首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Nanog is required for the maintenance of cellular pluripotency during normal development and in cultured embryonic stem cells. A number of signaling pathways have been implicated in regulating Nanog gene expression in vitro. Using the chick model, we provide in vivo evidence for the involvement of the Activin/TGF-beta signaling pathway in regulating Nanog expression in epiblast cells during gastrulation. Nanog expression in primordial germ cells is not regulated by this pathway, indicating that these two cell types employ different mechanisms for maintaining pluripotency in early development. Furthermore, our data suggest that the bHLH factor E2A plays a role in negatively regulating Nanog expression in vivo. Overall, our data support a direct and positive role of the Smad2/3 mediated TGF-beta signaling pathway in inducing/maintaining Nanog expression.  相似文献   

3.
Follistatin (FS) is one of several secreted proteins that modulate the activity of TGF-beta family members during development. The structural and functional analysis of Drosophila Follistatin (dFS) reveals important differences between dFS and its vertebrate orthologues: it is larger, more positively charged, and proteolytically processed. dFS primarily inhibits signaling of Drosophila Activin (dACT) but can also inhibit other ligands like Decapentaplegic (DPP). In contrast, the presence of dFS enhances signaling of the Activin-like protein Dawdle (DAW), indicating that dFS exhibits a dual function in promoting and inhibiting signaling of TGF-beta ligands. In addition, FS proteins may also function in facilitating ligand diffusion. We find that mutants of daw are rescued in significant numbers by expression of vertebrate FS proteins. Since two PiggyBac insertions in dfs are not lethal, it appears that the function of dFS is non-essential or functionally redundant.  相似文献   

4.
Construction of the brain is one of the most complex developmental challenges. Wnt signals shape all tissues, including the brain, and the tumor suppressor adenomatous polyposis coli (APC) is a key negative regulator of Wnt/Wingless (Wg) signaling. We carried out the first assessment of the role of APC proteins in brain development, simultaneously inactivating both APC1 and APC2 in clones of cells in the Drosophila larval optic lobe. We focused on the medulla, where epithelial neural progenitors shift from symmetric to asymmetric divisions across the lateral-medial axis. Loss of both APCs triggers dramatic defects in optic lobe development. Double mutant cells segregate from wild-type neighbors, while double mutant neurons form tangled axonal knots, suggesting changes in cell adhesion. Strikingly, phenotypes are graded along the anterior-posterior axis. Activation of Wg signaling downstream of APC mimics these phenotypes, a dominant-negative TCF blocks them, and a known Wg target, decapentaplegic, is activated in double mutant clones, strongly suggesting that the phenotypes result from activated Wg signaling. We also explored the roles of classic cadherins in differential adhesion. Finally, we propose a model suggesting that Wg signaling regulates fine scale cell fates along the anterior-posterior axis, in part by creating an adhesion gradient and consider possible alternate explanations for our observations.  相似文献   

5.
Endocytosis of Notch receptor ligands in signaling cells is essential for Notch receptor activation. In Drosophila, the E3 ubiquitin ligase Neuralized (Neur) promotes the endocytosis and signaling activity of the ligand Delta (Dl). In this study, we identify proteins of the Bearded (Brd) family as interactors of Neur. We show that Tom, a prototypic Brd family member, inhibits Neur-dependent Notch signaling. Overexpression of Tom inhibits the endocytosis of Dl and interferes with the interaction of Dl with Neur. Deletion of the Brd gene complex results in ectopic endocytosis of Dl in dorsal cells of stage 5 embryos. This defect in Dl trafficking is associated with ectopic expression of the single-minded gene, a direct Notch target gene that specifies the mesectoderm. We propose that inhibition of Neur by Brd proteins is important for precise spatial regulation of Dl signaling.  相似文献   

6.
Many Drosophila genes have now been identified with substantial sequence similarity to vertebrate protooncogenes and growth factors. Some of these have been isolated directly by cross-hybridization with vertebrate probes and some have been recognized in the sequences of genes cloned because of their intiguing mutant phenotypes. An example of a gene isolated for its interesting development functions but with homology to a vertebrate growth factor is the Drosophila decapentaplegic gene (dpp). An example of a Drosophila gene isolated by virtue of its sequence conservation is the vgr/60A gene. Both dpp and vgr/60A are members of the transforming growth factor-beta family and are most similar to the human bone morphogenetic proteins. The regulation of the dpp gene by several different groups of pattern formation genes including the dorsal/ventral group, the terminal group, the segment polarity genes, and the homeotic genes indicates that many events in embryogenesis require the cell to cell communication mediated by the secreted dpp protein. The temporal and spatial pattern of vgr/60A expression differs from that of dpp indicating that it may be regulated by different pattern information genes. The experimental advantages of the Drosophila system should permit a better understanding of the importance of growth factor homologs in specific developmental events, aid in establishing the functional interactions between these regulatory molecules, and identify new genes that are important for the biological functions of growth factors. It is likely that some of the newly identified genes will have vertebrate homologs and the analysis of these may be helpful in studies on vertebrate development and tumor biology.  相似文献   

7.
Smad signal transducers are required for transforming growth factor-beta-mediated developmental events in many organisms including humans. However, the roles of individual human Smad genes (hSmads) in development are largely unknown. Our hypothesis is that an hSmad performs developmental roles analogous to those of the most similar Drosophila Smad gene (dSmad). We expressed six hSmad and four dSmad transgenes in Drosophila melanogaster using the Gal4/UAS system and compared their phenotypes. Phylogenetically related human and Drosophila Smads induced similar phenotypes supporting the hypothesis. In contrast, two nearly identical hSmads generated distinct phenotypes. When expressed in wing imaginal disks, hSmad2 induced oversize wings while hSmad3 induced cell death. This observation suggests that a very small number of amino acid differences, between Smads in the same species, confer distinct developmental roles. Our observations also suggest new roles for the dSmads, Med and Dad, in dActivin signaling and potential interactions between these family members. Overall, the study demonstrates that transgenic methods in Drosophila can provide new information about non-Drosophila members of developmentally important multigene families.  相似文献   

8.
Despite the known importance of long-chained polyunsaturated fatty acids (LC-PUFA) during development, very little is known about their utilization and biosynthesis during embryogenesis. Combining the advantages of the existence of a complete range of enzymes required for LC-PUFA biosynthesis and the well established developmental biology tools in zebrafish, we examined the expression patterns of three LC-PUFA biosynthesis genes, Elovl2-like elongase (elovl2), Elovl5-like elongase (elovl5) and fatty acyl desaturase (fad) in different zebrafish developmental stages. The presence of all three genes in the brain as early as 24 hours post fertilization (hpf) implies LC-PUFA synthesis activity in the embryonic brain. This expression eventually subsides from 72 hpf onwards, coinciding with the initiation of elovl2 and fad expression in the liver and intestine, 2 organs known to be involved in adult fish LC-PUFA biosynthesis. Collectively, these patterns strongly suggest the necessity for localized production of LC-PUFA in the brain during in early stage embryos prior to the maturation of the liver and intestine. Interestingly, we also showed a specific expression of elovl5 in the proximal convoluted tubule (PCT) of the zebrafish pronephros, suggesting a possible new role for LC-PUFA in kidney development and function.  相似文献   

9.
Ski/Sno and TGF-beta signaling   总被引:4,自引:0,他引:4  
Transforming growth factor-beta is a potent inhibitor of epithelial cell proliferation. Proteins involved in TGF-beta signaling are bona fide tumor suppressors and many tumor cells acquire the ability to escape TGF-beta growth inhibition through the loss of key signaling transducers in the pathway or through the activation of oncogenes. Recent studies indicate that there is a specific connection between the TGF-beta signaling pathway and the Ski/SnoN family of oncoproteins. We summarize evidence that Ski and SnoN directly associate with Smad proteins and block the ability of the Smads to activate expression of many if not all TGF-beta-responsive genes. This appears to cause abrogation of TGF-beta growth inhibition in epithelial cells.  相似文献   

10.
11.
12.
13.
14.
15.
Culi J  Mann RS 《Cell》2003,112(3):343-354
The maturation of cell surface receptors through the secretory pathway often requires chaperones that aid in protein folding and trafficking from one organelle to another. Here we describe boca, an evolutionarily conserved gene in Drosophila melanogaster, which encodes an endoplasmic reticulum protein that is specifically required for the intracellular trafficking of members of the low-density lipoprotein family of receptors (LDLRs). Two LDLRs in flies, Arrow, which is required for Wingless signal transduction, and Yolkless, which is required for yolk protein uptake during oogenesis, both require boca function. Consequently, boca is an essential component of the Wingless pathway but is more generally required for the activities of multiple LDL receptor family members.  相似文献   

16.
Select members of the TGF-beta family of cytokines play key regulatory roles in skeletal development, structure, and turnover. This laboratory has previously reported that TGF-beta treatment of immortalized normal human fetal osteoblast (hFOB) cells results in the rapid induction of the mRNA levels of a TGF-beta inducible early gene (TIEG) followed by changes in cell proliferation and bone matrix protein production. Previous studies have also shown that nonmembers of the TGF-beta superfamily showed little or no induction of TIEG mRNA. This article further addresses the cytokine specificity of this TIEG induction by examining whether activin and select bone morphogenetic proteins, (BMP-2, BMP-4, and BMP-6), which are representative of different subfamilies of this superfamily, also induce the expression of TIEG in hFOB cells. However, TGF-beta remained the most potent of these cytokines, inducing TIEG mRNA steady-state levels at 0.1 ng/ml, with a maximum induction of 24-fold at 2.0 ng/ml. The BMP-2 (16-fold), BMP-4 (4-fold), and activin (1-3-fold) also induced TIEG mRNA levels, but at reduced degrees compared to TGF-beta (24-fold), and only at much higher cytokine concentrations, e.g., 50-100 ng/ml, compared to 2 ng/ml for TGF-beta. BMP-6 showed no effect on TIEG mRNA levels. The TIEG protein levels generally correlated with the mRNA steady-state levels. As with TGF-beta, BMP-2 treatment of hFOB cells was shown by confocal microscopy to induce a rapid translocation of the TIEG protein to the nucleus. In summary, the relative potencies of these TGF-beta family members to induce TIEG expression generally follows the general osteoinductive capacity of these cytokines, with TGF-beta > BMP-2 > BMP-4 > activin > BMP-6.  相似文献   

17.
The antiapoptotic function of the interleukin-7 (IL-7) receptor is related to regulation of three members of the Bcl2 family: synthesis of Bcl2, phosphorylation of Bad, and cytosolic retention of Bax. Here we show that, in an IL-7-dependent murine T-cell line, different regions of the IL-7 receptor initiate the signal transduction pathways that regulate these proteins. Both Box1 and Y449 are required to signal Bcl2 synthesis and Bax cytosolic retention. This suggests a sequential model in which Jak1, which binds to Box1, is first activated and then phosphorylates Y449, leading to Bcl2 and Bax regulation, accounting for approximately 90% of the survival function. Phosphorylation of Bad required Box1 but not Y449, suggesting that Jak1 also initiates an additional signaling cascade that accounts for approximately 10% of the survival function. Stat5 was activated from the Y449 site but only partially accounted for the survival signal. Proliferation required both Y449 and Box1. Thymocyte development in vivo showed that deletion of Y449 eliminated 90% of alphabeta T-cell development and completely eliminated gammadelta T-cell development, whereas deleting Box 1 completely eliminated both alphabeta and gammadelta T-cell development. Thus the IL-7 receptor controls at least two distinct pathways, in addition to Stat5, that are required for cell survival.  相似文献   

18.
19.
How transforming growth factor-beta (TGF-beta) signaling elicits diverse cell responses remains elusive, despite the major molecular components of the pathway being known. We contend that understanding TGF-beta biology requires mathematical models to decipher the quantitative nature of TGF-beta/Smad signaling and to account for its complexity. Here, we review mathematical models of TGF-beta superfamily signaling that predict how robustness is achieved in bone-morphogenetic-protein signaling in the Drosophila embryo, how changes in receptor-trafficking dynamics can be exploited by cancer cells and how the basic mechanisms of TGF-beta/Smad signaling conspire to promote Smad accumulation in the nucleus. These studies demonstrate the power of mathematical modeling for understanding TGF-beta biology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号