首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The concentration of indoleacetic acid (IAA) in plant tissues is regulated, in part, by its rate of decarboxylation. However, the commonly used in vitro assays for IAA oxidase may not accurately reflect total in vivo decarboxylation rates. A method for measuring in vivo decarboxylation was utilized in which 14CO2 is collected following uptake of [1-14C]IAA by excised tissue sections. After a 30-minute equilibration period, the evolution of 14CO2 was found to follow an approximately linear course with respect to both time and tissue weight.

Decarboxylation rates were measured by this method in petiole sections of the Princeton clone of Coleus blumei Benth. Both the 14CO2 evolved per milligram tissue and the percent of [1-14C]IAA uptake decarboxylated were highest in sections from the youngest petioles tested, and declined in the older tissue. Thin layer chromatography of acetonitrile extracts from the [1-14C]IAA-treated petioles showed a decreasing amount of free IAA and an increase at the retardation factor of indoleacetylaspartate in the older sections. The decreased decarboxylation rates in the older petioles may be attributable to a generally lower metabolic rate and increased protection of the IAA by conjugation.

  相似文献   

2.
The elongation growth of etiolated hypocotyl segments of lupin (Lupinus albus L.) was stimulated by acid pH (4.6 versus 6.5) and by IAA for periods of up to 4 h. After this time, the segments were unable to grow further. In the presence of an optimal IAA concentration (10 μM), acid pH increased the growth rate but had no effect on final growth. With suboptimal IAA (0.1 μM), however, acid pH increased growth in a more than additive way, suggesting a synergistic action between the two factors. This synergism may be explained by the increased IAA uptake and decarboxylation seen at an acid pH. These results reinforce the view that the effects of low pH and IAA on growth are not independent. Vanadate inhibited growth and also IAA uptake and decarboxylation. This inhibitor, therefore, probably inhibits growth not only by decreasing ATPase-mediated acidification but also by decreasing H+-dependent IAA uptake from the apoplasm. This dependence of IAA uptake on ATPase may be mediated by apoplasmic acidification. The amount of IAA decarboxylated increased when the assay conditions favored the growth of segments, indicating that IAA could be destroyed by decarboxylation during the auxin-induced growth.  相似文献   

3.
Peroxidases have been shown to catalyse the degradation of flavonols via 2,3-dihydroxyflavanones to benzoic acids. Incubation of (U-14C)-kaempferol with pure horseradish peroxidase leads to the same reaction products (2,3,4,5,7,4′-pentahydroxyflavanone, p-hydroxybenzoic acid, 14CO2, several polar, water soluble catabolites as given by enzyme preparations from various plant species. Further reactions of flavonols and their glycosides with peroxidases are discussed. All peroxidase isoenzymes of Sinapis alba and Cicer arietinum, obtained by isoelectric focusing, have been shown to degrade flavonols at the same rate. The peroxidase catalysed degradation of polyphenols is discussed in relation to IAA oxidase.  相似文献   

4.
Role of IAA-Oxidase in Abscission Control in Cotton   总被引:7,自引:7,他引:0       下载免费PDF全文
The potential role of indoleactic acid (IAA)-oxidase as an in vivo abscission regulating system in the cotton (Gossypium hirsutum L.) cotyledonary explant was investigated. Phenols (usually monophenols), which are cofactors of cotton IAA-oxidase in vitro, accelerated abscission. Phenols (usually orthodihydroxyphenols), which inhibit cotton IAA-oxidase in vitro, inhibited abscission. Inhibition or stimulation of abscission was accomplished by phenols both with and without IAA. Results were similar when treatments were applied as lanolin pastes to the cut petiole ends or as solutions in which explants were submerged. An abscission accelerating phenol stimulated the decarboxylation of IAA-1-14C by explants and an abscission inhibiting phenol inhibited the decarboxylation of IAA-1-14C.  相似文献   

5.
Indole-3-acetic acid (IAA) labeled in its carboxyl group was metabolized by tobacco leaf discs (Nicotiana tabacum L. cv. Xanthi) into three metabolites, two of which were preliminarily characterized as a peptide and an ester-conjugated IAA. Reapplication of each of the three metabolites (at 10 μM) resulted in a marked stimulation of ethylene production and decarboxylation by the leaf discs. Similarly, these three IAA metab olites could induce elongation of wheat coleoptile segments, which was accompanied by decarboxylation. Both the exogenously supplied esteric and peptidic IAA conjugates were converted by the leaf discs into the same metabolites as free IAA. (1-14C)IAA, applied to an isolated epidermis tissue, was completely metabolized to the esteric and peptidic IAA conjugates. This epidermis tissue showed much higher ethylene production rates and lower decarboxylation rates than did the whole leaf disc. The results suggest that the participation of IAA conjugates in the regulation of various physiological processes depends on the release of free IAA, which is obtained by enzymatic hydrolysis of the conjugates in the tissue. The present study demonstrates biological activity of endogenous IAA conjugates that were synthesized by tobacco leaf discs in response to exogenously supplied IAA.  相似文献   

6.
The effect of ethylene on the uptake, distribution, and metabolism of indoleacetic acid (IAA)-1-14C, IAA-2-14C, and naphthaleneacetic acid (NAA)-1-14C in cotton stem sections (Gossypium hirsutum L., var. Stoneville 213) was studied. Stem sections excised from plants pretreated with ethylene for 15 hours transported significantly less 14C-IAA and 14C-NAA than control sections. Concomitant features of the reduction of 14C-IAA transport were an increase in decarboxylation and a trend toward a reduction in total uptake. With 14C-NAA, however, total uptake was significantly increased, and decarboxylation was unaffected.  相似文献   

7.
The antagonistic effects of some growth regulators [i.e. indol-3-yl-acetic acid (IAA), gibberellic acid (GA3) or kinetin] on stress imposed by sea water on leaf area, pigment and photosynthetic activity in leaves of broad bean plants at different stages of development were investigated. Seed priming with GA3 alleviated either partially or completely the effects induced by the two levels of sea water (10 and 25 %) used on leaf area at all experimental stages. However, IAA, GA3 and kinetin inhibited leaf growth by themselves in almost all measurements. Seed pretreatment with kinetin alleviated the inhibition of pigment production in sea water-irrigated plants. Furthermore, GA3 or kinetin nullified the deleterious effects imposed by irrigation with sea water particularly the high level (25 %) on photosynthetic14CO2 fixation.  相似文献   

8.
Moore TC  Shaner CA 《Plant physiology》1967,42(12):1787-1796
A 2-step, 1-dimensional thin-layer chromatographic procedure for isolating indoleacetic acid (IAA) was developed and utilized in investigations of the biosynthesis of IAA from tryptophan-14C in cell-free extracts of pea (Pisum sativum L.) shoot tips. Identification of a 14C-product as IAA was by (a) co-chromatography of authentic IAA and 14C-product on thin-layer chromatography, and (b) gas-liquid and thin-layer chromatography of authentic and presumptive IAA methyl esters. Dialysis of enzyme extracts and addition of α-ketoglutaric acid and pyridoxal phosphate to reaction mixtures resulted in approximately 2- to 3-fold increases in net yields of IAA over yields in non-dialyzed reaction mixtures which did not contain additives essential to a transaminase reaction of tryptophan. Addition of thiamine pyrophosphate to reaction mixtures further enhanced net biosynthesis of IAA. It is concluded that the formation of indolepyruvic acid and its subsequent decarboxylation probably are sequential reactions in the major pathway of IAA biosynthesis from tryptophan in cell-free extracts of Pisum shoot tips. Comparison of maximum net IAA biosynthesis in extracts of shoot tips of etiolated and light-grown dwarf and tall pea seedlings revealed an order, on a unit protein N basis, of: light-grown tall > light-grown dwarf > etiolated tall etiolated dwarf. It is concluded that the different rates of stem elongation among etiolated and light-grown dwarf and tall pea seedlings are correlated, in general, with differences in net IAA biosynthesis and sensitivity of the tissues to IAA.  相似文献   

9.
Summary The movement of 14C from indole-3-acetic acid (IAA) 14C has been examined in 5 mm root segments of dark-grown seedlings of Helianthus annuus and Brassica oleracea. Contaminants from distilled water, phosphate buffer and the razor-blade cutter increase the decarboxylation of IAA-14C, and cutting of root segments results in an activation of IAA-destroying enzymes at the cut surfaces. When these sources of errors were eliminated the following was shown: a) Both in sunflower and cabbage there is a slight acropetal flux of 14C through the root segments into the agar receiver blocks. The amount of 14C found in the receiver blocks increases with the lenght of the transport period. b) When the root segments, after the transport period, are cut in two equal parts and these assayed separately, the amounts of 14C in the two parts indicate a greater acropetal than basipetal transport. c) The total radioactivity of the receiver blocks is in part due to IAA-14C and in part to 14CO2, the latter being a result of enzymatic destruction of auxin. d) Addition of ferulic acid, an inhibitor of IAA oxidases, to the receiver blocks markedly inhibits the decarboxylation of IAA-14C and thus increases the amount transported. This effect is more pronounced after a 20 hr than after a 6 hr transport period.  相似文献   

10.
The in vivo metabolism of indole-3-acetic acid (IAA) in etiolated hypocotyls of lupin (Lupinus albus L., from Bari, Italy) was investigated by appliying IAA labelled with two radioisotopes ([1-14C]-IAA+[5-3H]-IAA) to the apical end of decapitated seedlings, followed by extraction of the radioactivity in the different regions along the hypocotyl. This method allowed detection of IAA decarboxylation in zones distant from the cut surface and, therefore, containing intact cells. When IAA was added directly in solution to the cut surface, decarboxylation was high especially in those hypocotyl regions where transient accumulations characteristic of the polar transport of IAA occurred. In 10-day-old seedlings such accumulations were observed both in the elongation zone (2nd, 3rd, and 4th cm) and in the non elongating basal zone (8th, 9th and 10th cm). When the IAA, instead, was applied with an agar block deposited on the cut surface, IAA metabolism (decarboxylation as well as conjugation) was increased but almost exclusively in tissues within 10 mm of the cut surface. In both kinds of experiment, the increase in IAA decarboxylation seemed to coincide with a decrease in the transport of IAA, since in the assay without agar the transient accumulations of radioactivity were probably due to a decrease in the transport velocity, while in the assay with agar the transport intensity was much lower than in the assay without agar. These results point to a competitive relationship between IAA metabolism and transport. Consequently, it is suggested that hypocotyl regions that probably use auxin for development processes (e.g., cell elongation and differentiation) may have a more intense IAA metabolism in parallel with their higher IAA concentrations.  相似文献   

11.
Lee TT 《Plant physiology》1980,66(5):1012-1014
Transfer RNA from wheat germ, yeast, and Escherichia coli inhibited the indoleacetic acid (IAA)-induced spectral change in horseradish peroxidase (EC 1.11.1.7) and the decarboxylation of IAA. The inhibition was limited to a delay after which the increase in A427 and the decarboxylation of IAA resumed at the same rate as in the control; the duration of the inhibition was dependent on, but not proportional to, the concentration of tRNA. Alkaline hydrolysis destroyed the inhibitory activity of tRNA. The inhibition was completely abolished when the tRNA was added 30 seconds after IAA. Thus, the tRNA appears not to react with the enzyme intermediates formed during the reaction with IAA. The inhibition by tRNA was rapidly reversed by H2O2 or additional IAA, but not by 2,4-dichlorophenol. Results suggest that the tRNA interferes with the initial reaction between IAA and the heme moiety of free peroxidase, thus preventing the formation of highly active enzyme intermediates essential for IAA degradation.  相似文献   

12.
Exogenously supplied indole-3-acetic acid (IAA) stimulated ethylene production in tobacco (Nicotiana glauca) leaf discs but not in those of sugar beet (Beta vulgaris L.). The stimulatory effect of IAA in tobacco was relatively small during the first 24 hours of incubation but became greater during the next 24 hours. It was found that leaf discs of these two species metabolized [1-14C]IAA quite differently. The rate of decarboxylation in sugar beet discs was much higher than in tobacco. The latter contained much less free IAA but a markedly higher level of IAA conjugates. The major conjugate in the sugar beet extracts was indole-3-acetylaspartic acid, whereas tobacco extracts contained mainly three polar IAA conjugates which were not found in the sugar beet extracts. The accumulation of the unidentified conjugates corresponded with the rise of ethylene production in the tobacco leaf discs. Reapplication of all the extracted IAA conjugates resulted in a great stimulation of ethylene production by tobacco leaf discs which was accompanied by decarboxylation of the IAA conjugates. The results suggest that in tobacco IAA-treated leaf discs the IAA conjugates could stimulate ethylene production by a slow release of free IAA. The inability of the exogenously supplied IAA to stimulate ethylene production in the sugar beet leaf discs was not due to a deficiency of free IAA within the tissue but rather to the lack of responsiveness of this tissue to IAA, probably because of an autoinhibitory mechanism existing in the sugar beet leaf discs.  相似文献   

13.
The hypothesis that boron deficiency is equivalent to a stateof IAA toxicity was explored. Bioassays showed that extractsof substances similar to IAA taken from boron-deficient rootswere significantly more inhibitory to the growth of bean-rootsegments than those from normal roots. Supplied IAA and borondeficiency together restricted root growth to a greater extentthan either deficiency or IAA treatment separately. Roots werefound to recover more quickly from the inhibitory effects ofsupplied IAA if boron was present at high (0.5 ppm) rather thanlow (0.01 ppm) concentrations. Experiments with 14C-labelled IAA showed that deficient rootsabsorbed 14C more slowly than boron-fed roots and there wasalso a lower rate of decarboxylation in the deficient tissue.Consideration of the published evidence showed that many ofthe effects of boron deficiency could follow from an upset inIAA metabolism. It is suggested that boron-deficient tissuesuffers from excess auxin either because the element is necessaryfor some growth process, such as cell wall formation or nucleicacid synthesis, which, when impaired, results in the accumulationof auxin, or because the IAA-oxidation system is affected byphenolic inhibitors which boron normally inactivates by complexformation.  相似文献   

14.
Chromatography of soluble polyphenols of p-fluorophenylalanine-sensitive and -resistant tobacco cells revealed that the 10-fold increased level found in the resistant line was largely due to the accumulation of two unidentified polyphenols. The uptake of Phe-[U-14C] and Tyr-[U-14C] by the resistant line was ca 10 % that by the sensitive line. About 90 % of the phenylalanine-[14C] which was taken up by both cell lines could be accounted for as free phenylalanine in protein, soluble polyphenols or CO2. The fate of Tyr-[14C] was similar to that of phenylalanine except that the incorporation was into insoluble polymeric forms of polyphenols rather than into soluble polyphenols. The resistant line incorporated 9-times more phenylalanine-[14C] into soluble polyphenols than did the sensitive line. The different 14C-aromatic amino acid accumulation and incorporation patterns noted with the two cell lines indicates that there are different active pools. Differential uptake rates by the two cell lines might affect the distribution of the absorbed amino acid among the different pools.  相似文献   

15.
An enzyme extract from apple(Pyrus malus Borb.) seeds which causes the disappearance of free indol-3-ylacetic acid (IAA) requires the presence of oxygen, but is not inhibited by cyanide. Using 1-14C-IAA it has been demonstrated that the IAA transformation is not accompanied by its decarboxylation. Decarboxylating IAA oxidase is absent during the whole period of apple seed cold stratification. Free IAA has not been detected in dormant apple seeds and in seeds stratified at low temperature. It appears during stratification at 25 °C. Ethyl ester of IAA and indol-3-ylacetyl aspartate have been identified in dormant and after-ripened seeds. Exogenous 1-14C IAA taken up by apple embryos is converted into conjugates with aspartate and short peptides containing an aspartate moiety.  相似文献   

16.
Large changes in indole-3-acetic acid (IAA) levels occur during growth of Lemna gibba G-3 in sterile culture. The levels of IAA were measured in plants during a 45 day growth cycle using HPLC and isotope dilution analysis followed by selected ion current monitoring GC-MS analysis with 13C6-IAA as the internal standard. Even though the rate of plant growth remained constant over the entire growth period, IAA levels ranged from a high of 222 to a low of 6 nanograms per gram fresh weight. A Lemna mutant (jsR1) which has a giant phenotype was obtained by regeneration from primary callus cultures. Microspectrofluorometry of diamidino-2-phenylindole stained cells showed that jsR1 has the same amount of DNA per nucleus as the parent line (PL). All jsR1 cell types measured are about 1.5 times larger than in PL. The endogenous levels of IAA per gram fresh weight were higher in jsR1 at several stages of the plant culture cycle as compared to PL. This difference ranged from 1.2 to over 100 times as much. While PL showed only one high peak at day 9, jsR1 had IAA levels of 480 and 680 nanograms per gram fresh weight at days 9 and 45, respectively. Throughout the midculture stage of the growth cycle (20-28 days) both jsR1 and PL had IAA levels in the range of 9 to 14 nanograms per gram fresh weight. In contrast to PL, at day 45, jsR1 had no detectable ester or amide conjugates of IAA. These changes in IAA levels were determined in sterile plant cultures and thus cannot be attributed to bacterial or fungal activity.  相似文献   

17.
The transport and metabolism of indole-3-acetic acid (IAA) was studied in etiolated lupin (Lupinus albus L, cv. Multolupa) hypocotyls, following application of dual-isotope-labelled indole-3-acetic acid, [5-3H]IAA plus [1-14C]IAA, to decapitated plants. To study the radial distribution of the transported and metabolized IAA, experiments were carried out with plants in which the stele was separated from the cortex by a glass capillary. After local application of labelled IAA to the cortex, radioactivity remained immobilized in the cortex, near the application point, showing that polar transport cannot occur in the outer tissues. However, following application of IAA to the stele, radioactivity appeared in the cortex in those hypocotyl sections below the first 1 cm (in which the capillary was inserted), and the basipetal IAA movement was similar to that observed after application of IAA to the complete cut surface. In both assays, longitudinal distribution of 14C and 3H in the stele outside the first 1 cm was positively correlated with that of cortex, indicating that there was a lateral migration of IAA from the transport pathway (in the stele) to the outer tissues and that this migration depended on the amount of IAA in the stele. Both tissues (stele and cortex) exhibited intensive IAA metabolism, decarboxylation being higher in the stele than in the cortex while IAA conjugation was the opposite. Decapitation of the seedlings caused a drastic reduction of hypocotyl growth in the 24 h following decapitation, unless the hypocotyls were treated apically with IAA. Thus, exogenous IAA, polarly transported, was able to substitute the endogenous source of auxin (cotyledons plus meristem) to permit hypocotyl growth. It is proposed that IAA escapes from the transporting cells (in the stele) to the outer tissues in order to reach the growth-responsive cells. The IAA metabolism in the outer tissues could generate the IAA gradient necessary for the maintenance of its lateral flow, and consequently the auxin-induced cell elongation.  相似文献   

18.
The rate of decarboxylation of [1′-14C]indole-3-acetic acid (IAA) infiltrated into tomato (Lycopersicon esculentum Mill.) pericarp discs was much more rapid in green than in breaker and pink tissues. Studies were carried out in order to determine whether the decarboxylative catabolism occurring in the green pericarp discs was associated with ripening or was a consequence of wound-induced peroxidase activity and/or ethylene production. After a 2-h lag, the decarboxylative capacity of the green pericarp discs increased exponentially during a 24-h incubation period. This increase was accompanied by increases in IAA-oxidase activity in cell-free preparations from the intercellular space and cut surface of the discs. Although higher IAA-oxidase activity was detected in extracts from the tissue residue, which comprises mainly intracellular peroxidases, this activity did not increase during the 24-h incubation period. Analysis of the cell-free preparations by isoelectric focusing revealed the major component in all samples was a highly anionic peroxidase (pI=3.5) the levels of which did not increase during incubation. However, the intercellular and cut-surface preparations contained additional anionic and cationic peroxidases which increased in parallel with the increases in both the IAA-oxidase activity of the preparations and the decarboxylative capacity of the green pericarp discs from which they were derived. Treatment of green discs with the ethylene-biosynthesis inhibitors aminooxyacetic acid and CoCl2, inhibited the development of an enhanced capacity to decarboxylate [1′-14C]IAA but the inhibition was not counteracted by exogenous ethylene. Another ethylene-biosynthesis inhibitor, aminoethoxyvinyl glycine, also reduced ethylene levels but did not affect IAA decarboxylation, indicating that the decarboxylation was not a consequence of wound-induced ethylene production. The data obtained thus demonstrate that the enhanced capacity to decarboxylate [1′-14C]IAA that develops in green tomato pericarp discs following excision is not associated with ripening but instead is attributable to a wound-induced increase in anionic and cationic peroxidase activity in the intercellular fluid and at the cut surface of the excised tissues.  相似文献   

19.
Summary In previous research here, 3,5-diiodo-4-hydroxybenzoic acid (DIHB) was shown to promote the elongation of roots of cress (Lepidium sativum) seedlings growing in light, and to inhibit the auxin-induced production of ethylene in this tissue. Although DIHB is a cofactor for the oxidation of indole-3-acetic acid (IAA) by horse-radish peroxidase, it inhibits the decarboxylation of [1-14C]IAA by segments excised from cress roots. The inhibition by DIHB of ethylene production by this tissue does not, therefore, arise from a reduction of IAA levels. These findings are discussed in relation to the effects of DIHB on cress root growth.Abbreviations IAA indole-3-acetic acid - DIHB 3,5-diiodo-4-hydroxybenzoic acid - DCP 2,4-dichlorophenol - 2,4-D 2,4-dichlorophenoxyacetic acid This study forms part of a research project to be submitted by M.L.R. for PhD degree and supported by a grant from Consejo Nacional de Ciencia y Tecnología (México).  相似文献   

20.
The synthesis of H2O-soluble and NaOH-hydrolyzable bound forms of indole-3-acetic acid (IAA) in petiole slices of Nicotiana glauca, Nicotiana langsdorffii, and their tumorous and nontumorous hybrids in the presence of exogenous 14C-IAA was investigated. The synthesis of conjugates progressively increased during 6 hours of incubation in 14C-IAA. The results showed that the rate of synthesis of IAA conjugates was higher in tumorous hybrids supplied exogenous IAA than in the parental species similarly supplied, and the rate of synthesis was higher in amphidiploid tumor plants than in a nontumorous mutant. It was also found that after 10 to 12 hours of incubation, 45% of the IAA taken up by F1 hybrids was in conjugated form whereas only 10 to 25% of the IAA taken up by a nontumorous mutant, N. langsdorffii, or N. glauca was conjugated. An F1 hybrid and an amphidiploid hybrid were found equally efficient in conjugating exogenously supplied IAA. It is postulated on the basis of these and other findings that IAA conjugates play an important role in tumorigenesis in Nicotiana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号