosin heavy chain (MHC) isoform was studied in developing rat soleus intrafusal muscle fibers. Binding of the slow-tonic antibody (ATO) began at the equator of prenatal intrafusal fibers where sensory nerve endings are located, and spread into the polar regions of nuclear bag2 and bag1 fibers but not nuclear chain fibers during ontogeny. The onset of the ATO reactivity coincided with the appearance of equatorial clusters of myonuclei (nuclear bag formations) in bag1 and bag2 fibers. Moreover, the intensity of the ATO reaction was strongest in the region of equatorial myonuclei and decreased with increasing distance from the equator of bag1 and bag2 fibers at all stages of prenatal and postnatal development. The polar expansion of ATO reactivity continued throughout the postnatal development of bag1 fibers, but ceased shortly after birth in bag2 fiber coincident with innervation by motor axons. Thus, afferents that innervate the equator might induce the slow-tonic MHC isoform in bag2 and bag1 fibers by regulating the myosin gene expression by equatorial myonuclei, and efferents or twitch contractile activity might inhibit the spread of the slow-tonic MHC isoform into the poles of bag2 but not bag1 fibers. Absence of ATO binding in chain fibers suggests that chain myotubes may not be as susceptible to the effect of afferents as are myotubes that develop into bag2 and bag1 fibers. The different patterns of slow-tonic MHC expression in the three types of intrafusal fiber may therefore result from the interaction of three elements: sensory neurons, motor neurons, and intrafusal myotubes.  相似文献   

5.
In order to evaluate the effects of fusimotor elimination on the expression of myosin heavy chain (MHC) proteins in intrafusal fibres, we compared the muscle spindles in hind limb muscles of 3- to 6-week-old rats de-efferented at birth with those of their litter-mate controls. Serial sections were labelled with antibodies against slow tonic, slow twitch, fast twitch and neonatal MHC isoforms, against synaptophysin, the neurofilament 68 kD subunit and laminin. We found that de-efferented intrafusal fibres differentiated, as in normal spindles, into nuclear bag and bag fibres both containing predominantly slow MHC, and nuclear chain fibres that contained fast and neonatal MHC. In both de-efferented and control intrafusal fibres the same MHCs were stained; the degree and extent of staining, however, varied. Both types of de-efferented bag fibres displayed a high content of slow tonic and slow twitch MHC along most of the fibre length, in contrast to the prominent regional variation in control bag fibres. In their encapsulated regions, the de-efferented bag fibres were more similar to each other in their reactivity to anti-fast twitch and anti-neonatal MHC antibodies than the control bag fibres. In these aspects they resembled more closely the bag fibres of newborn rats. The differences might be due to an arrest of "specialization" in the regional expression of the different MHC isoforms. Chain fibres developed MHC patterns identical to those of control spindles with all the antibodies used, even though they differentiated from the beginning in the absence of motor innervation. The structural differentiation of the capsule and sensory innervation in de-efferented muscle spindles, as shown by anti-laminin, anti-synaptophysin and anti-neurofilament staining, did not differ from the controls. We conclude, in agreement with previous studies, that the sensory innervation plays a key role in inducing and supporting the differentiation of intrafusal fibres and the specific expression of their MHC. However, we also show that motor innervation and/or muscle function seem to be necessary for the diversity in the expression and distribution of different slow and fast MHC isoforms in the bag and bag fibres.  相似文献   

6.
Summary In order to evaluate the effects of fusimotor elimination on the expression of myosin heavy chain (MHC) proteins in intrafusal fibres, we compared the muscle spindles in hind limb muscles of 3- to 6-week-old rats de-efferented at birth with those of their litter-mate controls. Serial sections were labelled with antibodies against slow tonic, slow twitch, fast twitch and neonatal MHC isoforms, against synaptophysin, the neurofilament 68 kD subunit and laminin. We found that de-efferented intrafusal fibres differentiated, as in normal spindles, into nuclear bag1 and bag2 fibres both containing predominantly slow MHC, and nuclear chain fibres that contained fast and neonatal MHC. In both de-efferented and control intrafusal fibres the same MHCs were stained; the degree and extent of staining, however, varied. Both types of de-efferented bag fibres displayed a high content of slow tonic and slow twitch MHC along most of the fibre length, in contrast to the prominent regional variation in control bag fibres. In their encapsulated regions, the de-efferented bag fibres were more similar to each other in their reactivity to anti-fast twitch and anti-neonatal MHC antibodies than the control bag fibres. In these aspects they resembled more closely the bag fibres of newborn rats. The differences might be due to an arrest of specialization in the regional expression of the different MHC isoforms. Chain fibres developed MHC patterns identical to those of control spindles with all the antibodies used, even though they differentiated from the beginning in the absence of motor innervation.The structural differentiation of the capsule and sensory innervation in de-efferented muscle spindles, as shown by anti-laminin, anti-synaptophysin and anti-neurofilament staining, did not differ from the controls.We conclude, in agreement with previous studies, that the sensory innervation plays a key role in inducing and supporting the differentiation of intrafusal fibres and the specific expression of their MHC. However, we also show that motor innervation and/or muscle function seem to be necessary for the diversity in the expression and distribution of different slow and fast MHC isoforms in the bag1 and bag2 fibres.  相似文献   

7.
The expression of myosin heavy chain isoforms in muscle spindle fibres has been the subject of a number of immunocytochemical studies, some of them with discordant results. In order to assess whether these discrepancies are due to differences in the specificity and sensitivity of the antibodies used, we have compared the reactivity of rat muscle spindle fibres to two pairs of antibodies presumed to be directed against slow tonic (ALD 19 and ALD 58) and neonatal (NN5) and neonatal/fast (MF30) myosin heavy chains. Adult, developing and neonatally de-efferented muscle spindles from the rat hind limb muscles were studied in serial cross-sections processed for the peroxidase-antiperoxidase method. Important differences in the staining profiles of intrafusal fibres were noted when ALD 19 and ALD 58 were compared. ALD 19 stained the muscle spindle precursors from the seventeenth day in utero, whereas ALD 58 only did so by the twentieth day of gestation. In adult spindles ALD 19 stained the nuclear bag1 fibres along their entire length, whereas ALD 58 did not stain these fibres towards their ends. ALD 19 stained the nuclear bag2 fibres along the A, B and inner C region, but ALD 58 stained these fibres only in the A and the inner B regions. ALD 19 stained some nuclear chain fibres along a short equatorial segment, whereas ALD 58 did not stain the nuclear chain fibres at all. NN5 stained the nascent nuclear bag1 and chain fibre precursors at earlier stages of development than MF30. Clear differential staining between primary and secondary generation of both extra- and intrafusal myotubes was seen with NN5, whereas MF30 stained all myotubes alike. However, in postnatal spindles, MF30 was a very good negative marker of nuclear bag1 fibres. The staining profile of the adult fibres with NN5 and MF30 was rather similar. The staining pattern of neonatally de-efferented bag fibres obtained with ALD 19 and ALD 58 was practically identical and it differed from that of control spindles, confirming that motor innervation participates in the regulation of the expression of slow tonic MHC along the length of the nuclear bag2 fibres, as we have previously shown with ALD 19. The distinct staining patterns obtained with ALD 19 versus ALD 58 and with NN5 versus MF30 reflect differences in antibody sensitivity and specificity. These differences account, in part, for the discrepancies in the results of previous studies on muscle spindles, published by Kucera and Walro using ALD 58 and MF30, and by us using ALD 19 and NN5.  相似文献   

8.
An analysis has been performed of the native myosin isoenzyme composition of isolated skeletal muscle fibres from Xenopus laevis with well-defined isotonic contraction properties. Fast twitch 'white' (type 1) fibres contained three isomyosins; fast twitch 'red' (type 2) fibres showed two major myosin bands with migration velocities very similar to those of the two slower bands in type 1. Slow twitch (type 3) fibres yielded a single, slowly migrating band as did slow tonic (type 5) fibres, whereas the myosin from type 4 (very slow twitch, 'intermediate') fibres migrated with a somewhat higher mobility. The results suggest that amphibian skeletal muscle may possess the principal fibre types found in mammals and birds.  相似文献   

9.
Summary The pattern of regional expression of a slow-tonic myosin heavy chain (MHC) isoform was studied in developing rat soleus intrafusal muscle fibers. Binding of the slow-tonic antibody (ATO) began at the equator of prenatal intrafusal fibers where sensory nerve endings are located, and spread into the polar regions of nuclear bag2 and bag1 fibers but not nuclear chain fibers during ontogeny. The onset of the ATO reactivity coincided with the appearance of equatorial clusters of myonuclei (nuclear bag formations) in bag1 and bag2 fibers. Moreover, the intensity of the ATO reaction was strongest in the region of equatorial myonuclei and decreased with increasing distance from the equator of bag1 and bag2 fibers at all stages of prenatal and postnatal development. The polar expansion of ATO reactivity continued throughout the postnatal development of bag1 fibers, but ceased shortly after birth in bag2 fiber coincident with innervation by motor axons. Thus, afferents that innervate the equator might induce the slow-tonic MHC isoform in bag2 and bag1 fibers by regulating the myosin gene expression by equatorial myonuclei, and efferents or twitch contractile activity might inhibit the spread of the slow-tonic MHC isoform into the poles of bag2 but not bag1 fibers. Absence of ATO binding in chain fibers suggests that chain myotubes may not be as susceptible to the effect of afferents as are myotubes that develop into bag2 and bag1 fibers. The different patterns of slow-tonic MHC expression in the three types of intrafusal fiber may therefore result from the interaction of three elements: sensory neurons, motor neurons, and intrafusal myotubes.  相似文献   

10.
J Kucera  J M Walro 《Histochemistry》1990,93(6):567-580
The expression of several isoforms of myosin heavy chain (MHC) by intrafusal and extrafusal fibers of the rat soleus muscle at different stages of development was compared by immunocytochemistry. The first intrafusal myotube to form, the bag2 fiber, expressed a slow-twitch MHC isoform identical to that expressed by the primary extrafusal myotubes. The second intrafusal myotube to form, the bag1 fiber, expressed a fast-twitch MHC similar to that initially expressed by the secondary extrafusal myotubes. At subsequent stages of development, the equatorial and juxtaequatorial regions of bag2 and bag1 intrafusal myofibers began to express a slow-tonic myosin isoform not expressed by extrafusal fibers, and ceased to express some of the MHC isoforms present initially. Myotubes which eventually matured into chain fibers expressed initially both the slow-twitch and fast-twitch MHC isoforms similar to some secondary extrafusal myotubes. In contrast, adult chain fibers expressed the fast-twitch MHC isoform only. Hence intrafusal myotubes initially expressed no unique MHCs, but rather expressed MHCs similar to those expressed by extrafusal myotubes at the same chronological stage of muscle development. These observations suggest that both intrafusal and extrafusal fibers develop from common pools of bipotential myotubes. Differences in MHC expression observed between intrafusal and extrafusal fibers of rat muscle might then result from a morphogenetic effect of afferent innervation on intrafusal myotubes.  相似文献   

11.
A Maier  B Gambke  D Pette 《Histochemistry》1988,88(3-6):267-271
Serial cross sections of rat, rabbit and cat intrafusal fibers from muscle spindles of normal adult hindlimb muscles were incubated with a monoclonal antibody against embryonic myosin heavy chains. Intrafusal fiber types were identified by noting their staining patterns in adjacent sections incubated for myofibrillar ATPase after acid or alkaline preincubation. In rat and rabbit muscle spindles dynamic nuclear bag1 fibers reacted strongly at the polar and juxtaequatorial regions. Static nuclear bag2 fibers reacted weakly or not at all at the polar region, but showed a moderate amount of activity at the juxtaequator. At the equatorial region both types of nuclear bag fibers displayed a rim of fluorescence surrounding the nuclear bags, while the areas occupied by the nuclear bags themselves were negative. Nuclear chain fibers in rat and rabbit muscle spindles were unreactive with the specific antibody over their entire length. In cat muscle spindles both types of nuclear bag fibers presented profiles which resembled those of the nuclear bag fibers in the other two species, but unlike in rat and rabbit spindles, cat nuclear chain fibers reacted as strongly as dynamic nuclear bag1 fibers.  相似文献   

12.
Summary The expression of myosin heavy chain isoforms in muscle spindle fibres has been the subject of a number of immunocytochemical studies, some of them with discordant results. In order to assess whether these discrepancies are due to differences in the specificity and sensitivity of the antibodies used, we have compared the reactivity of rat muscle spindle fibres to two pairs of antibodies presumed to be directed against slow tonic (ALD 19 and ALD 58) and neonatal (NN5) and neonatal/fast (MF30) myosin heavy chains. Adult, developing and neonatally de-efferented muscle spindles from the rat hind limb muscles were studied in serial cross-sections processed for the peroxidase-antiperoxidase method. Important differences in the staining profiles of intrafusal fibres were noted when ALD 19 and ALD 58 were compared. ALD 19 stained the muscle spindle precursors from the seventeenth day in utero, whereas ALD 58 only did so by the twentieth day of gestation. In adult spindles ALD 19 stained the nuclear bag1 fibres along their entire length, whereas ALD 58 did not stain these fibres towards their ends. ALD 19 stained the nuclear bag2 fibres along the A, B and inner C region, but ALD 58 stained these fibres only in the A and the inner B regions. ALD 19 stained some nuclear chain fibres along a short equatorial segment, whereas ALD 58 did not stain the nuclear chain fibres at all. NN5 stained the nascent nuclear bag1 and chain fibre precursors at earlier stages of development than MF30. Clear differential staining between primary and secondary generation of both extra- and intrafusal myotubes was seen with NN5, wheras MF30 stained all myotubes alike. However, in postnatal spindles, MF30 was a very good negative marker of nuclear bag1 fibres. The staining profile of the adult fibres with NN5 and MF30 was rather similar. The staining pattern of neonatally de-efferented bag fibres obtained with ALD 19 and ALD 58 was practically identical and it differed from that of control spindles, confirming that motor innervation participates in the regulation of the expression of slow tonic MHC along the length of the nuclear bag2 fibres, as we have previously shown with ALD 19. The distinct staining patterns obtained with ALD 19 versus ALD 58 and with NN5 versus MF30 reflect differences in antibody sensitivity and specificity. These differences account, in part, for the discrepancies in the results of previous studies on muscle spindles, published by Kucera and Walro using ALD 58 and MF30, and by us using ALD 19 and NN5.  相似文献   

13.
In the present study we have investigated the reactivity of rat muscle to a specific monoclonal antibody directed against alpha cardiac myosin heavy chain. Serial cross sections of rat hindlimb muscles from the 17th day in utero to adulthood, and after neonatal denervation and de-efferentation, were studied by light microscope immunohistochemistry. Staining with anti-alpha myosin heavy chain was restricted to intrafusal bag fibres in all specimens studied. Nuclear bag2 fibres were moderately to strongly stained in the intracapsular portion and gradually lost their reactivity towards the ends, whereas nuclear bag1 fibres were stained for a short distance in each pole. Nuclear bag2 fibres displayed reactivity to anti-alpha myosin heavy chain from the 21st day of gestation, whereas nuclear bag1 fibres only acquired reactivity to anti-alpha myosin heavy chain three days after birth. After neonatal de-efferentation, the reactivity of nuclear bag2 fibres to anti-alpha myosin heavy chain was decreased and limited to a shorter portion of the fibre, whereas nuclear bag1 fibres were unreactive. We showed that a myosin heavy chain isoform hitherto unknown for skeletal muscle is specifically expressed in rat nuclear bag fibres. These findings add further complexity to the intricate pattern of isomyosin expression in intrafusal fibres. Furthermore, we show that motor innervation influences the expression of this isomyosin along the length of the fibres.  相似文献   

14.
Summary Serial cross sections of rat, rabbit and cat intrafusal fibers from muscle spindles of normal adult hindlimb muscles were incubated with a monoclonal antibody against embryonic myosin heavy chains. Intrafusal fiber types were identified by noting their staining patterns in adjacent sections incubated for myofibrillar ATPase after acid or alkaline preincubation. In rat and rabbit muscle spindles dynamic nuclear bag1 fibers reacted strongly at the polar and juxtaequatorial regions. Static nuclear bag2 fibers reacted weakly or not at all at the polar region, but showed a moderate amount of activity at the juxtaequator. At the equatorial region both types of nuclear bag fibers displayed a rim of fluorescence surrounding the nuclear bags, while the areas occupied by the nuclear bags themselves were negative. Nuclear chain fibers in rat and rabbit muscle spindles were unreactive with the specific antibody over their entire length. In cat muscle spindles both types of nuclear bag fibers presented profiles which resembled those of the nuclear bag fibers in the other two species, but unlike in rat and rabbit spindles, cat nuclear chain fibers reacted as strongly as dynamic nuclear bag1 fibers.Dedicated to Professor Dr. T.H. Schiebler on the occasion of his 65th birthday  相似文献   

15.
Intrafusal muscle fibers in the tenuissimus muscle of the cat develop as two separate groups; one being a single nuclear bag fiber while the other comprises a second nuclear bag fiber along with all the nuclear chain fibers. The groupings are very distinctive in the late fetus (55 days gestation) and remain so until 18 days of age. In the adult, the grouping is less distinctive but can often be recognized and followed for considerable distances within the capsular region of the spindle. Each group develops under its own basement membrane and is separated from the other by fibrocytes. ATPase histochemistry indicates the isolated single nuclear bag fiber is slow twitch while the fibers of the other group, the second bag and all the nuclear chains, are fast twitch. The organization of intrafusal fibers in late development into two groups of different fiber types is discussed in relation to their selective innervation by γ fibers.  相似文献   

16.
J Kucera 《Histochemistry》1981,72(1):123-131
A total of 147 muscle spindles was studied histochemically in serial transverse sections of 42 cat tenuissimus muscle specimens. Nuclear bag1, nuclear bag2 and nuclear chain intrafusal muscle fibers were distinguished by the differential staining resulting from the reactions for myosin adenosine 5'-triphosphatase and nicotinamide adenine dinucleotide tetrazolium reductase. The majority of intrafusal fibers were of the same histochemical type at both fiber poles. However, seven muscle spindles contained one nuclear bag fiber each that presented as a bag1 in one pole and as a bag2 in the other pole. These "mixed" nuclear bag fibers were found in spindles that also contained at least one bag1 and one bag2 fiber of equivalent histochemical presentation in both fiber poles. The "mixed" bag fibers displayed differences of apparent fiber diameter and relative polar length between the two fiber poles. The motor innervation pattern, as revealed by staining for cholinesterase, was also dissimilar between the two poles of "mixed" bag fibers. The study indicates that the spindle equatorial region may in some instances serve as a boundary between two morphologically and histochemically different poles of the same intrafusal fiber.  相似文献   

17.
Sensitivity of cultured chick myotubes to alkaline earth metal ions was investigated by recording contractile isometric tension through a semiconductor transducer. The myotubes were obtained by culturing myoblasts of chick embryo breast muscles, and skinned chemically before physiological experiments. Contractions developed in response to Ca2+ in a bathing medium higher than 3 x 10(-7) M and reached maximum at 1 x 10(-5) M. Sr2+ was less effective than Ca2+; the threshold concentration was 1 x 10(-5) M and the tension reached maximum at 1 x 10(-3) M. Ba2+ was the least effective among the three alkaline earth metal ions; only one fifth of the Ca(2+)-induced maximum tension was attained at 1 x 10(-3) M. The sensitivity was similar to that of the mature pectoral muscle fiber, a fast twitch muscle fiber, rather than that of the anterior latissimus dorsi, a slow tonic muscle fiber. The sensitivity was shown to be dependent on its troponin C by replacing it with troponin C from the mature pectoral or cardiac muscle. This indicates that TnC of a fast-muscle type is expressed in the cultured chick myotube as in the mature pectoral muscle. The contractile apparatus was thus shown to be well developed in the cultured myotube with characteristics similar to the mature fast twitch muscle fiber.  相似文献   

18.
The dorsocutaneous (DLD) and anterior (ALD) latissimus dorsii are both homogeneous slow tonic muscles. Autografts of mature DLD were attached onto the ALD of chickens to study regeneration of slow tonic muscle fibres innervated exclusively by slow tonic nerves. Fifty-three grafts were examined from 3 to 231 days after implantation for myosin ATPase, and for heavy chains of fast myosin. New muscle fibres in grafts were initially type 1 (slow) or type 2 (fast twitch). Tonic type 3 fibres were slow to differentiate and were not seen within 59 days. From 105 days many fibres were type 3A and type 1 were no longer apparent. However, type 2 fibres persisted and appeared to be present instead of type 3B fibres even after 8 months.  相似文献   

19.
We describe a simple culture method for obtaining highly differentiated clonal C2C12 myotubes using a feeder layer of confluent fibroblasts, and document the expression of contractile protein expression and aspects of myofibre morphology using this system. Traditional culture methods using collagen- or laminin-coated tissue-culture plastic typically results in a cyclic pattern of detachment and reformation of myotubes, rarely producing myotubes of a mature adult phenotype. C2C12 co-culture on a fibroblast substratum facilitates the sustained culture of contractile myotubes, resulting in a mature sarcomeric register with evidence for peripherally migrating nuclei. Immunoblot analysis demonstrates that desmin, tropomyosin, sarcomeric actin, alpha-actinin-2 and slow myosin are detected throughout myogenic differentiation, whereas adult fast myosin heavy chain isoforms, members of the dystrophin-associated complex, and alpha-actinin-3 are not expressed at significant levels until >6 days of differentiation, coincident with the onset of contractile activity. Electrical stimulation of mature myotubes reveals typical and reproducible calcium transients, demonstrating functional maturation with respect to calcium handling proteins. Immunocytochemical staining demonstrates a well-defined sarcomeric register throughout the majority of myotubes (70-80%) and a striated staining pattern is observed for desmin, indicating alignment of the intermediate filament network with the sarcomeric register. We report that culture volume affects the fusion index and rate of sarcomeric development in developing myotubes and propose that a fibroblast feeder layer provides an elastic substratum to support contractile activity and likely secretes growth factors and extracellular matrix proteins that assist myotube development.  相似文献   

20.
The formation of fast and slow myotubes was investigated in embryonic chick muscle during primary and secondary myogenesis by immunocytochemistry for myosin heavy chain and Ca2(+)-ATPase. When antibodies to fast or slow isoforms of these two molecules were used to visualize myotubes in the posterior iliotibialis and iliofibularis muscles, one of the isoforms was observed in all primary and secondary myotubes until very late in development. In the case of myosin, the fast antibody stained virtually all myotubes until after stage 40, when fast myosin expression was lost in the slow myotubes of the iliofibularis. In the case of Ca2(+)-ATPase, the slow antibody also stained all myotubes until after stage 40, when staining was lost in secondary myotubes and in the fast primary myotubes of the posterior iliotibialis and the fast region of the iliofibularis. In contrast, the antibodies against slow muscle myosin heavy chain and fast muscle Ca2(+)-ATPase stained mutually exclusive populations of myotubes at all developmental stages investigated. During primary myogenesis, fast Ca2(+)-ATPase staining was restricted to the primary myotubes of the posterior iliotibialis and the fast region of the iliofibularis, whereas slow myosin heavy chain staining was confined to all of the primary myotubes of the slow region of the iliofibularis. During secondary myogenesis, the fast Ca2(+)-ATPase antibody stained nearly all secondary myotubes, while primaries in the slow region of the iliofibularis remained negative. Thus, in the slow region of the iliofibularis muscle, these two antibodies could be used in combination to distinguish primary and secondary myotubes. EM analysis of staining with the fast Ca2(+)-ATPase antibody confirmed that it recognizes only secondary myotubes in this region. This study establishes that antibodies to slow myosin heavy chain and fast Ca2(+)-ATPase are suitable markers for selective labeling of primary and secondary myotubes in the iliofibularis; these markers are used in the following article to describe and quantify the effects that chronic blockade of neuromuscular activity or denervation has on these populations of myotubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号