首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The 163-kilobase-pair (kb) plasmid pMOL28, which determines inducible resistance to nickel, cobalt, chromate, and mercury salts in its native host Alcaligenes eutrophus CH34, was transferred to a derivative of A. eutrophus H16 and subjected to cloning procedures. After Tn5 transposon mutagenesis, restriction endonuclease analysis, and DNA-DNA hybridization, two DNA fragments, a 9.5-kb KpnI fragment and a 13.5-kb HindIII fragment (HKI), were isolated. HKI contained EK1, the KpnI fragment, as a subfragment flanked on both sides by short regions. Both fragments were ligated into the suicide vector pSUP202, the broad-host-range vector pVK101, and pUC19. Both fragments restored a nickel-sensitive Tn5 mutant to full nickel and cobalt resistance. The hybrid plasmid pVK101::HKI expressed full nickel resistance in all nickel-sensitive derivatives, either pMOL28-deficient or -defective, of the native host CH34. The hybrid plasmid pVK101::HKI also conferred nickel and cobalt resistance to A. eutrophus strains H16 and JMP222, Alcaligenes hydrogenophilus, Pseudomonas putida, and Pseudomonas oleovorans, but to a lower level of resistance. In all transconjugants the metal resistances coded by pVK101::HKI were expressed constitutively rather than inducibly. The hybrid plasmid metal resistance was not expressed in Escherichia coli. DNA sequences responsible for nickel resistance in newly isolated strains showed homology to the cloned pMOL28-encoded nickel and cobalt resistance determinant.  相似文献   

2.
A Nies  D H Nies    S Silver 《Journal of bacteriology》1989,171(9):5065-5070
Resistances to chromate and cobalt were cloned on a 30-kilobase-pair (kb) DNA region from the large Alcaligenes eutrophus plasmid pMOL28 into the broad-host-range mobilizable cosmid vector pVK102. A restriction nuclease map of the 30-kb region was generated. The resistances expressed from the hybrid plasmids after transfer back into A. eutrophus were inducible and conferred the same degree of resistance as the parent plasmid pMOL28. Resistances were expressed in metal-sensitive Alcaligenes strains and related bacteria but not in Escherichia coli. Resistance to chromate was further localized on a 2.6-kb EcoRI fragment, and resistance to cobalt was localized on an adjoining 8.5-kb PstI-EcoRI fragment. When the 2.6-kb EcoRI fragment was expressed in E. coli under the control of a bacteriophage T7 promoter, three polypeptides with molecular masses of 31,500, 21,000, and 14,500 daltons were visible on autoradiograms. The 31,500- and 21,000-dalton polypeptides were membrane bound; the 14,500-dalton polypeptide was soluble.  相似文献   

3.
Spontaneous mutants that were resistant to zinc were isolated from Alcaligenes eutrophus CH34 containing either the native plasmid pMOL28 or a derivative derepressed for its self-transfer, pMOL50. With the cured plasmid-free derivative of CH34, strain AE104, such mutants were not detected. The mutations, which were shown to be located in the plasmid, increased the level of the nickel and cobalt resistance determined by the cnr locus. The chromate resistance closely linked to the cnr locus was not affected by these mutations. In the Znr mutants, the resistance to zinc and nickel was constitutively expressed. Uptake studies showed that the zinc resistance in a Znr mutant resulted from reduced accumulation of zinc ions in comparison with that in the plasmid-free strain. Reduced accumulation of zinc was also observed to a lesser degree in the parental strain induced with nickel, suggesting that zinc interferes with the Ni2+ and Co2+ efflux system. A 12.2-kb EcoRI-XbaI restriction endonuclease fragment containing the cnr locus was cloned from plasmid pMOL28 harboring the mutation and shortened to an 8.5-kb EcoRI-PstI-PstI fragment conferring resistance to zinc, nickel, and cobalt. The 12.2-kb EcoRI-XbaI fragment was also reduced to a 9.7-kb BamHI fragment still encoding weak resistance to nickel and cobalt but not to zinc. Complementation studies demonstrated the recessivity of the cnr mutations with a Znr phenotype. Such mutations thus allow positive selection of mutants affected in the expression of the cnr operon.  相似文献   

4.
Ralstonia metallidurans, formerly known as Alcaligenes eutrophus and thereafter as Ralstonia eutropha, is a beta-Proteobacterium colonizing industrial sediments, soils or wastes with a high content of heavy metals. The type strain CH34 carries two large plasmids (pMOL28 and pMOL30) bearing a variety of genes for metal resistance. A chronological overview describes the progress made in the knowledge of the plasmid-borne metal resistance mechanisms, the genetics of R. metallidurans CH34 and its taxonomy, and the applications of this strain in the fields of environmental remediation and microbial ecology. Recently, the sequence draft of the genome of R. metallidurans has become available. This allowed a comparison of these preliminary data with the published genome data of the plant pathogen Ralstonia solanacearum, which harbors a megaplasmid (of 2.1 Mb) carrying some metal resistance genes that are similar to those found in R. metallidurans CH34. In addition, a first inventory of metal resistance genes and operons across these two organisms could be made. This inventory, which partly relied on the use of proteomic approaches, revealed the presence of numerous loci not only on the large plasmids pMOL28 and pMOL30 but also on the chromosome. It suggests that metal-resistant Ralstonia, through evolution, are particularly well adapted to the harsh environments typically created by extreme anthropogenic situations or biotopes.  相似文献   

5.
The nickel and cobalt resistance plasmid pMOL28 was transferred by conjugation from its natural host Alcaligenes eutrophus CH34 to the susceptible A. eutrophus N9A. Strain N9A and its pMOL28-containing transconjugant M220 were studied in detail. At a concentration of 3.0 mM NiCl2, the wild-type N9A did not grow, while M220 started to grow at its maximum exponential growth rate after a lag of 12 to 24 h. When grown in the presence of subinhibitory concentrations (0.5 mM) of nickel salt, M220 grew actively at 3 mM NiCl2 without a lag, indicating that nickel resistance is an inducible property. Expression of nickel resistance required active growth in the presence of nickel salts at a concentration higher than 0.05 mM. Two mutants of M220 were isolated which expressed nickel resistance constitutively. When the plasmids, pMOL28.1 and pMOL28.2, carried by the mutants were transferred to strains H16 and CH34, the transconjugants expressed constitutive nickel resistance. This indicates that the mutation is plasmid located. Both mutants expressed constitutive resistance to nickel and cobalt. Physiological studies revealed the following differences between strain N9A and its pMOL28.1-harboring mutant derivatives. (i) The uptake of 63NiCl2 occurred more rapidly in the susceptible strain and reached a 30- to 60-fold-higher amount that in the pMOL28.1-harboring mutant; (ii) in intact cells of the susceptible strain N9A, the cytoplasmic hydrogenase was inhibited by 1 to 5 nM NiCl2, whereas 10 mM Ni2+ was needed to inhibit the hydrogenase of mutant cells; (iii) the minimal concentration of nickel chloride for the derepressed synthesis of cytoplasmic hydrogenase was lower in strain N9A (1 to 3 microM) than in the constitutive mutant (8 to 10 microM).  相似文献   

6.
Electroporation was used as a tool to explore the genetics of the heavy-metal-resistant strain Alcaligenes eutrophus CH34. A 12.9-kb A. eutrophus-Escherichia coli shuttle vector, pMOL850, was constructed to optimize electroporation conditions. This vector is derived from the E. coli plasmid pSUP202 and contains the replication region of the A. eutrophus megaplasmid pMOL28. Electroporation was used to transform A. eutrophus CH34 derivatives with megaplasmids (sizes up to 240 kb), and transformants were selected for resistance to heavy metals. Electroporation was also performed with endonuclease-digested genomic DNA. Transformation of markers affecting lysine biosynthesis (lysA194) and biosynthesis of the siderophore alcaligin E were observed. Transfer of the nonselected markers pheB332 and aro-333, linked to lysA194, confirmed the intervention of homologous recombination. However, during transformation of ale::Tn5-Tc, illegitimate recombination and transposition were also observed as an alternative for the inheritance of the Tn5-Tc markers.  相似文献   

7.
8.
From pMOL28, one of the two heavy metal resistance plasmids of Alcaligenes eutrophus strain CH34, we cloned an EcoRI-PstI fragment into plasmid pVDZ'2. This hybrid plasmid conferred inducible nickel and cobalt resistance (cnr) in two distinct plasmid-free A. eutrophus hosts, strains AE104 and H16. Resistances were not expressed in Escherichia coli. The nucleotide sequence of the 8.5-kb EcoRI-PstI fragment (8,528 bp) revealed seven open reading frames; two of these, cnrB and cnrA, were assigned with respect to size and location to polypeptides expressed in E. coli under the control of the bacteriophage T7 promoter. The genes cnrC (44 kDa), cnrB (40 kDa), and cnrA (115.5 kDa) are probably structural genes; the gene loci cnrH (11.6 kDa), cnrR (tentatively assigned to open reading frame 1 [ORF]; 15.5 kDa), and cnrY (tentatively assigned to ORF0ab; ORF0a, 11.0 kDa; ORF0b, 10.3 kDa) are probably involved in the regulation of expression. ORF0ab and ORF1 exhibit a codon usage that is not typical for A. eutrophus. The 8.5-kb EcoRI-PstI fragment was mapped by Tn5 transposon insertion mutagenesis. Among 72 insertion mutants, the majority were nickel sensitive. The mutations located upstream of cnrC resulted in various phenotypic changes: (i) each mutation in one of the gene loci cnrYRH caused constitutivity, (ii) a mutation in cnrH resulted in different expression of cobalt and nickel resistance in the hosts H16 and AE104, and (iii) mutations in cnrY resulted in two- to fivefold-increased nickel resistance in both hosts. These genes are considered to be involved in the regulation of cnr. Comparison of cnr of pMOL28 with czc of pMOL30, the other large plasmid of CH34, revealed that the structural genes are arranged in the same order and determine proteins of similar molecular weights. The largest protein CnrA shares 46% amino acid similarity with CzcA (the largest protein of the czc operon). The other putative gene products, CnrB and CnrC, share 28 and 30% similarity, respectively, with the corresponding proteins of czc.  相似文献   

9.
A new insertion sequence (IS), designated IS1086, was isolated from Alcaligenes eutrophus CH34 by being trapped in plasmid pJV240, which contains the Bacillus subtilis sacB and sacR genes. The 1,106-bp IS1086 element contains partially matched (22 of 28 bp) terminal-inverted repeats and a long open reading frame. Hybridization data suggest the presence of one copy of IS1086 in the strain CH34 heavy-metal resistance plasmid pMOL28 and at least two copies in its chromosome. Analysis of the IS1086 nucleotide sequence revealed striking homology with two other IS elements, IS30 and IS4351, suggesting that they are three close members in a family of phylogenetically related insertion sequences. One open reading frame of the Spiroplasma citri phage SpV1-R8A2 B was also found to be related to this IS family but to a lesser extent. Comparison of the G+C contents of IS30 and IS1086 revealed that they conform to their respective hosts (46 versus 50% for IS30 and Escherichia coli and 64.5% for IS1086 and A. eutrophus). The pressure on the AT/GC ratio led to a very different codon usage in these two closely related IS elements. Results suggesting that IS1086 transposition might be activated by some forms of stress are discussed.  相似文献   

10.
11.
Cupriavidus metallidurans CH34 has gained increasing interest as a model organism for heavy metal detoxification and for biotechnological purposes. Resistance of this bacterium to transition metal cations is predominantly based on metal resistance determinants that contain genes for RND (resistance, nodulation, and cell division protein family) proteins. These are part of transenvelope protein complexes, which seem to detoxify the periplasm by export of toxic metal cations from the periplasm to the outside. Strain CH34 contains 12 predicted RND proteins belonging to a protein family of heavy metal exporters. Together with many efflux systems that detoxify the cytoplasm, regulators and possible metal-binding proteins, RND proteins mediate an efficient defense against transition metal cations. To shed some light into the origin of genes encoding these proteins, the genomes of C. metallidurans CH34 and six related proteobacteria were investigated for occurrence of orthologous and paralogous proteins involved in metal resistance. Strain CH34 was not much different from the other six bacteria when the total content of transport proteins was compared but CH34 had significantly more putative transition metal transport systems than the other bacteria. The genes for these systems are located on its chromosome 2 but especially on plasmids pMOL28 and pMOL30. Cobalt–nickel and chromate resistance determinants located on plasmid pMOL28 evolved by gene duplication and horizontal gene transfer events, leading to a better adaptation of strain CH34 to serpentine-like soils. The czc cobalt–zinc–cadmium resistance determinant, located on plasmid pMOL30 in addition copper, lead and mercury resistance determinants, arose by duplication of a czcICAB core determinant on chromosome 2, plus addition of the czcN gene upstream and the genes czcD, czcRS, czcE downstream of czcICBA. C. metallidurans apparently evolved metal resistance by horizontal acquisition and by duplication of genes for transition metal efflux, mostly on the two plasmids, and decreased the number of uptake systems for those metals. This paper is dedicated to Dr. Max Mergeay for a long time of cooperation, constructive competition and friendship.  相似文献   

12.
The effect of nickel salt on growth of the nickel-resistant wild type strain Alcaligenes eutrophus CH34, which harbours two plasmids, and on its partially or totally cured derivatives as well as of the wild type strain H16 was studied. Plasmid pMOL28-mediated nickel resistance turned out to be an inducible property. Full resistance is induced during growth in the presence of 0.03–3.0 mM NiCl2. Induction requires growth. While plasmid-free cells accumulate nickel at a high rate, the pMOL28-harbouring-induced cells accumulate only negligibly small amounts of nickel. It is concluded that pMOL28 mediates a protective mechanism preventing the cells to accumulate nickel ions intracellularly at toxic concentrations.  相似文献   

13.
Mutants and mobilizing plasmids were developed as genetic tools in Alcaligenes eutrophus CH34. In order to map the chromosome, spontaneous and ethyl methane sulphonate (EMS)-induced mutants (mostly auxotrophs) were isolated. Another source of mutants was provided by the phenomenon of temperature-induced mortality and mutagenesis that is observed at 37° C and is characteristic of many metallotolerant strains of A. eutrophus. Plasmid pULB113 (RP4::miniMu) was used to map the available mutations. Twenty-five loci were ordered in a circular map. pMOL50, a rearranged derivative of plasmid pMOL28, which was obtained in a survivor at 37° C and displayed chromosome mobilizing activity (Cma+), was also used to mobilize chromosomal markers: resulting linkages were stronger than with pULB113, allowing confirmation of the circularity of the A. eutrophus CH34 chromosome with a small number of crosses.  相似文献   

14.
Mutants and mobilizing plasmids were developed as genetic tools in Alcaligenes eutrophus CH34. In order to map the chromosome, spontaneous and ethyl methane sulphonate (EMS)-induced mutants (mostly auxotrophs) were isolated. Another source of mutants was provided by the phenomenon of temperature-induced mortality and mutagenesis that is observed at 37° C and is characteristic of many metallotolerant strains of A. eutrophus. Plasmid pULB113 (RP4::miniMu) was used to map the available mutations. Twenty-five loci were ordered in a circular map. pMOL50, a rearranged derivative of plasmid pMOL28, which was obtained in a survivor at 37° C and displayed chromosome mobilizing activity (Cma+), was also used to mobilize chromosomal markers: resulting linkages were stronger than with pULB113, allowing confirmation of the circularity of the A. eutrophus CH34 chromosome with a small number of crosses.  相似文献   

15.
Alcaligenes eutrophus strain CH34, which was isolated as a bacterium resistant to cobalt, zinc, and cadmium ions, shares with A. eutrophus strain H16 the ability to grow lithoautotrophically on molecular hydrogen, to form a cytoplasmic NAD-reducing and a membrane-bound hydrogenase, and most metabolic attributes; however, it does not grow on fructose. Strain CH34 contains two plasmids, pMOL28 (163 kilobases) specifying nickel, mercury, and cobalt resistance and pMOL30 (238 kilobases) specifying zinc, cadmium, mercury, and cobalt resistance. The plasmids are self-transmissible in homologous matings, but at low frequencies. The transfer frequency was strongly increased with IncP1 plasmids RP4 and pUZ8 as helper plasmids. The phenotypes of the wild type, cured strains, and transconjugants are characterized by the following MICs (Micromolar) in strains with the indicated phenotypes: Nic+, 2.5; Nic-, 0.6; Cob+A, 5.0; Cob+B, 20.0; Cob-, less than 0.07; Zin+, 12.0; Zin-, 0.6; Cad+, 2.5; and Cad-, 0.6. Plasmid-free cells of strain CH34 are still able to grow lithoautotrophically and to form both hydrogenases, indicating that the hydrogenase genes are located on the chromosome, in contrast to the Hox structural genes of strain H16, which are located on the megaplasmid pHG1 (450 kilobases).  相似文献   

16.
Cupriavidus metallidurans CH34 is a facultative chemolithotrophic bacterium that possesses two megaplasmids (pMOL28 and pMOL30) that confer resistance to eleven metals. The ability of Cupriavidus metallidurans CH34 to resist silver is described here. Electronic microscopy, energy-dispersive X-ray (EDX) and X-ray diffractometry (DRX) observations revealed that C. metallidurans CH34 strongly associated silver with the outer membrane, under chloride chemical form. Using derivate strains of C. metallidurans CH34, which carried only one or no megaplasmid, we show that this resistance seems to be carried by pMOL30.  相似文献   

17.
D H Nies 《Journal of bacteriology》1992,174(24):8102-8110
The czcR gene, one of the two control genes responsible for induction of resistance to Co2+, Zn2+, and Cd2+ (czc system) in the Alcaligenes eutrophus plasmid pMOL30, was cloned and characterized. The 1,376-bp sequence upstream of the czcCBAD structural genes encodes a 41.4-kDa protein, the czcR gene product, transcribed in the opposite direction of that of the czcCBAD genes. The putative CzcR polypeptide (355 amino acid residues) contains 11 cysteine and 14 histidine residues which might form metal cation-binding sites. A czcC::lacZ reporter gene translational fusion was constructed, inserted into plasmid pMOL30 in A. eutrophus, and expressed under the control of CzcR. Zn2+, Co2+, and Cd2+, as well as Ni2+, Cu2+, Hg2+, and Mn2+ and even Al3+, served as inducers of beta-galactosidase activity. Besides the CzcR protein, the membrane-bound CzcD protein was essential for induction of czc. The CzcR and CzcD proteins display no sequence similarity to two-component regulatory systems of a sensor and a response activator type; however, CzcD has 34% identity with the ZRC-1 protein, which mediates zinc resistance in Saccharomyces cerevisiae (A. Kamizomo, M. Nishizawa, Y. Teranishi, K. Murata, and A. Kimura, Mol. Gen. Genet. 219:161-167, 1989).  相似文献   

18.
19.
Three copper-resistant, gram-negative bacteria were isolated and characterized. Of the three strains, Alcaligenes denitrificans AH tolerated the highest copper concentration (MIC = 4 mM CuSO(4)). All three strains showed various levels of resistance to other metal ions. A. denitrificans AH contains sequences which cross-hybridized with the mer (mercury resistance) determinant of Tn21 and the czc (cobalt, zinc, and cadmium resistance), cnr (cobalt and nickel resistance), and chr (chromate resistance) determinants of A. eutrophus CH34. DNA-DNA hybridization with probes prepared from A. eutrophus CH34 and Tn21 revealed the presence of chr-, cnr-, and mer-like sequences on the 200-kb plasmid pHG27 and of czc, cnr, and mer homologs located on the chromosome. The second strain, classified as Alcaligenes sp. strain PW, carries czc, cnr, and mer homologs on the 240-kb plasmid pHG29-c and a chr determinant on the 290-kb plasmid pHG29-a; a third plasmid, the 260-kb large plasmid pHG29-b, is cryptic. In contrast to the Alcaligenes strains, which were isolated from metal-contaminated water, Pseudomonas paucimobilis CD was isolated from the air. This strain harbors two cryptic plasmids: the 210-kb large plasmid pHG28-a and the 40-kb plasmid pHG28-b. Southern analysis revealed no homology between the metal ion resistance determinants of A. eutrophus CH34 and P. paucimobilis CD.  相似文献   

20.
Two new nickel-resistant strains of Alcaligenes species were selected from a large number (about 400) of strains isolated from ecosystems polluted by heavy metals and were studied on the physiological and molecular level. Alcaligenes xylosoxydans 31A is a heterotrophic bacterium, and Alcaligenes eutrophus KTO2 is an autotrophic aerobic hydrogen-oxidizing bacterium. Both strains carry—among other plasmids—a megaplasmid determining resistance to 20 to 50 mM NiCl2 and 20 mM CoCl2 (when growing in defined Tris-buffered media). Megaplasmids pTOM8, pTOM9 from strain 31A, and pGOE2 from strain KTO2 confer nickel resistance to the same degree to transconjugants of all strains of A. eutrophus tested but were not transferred to Escherichia coli. However, DNA fragments carrying the nickel resistance genes, cloned into broad-hostrange vector pVDZ'2, confer resistance to A. eutrophus derivatives as well as E. coli. The DNA fragments of both bacteria, TBA8, TBA9, and GBA (14.5-kb BamHI fragments), appear to be identical. They share equal size, restriction maps, and strong DNA homology but are largely different from fragment HKI of nickel-cobalt resistance plasmid pMOL28 of A. eutrophus CH34.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号