首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is of interest to analyze the antioxidant, antimicrobial and cytotoxicity activity of n-hexane extract of Cayratia trifolia L. (C. trifolia). The antimicrobial activity of n-hexane extract of C. trifolia was determined using disc diffusion method against six selected pathogenic microorganisms. The cytotoxicity potential of n-hexane plant extract was also studied against A2780 cell lines by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Results, n-hexane extract of C. trifolia possess significant antioxidant activity with significant IC50 values in radical scavenging assays. In antimicrobial studies, the maximum zone of inhibition was found in the range of 19.0 ± 0.1 to 22.0 ± 0.1 mm. In MTT assay, inhibition of cell growth with minimal IC50 values of 46.25±0.42μg/mL against A2780 cell lines was observed. Thus, n-hexane extract of C. trifolia is a possible antioxidant, antimicrobial and cytotoxicity agent.  相似文献   

2.
The aim of this study was to screen and evaluate the antimicrobial activity of indigenous Jordanian plant extracts, dissolved in dimethylsulfoxide, using the rapid XTT assay and viable count methods. XTT rapid assay was used for the initial screening of antimicrobial activity for the plant extracts. Antimicrobial activity of potentially active plant extracts was further assessed using the "viable plate count" method. Four degrees of antimicrobial activity (high, moderate, weak and inactive) against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa, respectively, were recorded. The plant extracts of Hypericum triquetrifolium, Ballota undulata, Ruta chalepensis, Ononis natrix, Paronychia argentea and Marrubium vulgare had shown promising antimicrobial activity. This study showed that while both XTT and viable count methods are comparable when estimating the overall antimicrobial activity of experimental substances, there is no strong linear correlation between the two methods.  相似文献   

3.
Bauhinia variegata, commonly known as Koiralo is considered as medicinal plant in Nepal and India. The alcoholic extract of this plant was found to have antimicrobial activity against Bacillus subtilis (ATCC 6635) Pseudomonas aeruginosa (ATCC 27853), Salmonella typhi, Shigella dysenteriae, Staphylococcus aureus (ATCC 29213) and Vibrio cholerae. The largest zone of inhibition (18 mm) was found to be exhibited against B. subtilis. For this organism the minimum bactericidal concentration (MBC) of the crude extract was 0.39 mg/ml. The extract was found to be more effective against gram-positive than gram-negative bacteria. The antimicrobial activity of the extract was found to be decreased during purification.  相似文献   

4.
Tropical forests are species-rich reserves for the discovery and development of antimicrobial drugs. The aim of this work is to investigate the in vitro antimicrobial potential of Amazon plants found within the National Institute on Amazon Research's Adolpho Ducke forest reserve, located in Manaus, state of Amazonas, Brazil. 75 methanol, chloroform and water extracts representing 12 plant species were tested for antimicrobial activity towards strains of Mycobacterium smegmatis, Escherichia coli, Streptococcus sanguis, Streptococcus oralis, Staphylococcus aureus and Candida albicans using the gel-diffusion method. Active extracts were further evaluated to establish minimum inhibitory concentrations (MIC) and antimicrobial profiles using bioautography on normal-phase thin-layer chromatography plates. Diclinanona calycina presented extracts with good antimicrobial activity and S. oralis and M. smegmatis were the most sensitive bacteria. D. calycina and Lacmellea gracilis presented extracts with the lowest MIC (48.8 microg/ml). D. calycina methanol and chloroform leaf extracts presented the best overall antimicrobial activity. All test organisms were sensitive to D. calycina branch chloroform extract in the bioautography assay. This is the first evaluation of the biological activity of these plant species and significant in vitro antimicrobial activity was detected in extracts and components from two species, D. calycina and L. gracilis.  相似文献   

5.
Cyclolipopeptides derived from the antimicrobial peptide c(Lys-Lys-Leu-Lys-Lys-Phe-Lys-Lys-Leu-Gln) (BPC194) were prepared on solid-phase and screened against four plant pathogens. The incorporation at Lys5 of fatty acids of 4 to 9 carbon atoms led to active cyclolipopeptides. The influence on the antimicrobial activity of the Lys residue that is derivatized was also evaluated. In general, acylation of Lys1, Lys2 or Lys5 rendered the sequences with the highest activity. Incorporation of a D-amino acid maintained the antimicrobial activity while significantly reduced the hemolysis. Replacement of Phe with a His also yielded cyclolipopeptides with low hemolytic activity. Derivatives exhibiting low phytotoxicity in tobacco leaves were also found. Interestingly, sequences with or without significant activity against phytopathogenic bacteria and fungi, but with differential hemolysis and phytotoxicity were identified. Therefore, this study represents an approach to the development of bioactive peptides with selective activity against microbial, plant and animal cell targets. These selective cyclolipopeptides are candidates useful not only to combat plant pathogens but also to be applied in other fields.  相似文献   

6.
Calophyllum brasiliense (Clusiaceae/Guttiferae) is a native Brazilian medicinal plant traditionally used against several diseases, including infectious pathologies. Crude methanolic extracts (CME) and two fractions, denoted non-polar (soluble in chloroform) and polar (nonsoluble in chloroform), were prepared from different parts of the plant (roots, stems, leaves, flowers and fruits) and studied. The following compounds were isolated and tested against pathogenic bacteria and yeasts by determination of the minimal inhibitory concentration (MIC): brasiliensic acid (1), gallic acid (2), epicatechin (3), protocatechuic acid (4), friedelin (5) and 1,5-dihydroxyxanthone (6). The results indicated that all the parts of the plant exhibited antimicrobial activity against Gram-positive bacteria, which are selectively inhibited by components of C. brasiliense. No activity was observed against Gram-negative bacteria and yeasts tested. Regarding the isolated compounds, substance 4 showed antimicrobial activity against all the tested microorganisms, whereas compound 6 exhibited antimicrobial activity only against Gram-positive bacteria. The results from the current study confirm and justify the popular use of this plant to treat infectious processes.  相似文献   

7.
TolC is the outer-membrane component of several multidrug resistance (MDR) efflux pumps and plays an important role in the survival and virulence of many gram-negative bacterial animal pathogens. We have identified and characterized the outer-membrane protein-encoding gene tolC in the bacterial plant pathogen Erwinia chrysanthemi EC16. The gene was found to encode a 51-kDa protein with 70% identity to its Escherichia coli homologue. The E. chrysanthemi gene was able to functionally complement the E. coli tolC gene with respect to its role in MDR efflux pumps. A tolC mutant of E. chrysanthemi was found to be extremely sensitive to antimicrobial agents, including several plant-derived chemicals. This mutant was unable to grow in planta and its ability to cause plant tissue maceration was severely compromised. The tolC mutant was shown to be defective in the efflux of berberine, a model antimicrobial plant chemical. These results suggest that by conferring resistance to the antimicrobial compounds produced by plants, the E. chrysanthemi tolC plays an important role in the survival and colonization of the pathogen in plant tissue.  相似文献   

8.
Acacia catechu, commonly known as catechu, cachou and black cutch is an important medicinal plant and an economically important forest tree. The methanolic extract of this plant was found to have antimicrobial activities against six species of pathogenic and non-pathogenic microorganisms: Bacillus subtilis, Staphylococcus aureus, Salmonella typhi, Escherichia coli, Pseudomonas aeruginosa and Candida albicans. The maximum zone of inhibition (20 mm) was found to be exhibited against S. aureus. For this organism the minimum bactericidal concentration (MBC) of the crude extract was 1,000 μg/ml. The extract was found to be equally effective against gram positive and gram negative bacteria. The antimicrobial activity of the extract was found to be decreased during purification. The chemical constituents of organic plant extracts were separated by thin layer chromatography (TLC) and the plant extracts were purified by column chromatography and were further identified by Gas chromatography–mass selection (GC–MS) analysis. The composition of A. catechu extract had shown major components of terpene i.e. camphor (76.40%) and phytol (27.56%) along with other terpenes in minor amounts which are related with their high antibacterial and antifungal properties.  相似文献   

9.
The antimicrobial activities of the three diterpene dialdehydes, miogadial, galanal A and galanal B, isolated from flower buds of the myoga (Zingiber mioga Roscoe) plant were investigated with some strains of bacteria, yeasts and molds. Among the three compounds, miogadial exhibited relatively greater antimicrobial activity than the others against Gram-positive bacteria and yeasts. Galanals A and B also behaved as antimicrobial agents against Gram-positive bacteria and yeasts. The content of miogadial in the flower buds was much higher than that in the leaves, whereas galanals A and B were contained at high levels in the leaves and rhizomes.  相似文献   

10.
Piper solmsianum C. DC. var. solmsianum (Piperaceae) is a shrub commonly found in areas with wet tropical soils. Other Piper species have been used in folk medicine as antitumoral and antiseptic agents. We studied the crude methanolic extract, some organic fractions and compounds isolated from this plant for possible antimicrobial activity against Gram-positive and Gram-negative bacteria. The bioautographic assays disclosed three inhibition zones. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were determined showing excellent activity, particularly against the Gram-positive bacteria (Bacillus cereus, Staphylococcus aureus, Staphylococcus saprophyticus and Streptococcus agalactiae). It appears that the antimicrobial activity of Piper solmsianum is related mainly to the presence of conocarpan and eupomatenoid-5 (neolignans). However another, as yet unidentified, active compound could also be extracted from the plant.  相似文献   

11.
An endophytic fungus displaying considerable antimicrobial activity was isolated from stem tissue of an invasive plant species, Ipomoea carnea. The fungus was identified as Quambalaria sp. and confirmed by ITS rDNA sequence analysis. A BLAST search result of the sequence indicated 97 % homology with Quambalaria cyanescens. Crude metabolites of the fungus showed considerable antimicrobial activity against a panel of clinically significant microorganisms. The metabolites showed highest in vitro activity against Shigella dysenteriae followed by Escherichia coli and Candida albicans. Optimum metabolites production required neutral pH and a 15-day incubation period. Bark extracts amended with fungal media demonstrated higher antimicrobial activity. Optimum metabolites activity was recorded in Czapek Dox broth amended with leaf extracts (CDB + LE) of the host plant. The metabolites showed UV λ-max in ethyl acetate at 284.6 nm with an absorbance value of 1.093. Phylogenetic tree generated by the Maximum Parsimony method showed clustering of our isolate with Q. cyanescens with supported bootstrap of 65 %. Species of Quambalaria are pathogens to Eucalyptus and occurrence of this fungus as endophytes support it to be a latent pathogen. Sequence base analysis and RNA secondary structure study also confirmed such a relationship. Secondary structural features like two hinges and a 5’ dangling end were found to be unique to our isolate. These structural features can also be used as potential barcodes for this fungus. The findings indicate that invasive plant species can be a reliable source of novel endophytes with rich antimicrobial metabolites. The study also validates the assumption that endophytes can become parasites and share a close affinity.  相似文献   

12.
Diverse endophytic fungi exist within plant aerial tissues, with a global estimate of up to a million undescribed species. These endophytes constitute a rich bio-resource for exploration to discover new natural products. Here we investigate fungal endophytes associated with a medicinal plant, Nerium oleander L. (Apocynaceae). A total of 42 endophytic fungal strains were isolated from the host plant. Total antioxidant capacity, xanthine oxidase inhibitory activity, antimicrobial activity, and total phenolic content (TPC) were evaluated for 16 representative fungal cultures grown in improved Czapek’s broth and for the host plant. The total antioxidant capacities and phenolic contents of the fungal cultures ranged from 9.59 to 150.79 μmol trolox/100 mL culture, and from 0.52 to 13.95 mg gallic acid/100 mL culture, respectively. The fungal culture of an endophytic strain Chaetomium sp. showed the strongest antioxidant capacity, contained the highest level of phenolics, and to some extent inhibited xanthine oxidase activity with an IC50 value of 109.8 μg/mL. A significant positive correlation was found between antioxidant capacity and TPC in the tested samples. Most of the endophytic fungal cultures tested have a wide range of antimicrobial activities, which were not very strong, but much better than those of the host plant. The major bioactive constituents of the fungal cultures were investigated using LC-ESI-MS and GC-MS, and preliminary identification detected phenolics (e.g. phenolic acids and their derivatives, flavonoids) and volatile and aliphatic compounds. This study shows that the endophytic fungi isolated from N. oleander can be a potential antioxidant resource.  相似文献   

13.
砂生槐是我国西藏高原一种特有植物,是一种极为宝贵的药用植物资源.我们首次从砂生槐种子中获得氯仿、95%乙醇、75%乙醇和水提取物,用琼脂扩散实验测定其抑菌活性和用MTT法测定其对肿瘤细胞的细胞毒效应,表明氯仿提取物和95%乙醇提取物具有广谱的抑菌活性,抑菌活性较强的是氯仿提取物.各种提取物显示出浓度依赖性的细胞毒效应,氯仿、95%乙醇、75%乙醇和水提取物对胃癌SGC-7901细胞系的LC50分别是4.5、1.4、1.9和41.7 mg/mL,抑制胃癌SGC-7901细胞增殖作用较强的成分是砂生槐种子95%乙醇提取物.这一发现为开发砂生槐这一宝贵植物资源的药用价值提供了重要的依据.  相似文献   

14.
15.
Few in vitro screening studies on the biological activities of plant extracts that are intended for oral administration consider the effect of the gastrointestinal system. This study investigated this aspect on extracts of Camellia sinensis (green tea) and Salvia officinalis (sage) using antimicrobial activity as a model for demonstration. Both the crude extracts and their products after exposure to simulated gastric fluid (SGF) as well as simulated intestinal fluid (SIF) were screened for antimicrobial activity. The chromatographic profiles of the crude plant extracts and their SGF as well as SIF products were recorded and compared qualitatively by means of high performance liquid chromatography coupled to mass spectrometry. The effect of epithelial transport on the crude plant extracts was determined by applying them to an in vitro intestinal epithelial model (Caco-2). The crude extracts for both plants exhibited reduced antimicrobial activity after exposure to SGF, while no antimicrobial activity was detected after exposure to SIF. These results suggested chemical modification or degradation of the antimicrobial compounds when exposed to gastrointestinal conditions. This was confirmed by a reduction of the peak areas on the LC–UV–MS chromatograms. From the chromatographic profiles obtained during the transport study, it is evident that some compounds in the crude plant extracts were either not transported across the cell monolayer or they were metabolised during passage through the cells. It can be deduced that the gastrointestinal environment and epithelial transport process can dramatically affect the chromatographic profiles and biological activity of orally ingested natural products.  相似文献   

16.
Up to now an increasing number of antibiotic-resistant bacteria have been reported and thus new natural therapeutic agents are needed in order to eradicate these pathogens. Through the discovery of plants such as Crataegus tanacetifolia (Lam.) Pers that have antimicrobial activity, it will be possible to discover new natural drugs serving as chemotherapeutic agents for the treatment of nosocomial pathogens and take these antibiotic-resistant bacteria under control. The objective of the present study was to determine antimicrobial activity and the activity mechanism of C. tanacetifolia plant extract. The leaves of C. tanacetifolia, which is an endemic plant, were extracted using methanol and tested against 10 bacterial and 4 yeast strains by using a drop method. It was observed that the plant extract had antibacterial effects on Bacillus subtilis, Shigella, Staphylococcus aureus, and Listeria monocytogenes among the microorganisms that were tested. Minimum inhibitory concentration (MIC) results obtained at the end of an incubation of 24 h were found to be > or =6.16 mg ml(-1) for B. subtilis, < 394 mg ml(-1) for Shigella, and > or =3.08 mg ml(-1) for L. monocytogenes and S. aureus and minimum bactericidal concentration (MBC) were found as > or =24.63 mg ml(-1) for B. subtilis, > or =394 mg ml(-1) for Shigella, > or =6.16 mg ml(-1) for L. monocytogenes, and > or =98.5 mg ml(-1) for S. aureus. According to the MBC results, it was found that the plant extract had bactericidal effects and in order to explain the activity mechanism and cell deformation of bacterial strains treated with plant extract, the scanning electron microscopy (SEM) was used. The results of SEM showed that the treated cells appeared shrunken and there was degradation of the cell walls. This study, in which the antibacterial effect of C. tanacetifolia was demonstrated, will be a base for further investigations on advanced purification and effect mechanism of action of its active compounds.  相似文献   

17.
A huge group of natural antimicrobial compounds are active against a large spectrum of bacterial strains causing infectious threat. The present study was conducted to investigate the crude extracts of antimicrobial protein and peptide efficacy from six medicinal plant seeds. Extraction was carried out in Sodium phosphate citrate buffer, and Sodium acetate buffer using different pH. Antimicrobial activities of these plants were determined by the microbiological technique using Agar well diffusion Assay. Extremely strong activity was observed in the seed extracts of Allium ascolinicum extracted in sodium phosphate citrate buffer at pH (5.8) against Proteus vulgaris, Escherichia coli and Staphylococcus aureus with zone of inhibition 17 mm, 17 mm and 15 mm and Rumex vesicarius at pH (7.6), Ammi majus at pH (6.8), Cichorium intybus at pH (7.4) and Cucumis sativus at pH (7.8) also showed better sensitivity against the bacterial strains with zone of inhibition ranges 16–10 mm and some of the strains were found to be resistant. Antibacterial activity pattern of different plant extracts prepared in sodium acetate buffer pH (6.5), among all the plant seed extracts used Foeniculum vulgare had shown good inhibition in all the bacterial strains used, with zone of inhibition ranges 11–12.5 mm, The extracts of C. intybus and C. sativus were found to be effective with zone of inhibition 11–6 mm and some of the strains were found to be resistant. Most of the strains found to have shown better sensitivity compared with the standard antibiotic Chloramphenicol (25 mcg). Our results showed that the plants used for our study are the richest source for antimicrobial proteins and peptides and they may be used for industrial extraction and isolation of antimicrobial compounds which may find a place in medicine industry as constituents of antibiotics.  相似文献   

18.
The epidermal mucus of fish species has been found to contain antimicrobial proteins and peptides, which is of interest in regard to fish immunity. An acidic extract from the epidermal mucus of the Atlantic cod (Gadus morhua) was found to exhibit antimicrobial activity against Bacillus megaterium, Escherichia coli and Candida albicans. This activity varied significantly when salt was added to the antimicrobial assay, and was eliminated by pepsin digestion. No lysozyme activity was detected in the extract. By using weak cationic exchange chromatography together with reversed-phase chromatography, and monitoring the antimicrobial activity, we have isolated four cationic proteins from the mucus extract. Using N-terminal and C-terminal amino acid sequence analysis, together with MS, the antimicrobial proteins were identified as histone H2B (13 565 Da), ribosomal protein L40 (6397 Da), ribosomal protein L36A (12 340 Da) and ribosomal protein L35 (14 215 Da). The broad spectra of antimicrobial activities in the cod mucus and the characterization of four antimicrobial polypeptides suggest that mucus compounds contribute to the innate host defence of cod.  相似文献   

19.
The potential of fungal endophytes to alter or contribute to plant chemistry and biology has been the topic of a great deal of recent interest. For plants that are used medicinally, it has been proposed that endophytes might play an important role in biological activity. With this study, we sought to identify antimicrobial fungal endophytes from the medicinal plant goldenseal (Hydrastis canadensis L., Ranunculaceae), a plant used in traditional medicine to treat infection. A total of 23 fungal cultures were obtained from surface-sterilized samples of H. canadensis roots, leaves and seeds. Eleven secondary metabolites were isolated from these fungal endophytes, five of which had reported antimicrobial activity. Hydrastis canadensis plant material was then analyzed for the presence of fungal metabolites using liquid chromatography coupled to high resolving power mass spectrometry. The antimicrobial compound alternariol monomethyl ether was detected both as a metabolite of the fungal endophyte Alternaria spp. isolated from H. canadensis seeds, and as a component of an extract from the H. canadensis seed material. Notably, fungi of the Alternaria genus were isolated from three separate accessions of H. canadensis plant material collected in a time period spanning 5 years. The concentration of alternariol monomethyl ether (991 mg/kg in dry seed material) was in a similar range to that previously reported for metabolites of ecologically important fungal endophytes. The seed extracts themselves, however, did not possess antimicrobial activity.  相似文献   

20.
根据西伯利亚蓼抑制消减文库(SSH)中获得的硫堇(THI)基因的部分序列,应用RACE技术克隆了具有PolyA的全长cDNA序列。基因全长789bp,5'非翻译区90bp,3'非翻译区276bp,开放阅读框编码140个氨基酸。序列分析表明,该编码蛋白与大多数植物THI蛋白前体高度相似,N端具24个氨基酸的信号肽,中间46个氨基酸为成熟THI部分,C端的70个氨基酸为酸性多肽部分。西伯利亚蓼THI蛋白与丹参等双子叶植物THI蛋白有较高的同源性,具保守的植物THI标签序列C-C-X(5)-R-X(2)-[FY]-X(2)-C。此成熟THI蛋白带正电荷,偏碱性,推定可能具有抗病原微生物活性,为一种新的植物THI蛋白,GenBank登录号为DQ981482。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号