首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
《Fly》2013,7(5):297-302
A century ago, a little fly with red eyes was first used for genetic studies. That insignificant fly called at that time, Drosophila ampelophila, was going to revolutionize biology while becoming the model we know today as Drosophila melanogaster. Since then, its study has never ceased, but the field of interest has somewhat changed over the century. Drosophila meetings are exceptional opportunities to gather biologists of diverse backgrounds to not only learn about the latest improvements in our field of interest, but also to appreciate learning another bit of biology. From this biological melting pot a culture very specific to the fly community has emerged. Thus, besides neurobiology, cell biology and development a diversity of other fields of research exist, and they all have their own place in the cultural and historical dimension of the "Drosophila" model. Several communications from these diverse fields of research were presented at the 8th Japanese Drosophila Research Conference (JDRC8) and they are briefly reported here.  相似文献   

2.
Ying Cheng  Dahua Chen 《遗传学报》2018,45(11):583-592
Served as a model organism over a century, fruit fly has significantly pushed forward the development of global scientific research, including in China. The high similarity in genomic features between fruit fly and human enables this tiny insect to benefit the biomedical studies of human diseases. In the past decades, Chinese biologists have used fruit fly to make numerous achievements on understanding the fundamental questions in many diverse areas of biology. Here, we review some of the recent fruit fly studies in China, and mainly focus on those studies in the fields of stem cell biology, cancer therapy and regeneration medicine, neurological disorders and epigenetics.  相似文献   

3.
Genetic analysis of nociceptive behaviors in the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster has led to the discovery of conserved sensory transduction channels and signaling molecules. These are embedded in neurons and circuits that generate responses to noxious signals. This article reviews the neurons and molecular mechanisms that underlie invertebrate nociception. We begin with the neurobiology of invertebrate nociception, and then focus on molecules with conserved functions in vertebrate nociception and sensory biology.  相似文献   

4.
Looking back over the century long research career of the fruit fly, Drosophila melanogaster has frequently been in the scientific spotlight with respect to fundamental discoveries in biology. The last decade witnessed the increasing importance of the fly as a human disease model but studies on energy homeostasis and lipometabolism remain in their infancy. This perspective, addressing readers largely unfamiliar with the Drosophila model system, aims to highlight the starting points for which the fly could be employed to gain a deeper understanding of lipotoxicity and possibly contribute to strategies for the identification of novel drug targets relevant to type 2 diabetes mellitus and the metabolic syndrome.  相似文献   

5.
Cell adhesion is the fundamental driving force that establishes complex cellular architectures, with the nervous system offering a striking, sophisticated case study. Developing neurons adhere to neighboring neurons, their synaptic partners, and to glial cells. These adhesive interactions are required in a diverse array of contexts, including cell migration, axon guidance and targeting, as well as synapse formation and physiology. Forward and reverse genetic screens in the fruit fly Drosophila have uncovered several adhesion molecules that are required for neural development, and detailed cell biological analyses are beginning to unravel how these factors shape nervous system connectivity. Here we review our current understanding of the most prominent of these adhesion factors and their modes of action.Key words: drosophila, cell adhesion, nervous system, glia, axon, synapse  相似文献   

6.
The 47th Annual Drosophila Research Conference or "Fly Meeting" took place at Houston, Texas, USA from March 29th- April 2nd, 2006, under the aegis of the Genetics Society of America. The Fly Meeting provides an excellent opportunity for fly researchers to present their work and to get a snapshot of recent developments and upcoming trends in their research field. The fruit fly, Drosophila melanogaster is a very versatile model to study growth, patterning, neural development, evolution, systemetics and various other facets of biomedical science. The topics presented in the meeting covered a very broad spectrum of fly research. In this commentary, I have focused mainly on the presentations related to two fields: 1) research in various fields that use the Drosophila eye as a model system, and 2) the community resources available to all fly researchers.  相似文献   

7.
DNA methylation has been discovered in Drosophila only recently. Current evidence indicates that de novo methylation patterns in drosophila are maintained in a different way compared to vertebrates and plants. As the genomic role and determinants of DNA methylation are poorly understood in invertebrates, its link with several factors has been suggested. In this study, we tested for the putative link between DNA methylation patterns in Drosophila melanogaster and radiation or the activity of P transposon. Neither of the links was apparent from the results, however, we obtained some hints on a possible link between DNA methylation pattern and genomic heterogeneity of fly lineages.  相似文献   

8.
The completion of the Drosophila genome sequencing project [Science 287 (2000) 2185] has reconfirmed the fruit fly as a model organism to study human disease. Comparison studies have shown that two thirds of genes implicated in human cancers have counterparts in the fly [Curr. Opin. Genet. Dev. 11 (2001) 274; J. Cell Biol. 150 (2000) F23], including the tumour suppressor, p53. The suitability of the fruit fly to study the function of the tumour suppressor p53 is further exemplified by the lack of p53 family members within the fly genome, i.e., no homologues to p63 and p73 have been identified. Hence, there is no redundancy between family members greatly facilitating the analysis of p53 function. In addition, studying p53 in Drosophila provides an opportunity to learn about the evolution of tumour suppressors. Here, we will discuss what is known about Drosophila p53 in relation to human p53.  相似文献   

9.
《Fly》2013,7(1):74-77
Physiology and behavior have historically been treated as separate subjects in the study of Drosophila. The latter is mentioned mainly in the context of neurobiology, while the former has been considered to take in studies of metabolism, cell biology and anatomy, among others. Of late, the line distinguishing physiology and behavior has become thinner, and this is exceptionally apparent in recent studies of nutrient signaling and of the regulation of feeding. This review represents a brief examination of the nexus between these intersecting fields of research in Drosophila. Other recently published reviews1,2 serve as complements to this one.  相似文献   

10.
High resolution MRI of live Drosophila was performed at 18.8 Tesla, with a field of view less than 5 mm, and administration of manganese or gadolinium-based contrast agents. This study demonstrates the feasibility of MR methods for imaging the fruit fly Drosophila with an NMR spectrometer, at a resolution relevant for undertaking future studies of the Drosophila brain and other organs. The fruit fly has long been a principal model organism for elucidating biology and disease, but without capabilities like those of MRI. This feasibility marks progress toward the development of new in vivo research approaches in Drosophila without the requirement for light transparency or destructive assays.  相似文献   

11.
Genetic screens conducted using Drosophila melanogaster (fruit fly) have made numerous milestone discoveries in the advance of biological sciences. However, the use of biochemical screens aimed at extending the knowledge gained from genetic analysis was explored only recently. Here we describe a method to purify the protein complex that associates with any protein of interest from adult fly heads. This method takes advantage of the Drosophila GAL4/UAS system to express a bait protein fused with a Tandem Affinity Purification (TAP) tag in fly neurons in vivo, and then implements two rounds of purification using a TAP procedure similar to the one originally established in yeast1 to purify the interacting protein complex. At the end of this procedure, a mixture of multiple protein complexes is obtained whose molecular identities can be determined by mass spectrometry. Validation of the candidate proteins will benefit from the resource and ease of performing loss-of-function studies in flies. Similar approaches can be applied to other fly tissues. We believe that the combination of genetic manipulations and this proteomic approach in the fly model system holds tremendous potential for tackling fundamental problems in the field of neurobiology and beyond.  相似文献   

12.
A century on, Campbell's largely forgotten 1905 monograph on the localization of cerebral function has a distinctly contemporary feel. Although his map of cortical fields has been eclipsed by Brodmann's later contribution, Campbell's project went beyond cytoarchitectonic cartography, attempting to integrate clinical, anatomical and physiological evidence to provide a guide to function. A key component of Campbell's integrative, functional anatomical approach was hodology--the pattern of white matter connections between cortical areas--foreshadowing a recently developed functional anatomical technique: diffusion tensor tractography. Here, we revisit Campbell's model of the human visual system using tractography to illustrate prominent white matter connections within the occipital lobe and from occipital to frontal, parietal and temporal regions. Campbell used his integrative approach to support the view that vision consisted of a "visuo-sensory" and a "visuo-psychic" stage, combining hodological, cytoarchitectonic, physiological and clinicopathological evidence to locate the former within the calcarine cortex and the latter within the cortical field surrounding it. Speaking directly to contemporary debates surrounding the neurobiology of conscious vision and providing a framework with which to shape future developments in tractography, Campbell's integrative functional anatomical approach is as relevant today as it was 100 years ago.  相似文献   

13.
The genetics and neurobiology of Drosophila aggression are still poorly understood. A new study using an automated method to analyze one component of male fly aggression has shown that the biogenic amine octopamine plays a role in the modulation of aggressive behavior.  相似文献   

14.

Background

In recent years high throughput methods have led to a massive expansion in the free text literature on molecular biology. Automated text mining has developed as an application technology for formalizing this wealth of published results into structured database entries. However, database curation as a task is still largely done by hand, and although there have been many studies on automated approaches, problems remain in how to classify documents into top-level categories based on the type of organism being investigated. Here we present a comparative analysis of state of the art supervised models that are used to classify both abstracts and full text articles for three model organisms.

Results

Ablation experiments were conducted on a large gold standard corpus of 10,000 abstracts and full papers containing data on three model organisms (fly, mouse and yeast). Among the eight learner models tested, the best model achieved an F-score of 97.1% for fly, 88.6% for mouse and 85.5% for yeast using a variety of features that included gene name, organism frequency, MeSH headings and term-species associations. We noted that term-species associations were particularly effective in improving classification performance. The benefit of using full text articles over abstracts was consistently observed across all three organisms.

Conclusions

By comparing various learner algorithms and features we presented an optimized system that automatically detects the major focus organism in full text articles for fly, mouse and yeast. We believe the method will be extensible to other organism types.
  相似文献   

15.
DNA methylation has been discovered in Drosophila only recently. Current evidence indicates that de novo methylation patterns in drosophila are maintained in a different way compared to vertebrates and plants. As the genomic role and determinants of DNA methylation are poorly understood in invertebrates, its link with several factors has been suggested. In this study, we tested for the putative link between DNA methylation patterns in Drosophila melanogaster and radiation or the activity of P transposon. Neither of the links were apparent from the results, however, we obtained some hints on a possible link between DNA methylation pattern and genomic heterogeneity of fly lineages.  相似文献   

16.
《遗传学报》2011,38(1)
Why do some cells not respond to normal control of cell division and become tumorous? Which signals trigger some tumor cells to migrate and colonize other tissues? What genetic factors are responsible for tumorigenesis and cancer development? What environmental factors play a role in cancer formation and progression? In how many ways can our bodies prevent and restrict the growth of cancerous cells?How can we identify and deliver effective drugs to fight cancer? In the fight against cancer,which kills more people than any other disease,these and other questions have long interested researchers from a diverse range of fields.To answer these questions and to fight cancer more effectively,we must increase our understanding of basic cancer biology.Model organisms,including the fruit fly Drosophila melanogaster,have played instrumental roles in our understanding of this devastating disease and the search for effective cures.Drosophila and its highly effective,easy-touse,and ever-expanding genetic tools have contributed toand enriched our knowledge of cancer and tumor formation tremendously.  相似文献   

17.
《FEBS letters》2014,588(8):1403-1410
The past decade has seen significant advances in the field of innexin biology, particularly in the model invertebrate organisms, the nematode Caenorhabditis elegans and the fly Drosophila melanogaster. However, advances in genomics and functional techniques during this same period are ushering in a period of comparative innexin biology. Insects are the most diverse metazoan taxa in terms of species number, as well as in developmental, physiological, and morphological processes. Combined with genomics data, the study of innexins should rapidly advance. In this review, we consider the current state of knowledge regarding innexins in insects, focusing on innexin diversity, both evolutionary and functional. We also consider an unusual set of innexins, known as vinnexins, that have been isolated from mutualistic viruses of some parasitoid wasps. We conclude with a call to study insect innexins from a broader, evolutionary perspective. Knowledge derived from such comparative studies will offer significant insight into developmental and evolutionary physiology, as well as specific functional processes in a taxon that has huge biomedical and ecological impact on humans.  相似文献   

18.
Stochastic growth processes abound in the biology of parasitism, and one mathematical tool that is particularly well suited for describing such phenomena is the Galton-Watson branching process. Introduced more than a century ago to settle a debate over the rate of disappearance of surnames in the British peerage, branching processes are applied today in fields as diverse as quantum physics and theoretical computer science. In this article, Dale Taneyhill, Alison Dunn and Melanie Hatcher provide a simple introduction to branching processes, and demonstrate their uses in quantitative parasitology.  相似文献   

19.
Why mark the centenary of the independent discovery of double fertilization by Sergius Nawashin (1898) and Léon Guignard (1899), when biology has progressed so much since the beginning of the XXth century? This discovery still constitutes one of the key references in plant biology: double fertilization is unique to flowering plants among all living organisms. This meeting is also the occasion to associate angiosperm fertilization with developmental biology because of the localization of this event in the flower. Very important and significant progress has been made in elucidating flower development during the last ten years. And today it is possible to understand the diversity of floral structure present in the angiosperms in the context of a underlying mechanism of flower development inherited from their common ancestor. This special issue also allows a survey of these two broad scientific fields, plant reproduction and plant development (flower and embryo). It might also attract new, talented young scientists.  相似文献   

20.
Computational neurobiology was born over half a century ago, and has since been consistently at the forefront of modelling in biology. The recent progress of computing power and distributed computing allows the building of models spanning several scales, from the synapse to the brain. Initially focused on electrical processes, the simulation of neuronal function now encompasses signalling pathways and ion diffusion. The flow of quantitative data generated by the "omics" approaches, alongside the progress of live imaging, allows the development of models that will also include gene regulatory networks, protein movements and cellular remodelling. A systems biology of brain functions and disorders can now be envisioned. As it did for the last half century, neuroscience can drive forward the field of systems biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号