首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A minimum composite method was applied to produce a 15-day interval normalized difference vegetation index (NDVI) dataset from Moderate Resolution Imaging Spectroradiometer (MODIS) daily 250 m reflectance in the red and near-infrared bands. This dataset was applied to determine lake surface areas in Mongolia. A total of 73 lakes greater than 6.25 km2in area were selected, and 28 of these lakes were used to evaluate detection errors. The minimum composite NDVI showed a better detection performance on lake water pixels than did the official MODIS 16-day 250 m NDVI based on a maximum composite method. The overall lake area detection performance based on the 15-day minimum composite NDVI showed -2.5% error relative to the Landsat-derived lake area for the 28 evaluated lakes. The errors increased with increases in the perimeter-to-area ratio but decreased with lake size over 10 km2. The lake area decreased by -9.3% at an annual rate of -53.7 km2 yr-1 during 2000 to 2011 for the 73 lakes. However, considerable spatial variations, such as slight-to-moderate lake area reductions in semi-arid regions and rapid lake area reductions in arid regions, were also detected. This study demonstrated applicability of MODIS 250 m reflectance data for biweekly monitoring of lake area change and diagnosed considerable lake area reduction and its spatial variability in arid and semi-arid regions of Mongolia. Future studies are required for explaining reasons of lake area changes and their spatial variability.  相似文献   

2.
1987-2016年武汉城市湖泊时空演变及其生态服务价值响应   总被引:2,自引:0,他引:2  
谢启姣  刘进华 《生态学报》2020,40(21):7840-7850
城市湖泊面积萎缩、水体污染及流域生态系统功能退化已成为影响城市生存与发展的重要环境问题,明确城市湖泊时空演变特征及其生态系统服务价值响应能强化人类对城市湖泊的保护认知,对维护湖泊及流域生态系统稳定、确保城市湖泊资源可持续利用有着重要意义。选取武汉市现主城区1987、1996、2007和2016年遥感影像,提取湖泊及流域水面信息,探讨武汉城市湖泊时空演变特征及其驱动力;并结合不同时期社会经济、自然环境等实际,进行湖泊水域生态功能服务价值定量估算,探讨其对人类活动及湖泊时空演变的响应规律。主要结果如下:(1)29年间,武汉主城区湖泊水域面积共缩减82 km2,减少了56.9%;越靠近城市建成区,湖泊面积缩减越明显;湖泊面积越小,填占现象越严重;湖泊水系由1987年纵横交错的网络格局发展为2016年相互分散的独立斑块。(2)农业生产和城市建设是造成湖泊面积减少的主要原因,相关保护政策及条例的实施是湖泊面积增加的驱动因素,城市不同发展时期主要的驱动因素各异。(3)1987-2016年,武汉主城区湖泊水域生态系统服务价值由20.95亿元减少到6.78亿元,共减少了67.64%;城市建设与发展需要导致的湖泊水域面积减少和水质恶化是武汉主城区湖泊水域生态功能退化、生态服务价值降低的主要原因。(4)各生态服务功能的估算价值依次为:调蓄洪水 > 净化水质 > 涵养水源 > 提供生物栖息地 > 文化娱乐 > 教育科研 > 调节气候 > 固碳 > 释氧 > 扬尘削减,其中湖泊及流域所特有的调蓄洪水、净化水质及涵养水源等服务功能生态价值巨大,有着其他生态系统不可替代的优势。  相似文献   

3.
自上世纪 60 年代以来, 由于塔里木河上中游水资源的不合理开发利用, 导致河流下游及台特玛湖干涸, 干涸的湖底荒漠化快速发展。生态输水后, 湖泊面积恢复并扩大, 生态环境改善, 荒漠化逆转。根据对研究区域多次实地考察、结合前人研究的成果资料、借助GIS(Geographic Information System)和 RS(Remote Sensing)技术对1990-2018年台特玛湖湖区水域面积变化及其对生态环境的影响进行了分析。结果表明: 生态输水后台特玛湖水域面积明显扩大, 生态环境明显改善。深入分析引起台特玛湖区域生态环境变化的原因并进行敏感性评价, 最终提出科学合理的台特玛湖区域生态环境综合治理方案, 为塔里木河下游环境保护管理决策提供科学依据和技术支撑。  相似文献   

4.
城市湖泊湿地温湿效应——以武汉市为例   总被引:2,自引:0,他引:2  
朱春阳 《生态学报》2015,35(16):5518-5527
选择武汉城市三环内主城区14块湖泊湿地为研究对象,采用小尺度定量测定的方法,研究城市湖泊湿地与温湿效应间的关系。结果表明:(1)城市湿地温度值与面积指数、距离指数呈显著负相关,与景观形状指数呈显著正相关(P0.05);湿度值与面积指数、距离指数、环境类型指数呈显著正相关,与景观形状指数呈显著负相关(P0.05)。其中面积指数的贡献值最大。(2)14块湖泊湿地的降温增湿效应排序为湖泊11—14湖泊6—10湖泊1—5。当湖泊湿地面积为9.2—12.2 hm2时,其降温增湿效应明显;当湖泊湿地面积为308.4hm2左右时,降温效应显著且趋于稳定,湖泊湿地面积为67.6hm2左右时,增湿效应显著且趋于稳定(P0.05)。当湖泊湿地面积达到临界值之后,多斑块离散型(Dispersive)湖泊湿地布局对整个城市环境的降温增湿效应更为显著。  相似文献   

5.
This study is an attempt to quantitatively determine variables of significance for predicting colour in small glacial lakes. Lake colour is an important variable in many lake ecological contexts. The data emanate from two extensive data-sets from Sweden, one of which concerns 1456 lakes, and the other 91 more well-suited lakes. Four year average values of lake colour were compared to catchment and morphometric parameters to help identify the processes which influence variability in colour between lakes. Various hypotheses concerning the factors regulating colour in lakes were formulated and tested. Various statistical tests were used to separate random influences from causal influences. Those “map parameters” with the most significant influence on colour were the theoretical lake water retention time, the percent of rocks, lakes and mires of the drainage area, the ratio between lake area and drainage area and the lake mean depth. Each model parameter provides only a limited explanation (statistical) of the variability in colour between lakes. The predictability of colour by these models can not be markedly improved by accounting for the distribution of the characteristics in the drainage area. The stability of the final model, which gives an r2-value of 0.74, has been tested with positive results. The model allows lake colour to be estimated from knowledge of “geological” characteristics of the lake and its drainage area. The variability between lakes from other factors, such as temperature, precipitation and/or contamination of acidifying substances and nutrients, may then be quantitatively differentiated from the impact of these “geological” factors.  相似文献   

6.
7.
Chrysophycean scales were examined in surface sediments collected from 22 high mountain lakes on the southern slope of the Central Alps, some in Italy and some in Switzerland. The study area receives slightly acidic precipitation and summer lake pH ranges between 5.2 and 8.0. In each lake chrysophycean scale assemblage was dominated by one or two species and its composition was related to lakewater pH. Five short cores were examined in low-alkalinity lakes and evidence of recent lake acidification was found.  相似文献   

8.
巢湖叶绿素a浓度的时空分布及其与氮、磷浓度关系   总被引:5,自引:1,他引:5  
李堃  肖莆 《生物学杂志》2011,28(1):53-56
基于巢湖水体2002~2007年水质监测资料,对叶绿素a浓度的分布、动态及与TN、TP的关系进行了统计分析。巢湖叶绿素a浓度与TN、TP的浓度分布存在明显的空间差异,西半湖叶绿素a浓度全年高于20μg/L,TN为1.94~3.84mg/L,TP为0.20~0.42mg/L;东半湖叶绿素a浓度全年小于5.5μg/L,TN为0.95~1.83mg/L,TP为0.08~0.14mg/L。在东半湖,叶绿素a含量与TN呈不明显的正线性关系,当TP浓度较低时,叶绿素a随TP的增加小幅上升,但是当TP>0.15mg/L时,叶绿素a随TP的增加而明显上升;在西半湖,当水体TN<5.8mg/L或者TP<2.0mg/L时,叶绿素a含量与TN、TP关系为正线性关系,当TN在5.8~9.4mg/L或者TP介于0.2~0.3mg/L间时,叶绿素a含量与TN、TP关系为不显著的负线性关系,当TP浓度>0.3mg/L时,叶绿素a含量与TP关系又为正线性关系。西半湖叶绿素a浓度的变化可能是藻类生物活动与沉积物及水体中营养盐的相互作用结果。在治理巢湖富营养化时,应优先控制西半湖的磷元素。  相似文献   

9.
中国典型湖泊富营养化现状与区域性差异分析   总被引:4,自引:0,他引:4  
为全面科学地综合评估全国富营养化现状, 以全国五大湖区22个典型湖泊为研究对象, 科学评估了其富营养化状态, 分析了全国湖泊富营养化状态的区域性差异, 并探讨了富营养化状态与总磷的定量关系。结果表明, 2010—2011年, 59.1%的调研湖泊处于不同程度的富营养化状态, 其中云贵湖区的富营养化程度最为严重, 蒙新湖区的富营养化呈两极分化状态, 东北山地-平原湖区与东部湖区的湖泊基本均处于中营养-轻度富营养之间, 青藏高原湖区的富营养化程度最低。通过分析日照数、无霜期、气温、水深、海拔、降雨与湖泊营养状态的关系, 揭示了湖泊所处的地理位置是影响湖泊富营养化的基本因素, 具有区域性的分布规律。综合分析结果表明, 全国范围内湖泊中叶绿素a与总磷浓度存在显著相关性, 其中东部平原湖区、东北平原-山地湖区、青藏高原湖区和云贵高原湖区的叶绿素a与总磷浓度符合三次曲线方程, 蒙新湖区的叶绿素a与总磷浓度符合S型曲线方程; 东部平原湖区、东北平原-山地湖区、青藏高原湖区叶绿素浓度随着总磷浓度的增加, 首先出现1个极小值点, 然后出现1个极大值点, 其中3个湖区极小值点对应的总磷浓度分别为: 0.054、0.089和0.072 mg/L, 可为我国对应湖区的湖泊富营养化控制指标提供借鉴。  相似文献   

10.
巢湖西半湖富营养化时空变化趋势与成因分析   总被引:2,自引:0,他引:2  
收集整理了巢湖西半湖6个国控监测点1983~2008年(26年)主要富营养化指标TP、TN、CODmn、Chla的监测数据,计算了6个监测点和西半湖总体26年的综合营养状态指数(∑TLI图示)时空变化情况。并用Spearm an秩相关系数分析检验了西半湖总体和6个监测点26年∑TLI年变化趋势。结果表明:按总平均∑TLI排列,6个监测点富营养化由重到轻依次为:南淝河入湖区(66.64)〉塘西(64.93)〉十五里河入湖区(63.35)〉派河入湖区(61.38)〉新河入湖区(59.51)〉西半湖湖心(59.18);在显著水平0.05和0.01各点∑TLI均有上升趋势,其中十五里河入湖区(R=0.715)、新河入湖区(R=0.824)和西半湖湖心(R=0.811)以及西半湖总体(R=0.512)∑TLI有显著上升趋势,而南淝河入湖区(R=0.192)、塘西(R=0.045)和派河入湖区(R=0.325)上升趋势均不显著。最后在上述研究的基础上,对巢湖西半湖富营养化时空变化的成因进行了简要分析。  相似文献   

11.
Patterns of fish species richness in China's lakes   总被引:1,自引:0,他引:1  
Aim To document the patterns of fish species richness and their possible causes in China's lakes at regional and national scales. Location Lakes across China. Methods We compiled data of fish species richness, limnological characteristics and climatic variables for 109 lakes across five regions of China: East region, Northeast region, Southwest region, North‐Northwest region, and the Tibetan Plateau. Correlation analyses, regression models and a general linear model were used to explore the patterns of fish species richness. Results At the national scale, lake altitude, energy availability (potential evapotranspiration, PET) and lake area explained 79.6% of the total variation of the lake fish species richness. The determinants of the fish richness pattern varied among physiographic regions. Lake area was the strongest predictor of fish species richness in the East and Southwest lakes, accounting for 22.2% and 82.9% of the variation, respectively. Annual PET explained 68.7% of the variation of fish richness in the Northeast lakes. Maximum depth, mineralization degree, and lake area explained 45.5% of the fish variation in the lakes of the North‐Northwest region. On the Tibetan Plateau, lake altitude was the first predictor variable, interpreting 32.2% of the variation. Main conclusions Lake altitude was the most important factor explaining the variation of fish species richness across China's lakes, and accounted for 74.5% of the variation. This may stem in part from the fact that the lakes investigated in our study span the largest altitudinal range anywhere in the world. The effects of the lake altitude on fish species richness can be separated into direct and indirect aspects due to its collinearity with PET. We also found that the fish diversity and its determinants were scale‐dependent. Fish species richness was probably energy‐determined in the cold region, while it was best predicted by the lake area in the relatively geologically old region. The independent variables we used only explained a small fraction of the variations in the lake fish species richness in East China and the Tibetan Plateau, which may be due to the effects of human activity and historical events, respectively.  相似文献   

12.
The subalpine lake, Øvre Heimdalsvatn and its catchment, situated in the mountains of southern Norway, has been the subject of extensive ecosystem studies over the last 50 years covering a wide range of disciplines. The lake is located at 1,088 m a.s.l., has an area of 0.78 km2, a maximum depth of 13 m, and a catchment area of 23.6 km2. It lies more or less on the limit of the birch forest, while the catchment extends up over 1,800 m a.s.l. and into the high alpine zone. The valley is little influenced by human activity and there is no permanent habitation, although the area is used for grazing of domestic livestock during summer. Otherwise the lake and its catchment have always been important for fish and game. The catchment also received major radionuclide fallout from the Chernobyl accident in 1986. The studies include Quaternary history, the development of algorithms for remote sensing of snow conditions, long-term changes in lake ice cover and temperature, the zooplankton and benthic communities, as well as the uptake of Chernobyl radionuclides and mercury by the biota. The consequences of the introduction of the European minnow (Phoxinus phoxinus) on the benthos, zooplankton and the brown trout (Salmo trutta) have also been investigated. The lake and its catchment are widely used in university teaching and thesis work. On account of the substantial knowledge base, Øvre Heimdalsvatn is well suited to long-term monitoring.  相似文献   

13.
1998-2013年新疆艾比湖湖面时空动态变化及其驱动机制   总被引:5,自引:0,他引:5  
采用1998年9月,2002年9月,2007年9月,2011年9月以及2013年9月多期Landsat数据,利用归一化水体指数模型(NDWI)和修正归一化水体指数模型(MNDWI)提取新疆艾比湖水域面积,研究近年来艾比湖湖面的动态变化。以最大似然分类结果作为标准,验证了用NDWI和MNDWI模型提取面积的精度,得出NDWI模型所提取的湖泊面积更符合实际情况,湖泊总面积从1998年的519.26km2减少到2013年的422.73km2,缩小了18.59%,表明目前艾比湖正在退化,从而促使生态环境受到影响。对5期影像中的艾比湖湖面进行了边界的提取和叠加,利用湖泊面积动态模型研究艾比湖湖面积的动态变化,在此基础上分析了影响艾比湖湖面积变化的驱动机制,近年来随着温度的逐渐升高,降水量呈下降的趋势,加上大量的蒸发作用、径流量变化及沙尘日数等综合作用的结果,导致了艾比湖面积的缩小。多年来艾比湖流域内随着人口数量的增加、耕地面积的不断扩张、牲畜的大量增长,导致需水量逐渐增大,因此也是导致湖面面积减少的主要原因之一。开展艾比湖湖面时空动态变化及其驱动机制研究,对于干旱区湖泊来说具有重要的理论和实际意义。  相似文献   

14.
In January 2004, Lake St Lucia, a major part of the Greater St Lucia Wetland Park, was reduced to a fraction of its normal capacity as a result of a severe drought in this region of KwaZulu-Natal, South Africa. After rains in the area, the lake level rose and then fluctuated considerably over the next 42 months. During the first 38 months the mouth of the estuary into the sea was closed. The area entered a second severe period of prolonged drought from mid 2005 through to the spring of 2006. Great white pelican ( Pelecanus onocrotalus Linnaeus, 1758 ) numbers and lake levels were monitored during these 42 months. Pelican numbers were highly variable ranging from 0 to 6000. When lake levels were very low or too high, no pelicans were present. Pelican numbers appeared more indicative of food availability. Implications of these trends to the management of the lake and the conservation of the avifauna are discussed. It is suggested that the great white pelican could be used as an indicator species for the fish dynamics of the lake at medium to low lake levels.  相似文献   

15.
The Lake Chany complex, located in southwestern Siberia, consists of large shallow lakes with an average depth of about 2.2m. The area of the lake fluctuates with the water level, which is closely related to the amount of inflow and evaporation, as the lake complex is endorheic. Using National Oceanic and Atmospheric Administration (NOAA) satellite images of the ice-free periods from 1999 to 2004, we evaluated the seasonal changes in the lake area and surrounding vegetation of the Lake Chany complex. The maximum lake area was observed in early May and decreased until late July. The lake area in August was about 60% of the maximum. Subsequently, the area tended to increase until early October. Compared to ground-truth data, the areas undergoing seasonal fluctuations in the NOAA images corresponded to vast stands of vegetation (Phragmites australis) that were several kilometers wide. These areas seem to be influenced by the inflow of snow-melt water and reed growth. Although interannual differences in the seasonal change in lake area were not great for the whole lake complex, the isolated Yudinskii Pool showed large interannual differences during summer and autumn, suggesting that monitoring this area using NOAA images will be useful for estimating the interannual fluctuations in the southwestern Siberian environment.  相似文献   

16.
Brian V. Timms 《Hydrobiologia》2001,466(1-3):245-254
Lake Wyara receives most of its water from Werewilka Creek, with the area between the two forming Werewilka Inlet which is highly variable in area, and salinity and has high habitat heterogeneity. Over 12 years, 84 species of macroinvertebrate were found in the inlet, but only 34 in the lake. Halobiont and halophilic species were the same in each, but there were many fewer salt-tolerant species in the lake and no freshwater species. The latter were excluded by salinity, but habitat homogeneity due to strong wave action in the lake seems to limit many salt-tolerant species to the inlet. Species richness in large saline lakes in inland Australia is limited by salinity, poor speciation opportunities engendered by their episodic nature, and habitat homogeneity.  相似文献   

17.
The Naajaat lake in the Nuussuaq Basin on Disko and Nuussuaq formed in a geological setting between cratonic crystalline Precambrian rocks overlain by Cretaceous sediments and an actively forming Paleocene volcanic province. The lacustrine deposits, shales as well as hyaloclastite breccias, accumulated in low-lying areas inundated by fresh water and sealed off from marine transgressions by a broad subaerial volcanic terrain. Foreset-bedded hyaloclastite breccias demonstrate water depths of up to 450 m, and the area of the lake was 2500 km2 at its maximum extent. The lake probably existed for less than 0.5 million years. The lake received clay and silt from two provenance areas. Quartz contents of more than 25% in the majority of the sediment samples indicate that large amounts of material were continuously supplied to the lake from the crystalline terrain, whereas the volcanic terrain supplied smectite and mixed-layer minerals to the lake. High kaolinite contents stem from the crystalline or both provenance areas. The shales are characterized by high TOC (up to 11%), lack of pyrite, presence of terrestrial spores and pollen and lack of marine dinoflagellates. The lacustrine sediments rest on an erosional unconformity and its correlative conformity. The unconformity developed during the latest Cretaceous and Early Paleocene. Five stages are recognized in the geological development of the lake. Stages 1–4 are characterized by accumulation of hyaloclastite breccias, rise in lake level, and eventual transgression of subaerial terrains. The rises in lake level were caused by stemming of fluvial run-off behind the aggrading volcanic pile. Stage 5 corresponds to cessation of volcanic activity, a stable lake level, and progradation of clastic sediments, resulting in infilling of the lake. During the lacustrine transgression only sediment in suspension was transported into the central parts of the lake.  相似文献   

18.
方如康 《生态学报》1988,8(4):363-367
淀山湖是上海市的重要水源保护区,过去由于不重视环境保护,造成了富营养化、细菌污染和湖岸冲刷等环境问题。本文根据1982—1985年的调查研究,针对上述问题,提出如下对策:1.控制氮、磷污染,建立湖泊的相对稳定的生态网络系统;2.充分利用土壤-植被生态系统的净化作用;3.利用生态工程护岸;4.巯浚湖底。文章强调人类活动并非都是破坏性的,开发和保护应该是统一的,关键在于是否科学合理。  相似文献   

19.
1995-2015年武汉城市湖泊景观生态安全格局演化   总被引:3,自引:0,他引:3  
陈昆仑  齐漫  王旭  黄耿志 《生态学报》2019,39(5):1725-1734
以1995、2005、2015年3期遥感影像为数据源,通过景观指数和GIS空间分析方法研究武汉中心城区湖泊系统景观格局的演化特征,进而构建湖泊景观生态安全评价模型,以揭示武汉中心城区湖泊系统景观生态安全格局演变规律,并探讨其驱动因素。研究结果表明:(1)近20年来武汉中心城区湖泊系统总面积呈现不断下降趋势,1995-2005年以年均2.4%的速率缩减了28.95 km2,2005-2015年以年均1.8%的速率缩减了17.47 km2。(2)研究期湖泊系统的斑块密度、分维数呈现不断降低趋势,这表明武汉中心城区湖泊破碎化程度在不断降低,湖泊形状趋于简化;而连接度呈现不断增加趋势,湖泊分布集聚趋势不断加强,空间结构趋于紧凑集中。(3)武汉城市湖泊系统总体景观生态安全呈现不断恶化趋势,而次级湖泊水系景观生态安全呈现不同的演化特征。城市建成区的迅速扩展、湖泊由农业生产对象转化为可利用发展用地、房地产事业成为支柱产业是湖泊系统遭填占最主要的动力,直接危害了其景观生态安全,而市民环境意识提高引发湖泊保护倡议和实践,对湖泊景观生态安全产生着积极影响。对湖泊景观生态安全格局演变特征及驱动因素的研究,可以为武汉制定行之有效的生态管理政策和环境治理措施提供重要支撑。  相似文献   

20.
Yang  Handong  Rose  Neil L.  Battarbee  Rick W.  Monteith  Don 《Hydrobiologia》2002,479(1-3):51-61
Analyses of trace metals on multiple sediment cores from the whole-lake basin of Lochnagar, Scotland, show that the depth of departure from stable values towards a rapid increase of the Pb/Ti and Hg concentration profiles provides a good dating feature for the 1860s. In relatively shallow areas of the lake, inferred sediment accumulation rates and the trace metal inventories change with water depth, but in the deep water area, sediment accumulation rates are lower than in most other areas of the lake. Mercury, Pb, Cu and Zn inventories in the sediments accumulated since 1860 in the deepest area are 61%, 64%, 73% and 56% of the corresponding average inventories for the whole sediment area of the lake, respectively. This is mainly due to low sediment accumulation in the deep basin. This finding differs from the expected sediment focusing pattern and makes quantitative interpretations of palaeolimnological features using sediments from the deep area of this lake difficult. The influence of sediment focusing from the north-eastern side, the largest portion of the sediment area of the lake basin, on the deepest area of the lake may be limited, so the sediments in the north-east could be difficult to be transported to the deepest area through sediment focusing. Therefore, the sediments in the deepest area of the lake may not represent the whole-lake basin well for the relative abundances of different types of fossils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号