首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The MM281 strain of Salmonella typhimurium possesses mutations in each of its three Mg2+ transport systems, requires 100 mM Mg2+ for growth, and was used to screen a genomic library from the gram-negative bacterium Providencia stuartii for clones that could restore the ability to grow without Mg2+ supplementation. The clones obtained also conferred sensitivity to Co2+, a phenotype similar to that seen with the S. typhimurium corA Mg2+ transport gene. The sequence of the cloned P. stuartii DNA revealed the presence of a single open reading frame, which was shown to express a protein with a gel molecular mass of 37 kDa in agreement with the deduced size of 34 kDa. Despite a phenotype similar to that of corA and the close phylogenetic relationship between P. stuartii and S. typhimurium, this new putative Mg2+ transporter lacks similarity to the CorA Mg2+ transporter and is instead homologous to MgtE, a newly discovered Mg2+ transport protein from the gram-positive bacterium Bacillus firmus OF4. The distribution of mgtE in bacteria was studied by Southern blot hybridization to PCR amplification products. In contrast to the ubiquity of the corA gene, which encodes the dominant constitutive Mg2+ influx system of bacteria, mgtE has a much more limited phylogenetic distribution.  相似文献   

2.
Mesophilic Aeromonas strains express a single polar flagellum in all culture conditions and produce lateral flagella on solid media. Such hyperflagellated cells demonstrate increased adherence. Nine lateral flagella genes, lafA-U for Aeromonas hydrophila, and four Aeromonas caviae genes, lafA1, lafA2, lafB and fliU, were isolated. Mutant characterization, nucleotide and N-terminal sequencing demonstrated that the A. hydrophila and A. caviae lateral flagellins were almost identical, but were distinct from their polar flagellum counterparts. The aeromonad lateral flagellins exhibited higher molecular masses on SDS-PAGE, and this aberrant migration was thought to result from post-translational modification through glycosylation. Mutation of the Aeromonas lafB, lafS or both A. caviae lateral flagellins caused the loss of lateral flagella and a reduction in adherence and biofilm formation. Mutations in lafA1, lafA2, fliU or lafT resulted in strains that expressed lateral flagella, but had reduced adherence levels. Mutation of the lateral flagella loci did not affect polar flagellum synthesis, but the polarity of the transposon insertions on the A. hydrophila lafTlU genes resulted in non-motility. However, mutations that abolished polar flagellum production also inhibited lateral flagella expression. We conclude that Aeromonas lateral flagella: (i) play a role in adherence and biofilm formation; (ii) are distinct from the polar flagellum; (iii) synthesis is dependent upon the presence of a polar flagellum filament; and (iv) that the motor proteins of the polar and lateral flagella systems appear to be shared.  相似文献   

3.
Aeromonas hydrophila is an opportunistic Gram-negative pathogen that readily attaches to stainless steel to produce a thin biofilm with a complex 3D structure covering 40-50% of the available surface and producing large microcolonies. As A. hydrophila possesses an N-acylhomoserine lactone (AHL)-dependent quorum-sensing system based on the ahyRI locus, the presence of the AhyI protein and C4-HSL within the biofilm phase was first established by Western blot and AHL biosensor analysis respectively. The ability of the A. hydrophila AH-1 N strain to form biofilms in a continuous-flow chamber was compared with isogenic ahyI and ahyR mutants. The ahyI mutant, which cannot produce C4-HSL, failed to form a mature biofilm. In addition, the viable count of biofilm, but not planktonic phase ahyI mutants, was significantly lower that the parent or ahyR mutant. This defect in the differentiation of the ahyI mutant biofilm could be partially restored by the addition of exogenous C4-HSL. A mutation in ahyR increased coverage of the available surface to around 80% with no obvious effect upon biofilm microcolony formation. These data support a role for AHL-dependent quorum sensing in A. hydrophila biofilm development. Exposure of the A. hydrophila AH-1N biofilm to N-(3-oxodecanoyl)homoserine lactone, which inhibits exoprotease production in planktonic cells, however, had no effect on biofilm formation or architecture within the continuous-flow chamber.  相似文献   

4.
The role of quorum sensing in Pseudomonas aeruginosa biofilm formation is unclear. Some researchers have shown that quorum sensing is important for biofilm development, while others have indicated it has little or no role. In this study, the contribution of quorum sensing to biofilm development was found to depend upon the nutritional environment. Depending upon the carbon source, quorum-sensing mutant strains (lasIrhlI and lasRrhlR) either exhibited a pronounced defect early in biofilm formation or formed biofilms identical to the wild-type strain. Quorum sensing was then shown to exert its nutritionally conditional control of biofilm development through regulation of swarming motility. Examination of pilA and fliM mutant strains further supported the role of swarming motility in biofilm formation. These data led to a model proposing that the prevailing nutritional conditions dictate the contributions of quorum sensing and swarming motility at a key juncture early in biofilm development.  相似文献   

5.
Natural isolates of Bacillus subtilis exhibit a robust multicellular behavior known as swarming. A form of motility, swarming is characterized by a rapid, coordinated progression of a bacterial population across a surface. As a collective bacterial process, swarming is often associated with biofilm formation and has been linked to virulence factor expression in pathogenic bacteria. While the swarming phenotype has been well documented for Bacillus species, an understanding of the molecular mechanisms responsible remains largely isolated to gram-negative bacteria. To better understand how swarming is controlled in members of the genus Bacillus, we investigated the effect of a series of gene deletions on swarm motility. Our analysis revealed that a strain deficient for the production of surfactin and extracellular proteolytic activity did not swarm or form biofilm. While it is known that surfactin, a lipoprotein surfactant, functions in swarming motility by reducing surface tension, this is the first report demonstrating that general extracellular protease activity also has an important function. These results not only help to define the factors involved in eliciting swarm migration but support the idea that swarming and biofilm formation may have overlapping control mechanisms.  相似文献   

6.
7.
We previously reported that SadB, a protein of unknown function, is required for an early step in biofilm formation by the opportunistic pathogen Pseudomonas aeruginosa. Here we report that a mutation in sadB also results in increased swarming compared to the wild-type strain. Our data are consistent with a model in which SadB inversely regulates biofilm formation and swarming motility via its ability both to modulate flagellar reversals in a viscosity-dependent fashion and to influence the production of the Pel exopolysaccharide. We also show that SadB is required to properly modulate flagellar reversal rates via chemotaxis cluster IV (CheIV cluster). Mutational analyses of two components of the CheIV cluster, the methyl-accepting chemotaxis protein PilJ and the PilJ demethylase ChpB, support a model wherein this chemotaxis cluster participates in the inverse regulation of biofilm formation and swarming motility. Epistasis analysis indicates that SadB functions upstream of the CheIV cluster. We propose that P. aeruginosa utilizes a SadB-dependent, chemotaxis-like regulatory pathway to inversely regulate two key surface behaviors, biofilm formation and swarming motility.  相似文献   

8.
Health care-associated methicillin-resistant Staphylococcus aureus (HA-MRSA) forms biofilm in vitro that is dependent on the surface-located fibronectin binding proteins A and B (FnBPA, FnBPB). Here we provide new insights into the requirements for FnBP-dependent biofilm formation by MRSA. We show that expression of FnBPs is sustained at high levels throughout the growth cycle in the HA-MRSA strain BH1CC in contrast to laboratory strain SH1000, where expression could be detected only in exponential phase. We found that FnBP-mediated biofilm accumulation required Zn2+, while the removal of Zn2+ had no effect on the ability of FnBPA to mediate bacterial adherence to fibrinogen. We also investigated the role of FnBPA expressed on the surface of S. aureus in promoting biofilm formation and bacterial adhesion to fibrinogen. The minimum part of FnBPA required for ligand binding has so far been defined only with recombinant proteins. Here we found that the N1 subdomain was not required for biofilm formation or for FnBPA to promote bacterial adherence to fibrinogen. Residues at the C terminus of subdomain N3 required for FnBPA to bind to ligands using the “dock, lock, and latch” mechanism were necessary for FnBPA to promote bacterial adherence to fibrinogen. However, these residues were not necessary to form biofilm, allowing us to localize the region of FnBPA required for biofilm accumulation to residues 166 to 498. Thus, FnBPA mediates biofilm formation and bacterial adhesion to fibrinogen using two distinct mechanisms. Finally, we identified a hitherto-unrecognized thrombin cleavage site close to the boundary between subdomains N1 and N2 of FnBPA.  相似文献   

9.
Mg2+ or Mn2+ ions supported both the carboxylase and oxygenase activities of the Rhodospirillum rubrum ribulosebisphosphate carboxylase/oxygenase. For the carboxylase reaction, Mn2+ supported 25% of the maximum activity obtained with Mg2+; oxygenase activity, however, was twice as great with Mn2+ as compared to that with Mg2+. A further differential effect was obtained with Co2+. Co2+ did not support carboxylase activity and, in fact, was a strong inhibitor of Mg2+-dependent carboxylase activity, with a Ki of 10 microM. Co2+ did, however, support oxygenase activity, eliciting about 40% of the Mg2+-dependent oxygenase activity. No other divalent cations supported either activity. With high concentrations of Mg2+ or Mn2+, maximum carboxylase activity was seen after a 5-min activation period; activity decreased to about half of maximum after 30-min activation. A similar time dependence of activation was observed with Mn2+-dependent oxygenase activity but was not seen for Mg2+- or Co2+-dependent activity. Both carboxylase and oxygenase activities were inactivated by the oxidation of Co2+ to Co(III) with the resultant formation of a stable Co(III)--enzyme complex. In the presence of HCO3- (CO2), Co(III) modification was stoichiometric, with two cobalt atoms bound per enzyme dimer. Carbon dioxide was also incorporated into this Co(III)--enzyme complex, but only one molecule per enzyme dimer was bound, indicative of half-the-sites activity. These results thus indicate that there are substantial differences in the metal ion sites of the carboxylase and oxygenase activities of R, rubrum ribulosebisphosphate carboxylase/oxygenase.  相似文献   

10.
白藜芦醇抑制嗜水气单胞菌毒力作用研究   总被引:1,自引:0,他引:1  
为探索白藜芦醇(Resveratrol, Res)在水产动物细菌病防控中的应用价值, 实验以淡水养殖中重要的细菌病原嗜水气单胞菌(Aeromonas hydrophila)为研究对象, 通过设置药物浓度梯度, 检测其对嗜水气单胞菌生长、生物膜形成和溶血活性的抑制作用, 和对毒力及群感调控系统相关基因表达的影响; 同时通过人工感染异育银鲫(Carassius auratus gibelio)试验检测其对鱼体保护作用和对鱼体炎症相关因子基因表达的影响。结果显示: 白藜芦醇对嗜水气单胞菌的最小抑菌浓度(MIC)>1024 μg/mL; 浓度低于64 μg/mL时, 对菌株生长影响不显著; 浓度≥32 μg/mL时, 对病原菌株生物膜形成和溶血活性具有显著抑制作用(P<0.05), 且随剂量增加而增强。荧光定量RT-PCR结果分析发现白藜芦醇能引起嗜水气单胞菌群感调控系统中luxR和luxS基因分别显著上调和下调表达; 外膜蛋白基因omp表达显著下降。人工感染试验发现攻毒前两小时腹腔注射25、50和100 mg/kg白藜芦醇处理组的异育银鲫死亡率显著下降, 鱼体炎症相关的肿瘤坏死因子(TNF-α)和Ⅱ型干扰素(IFN-γ)的mRNA表达量也显著下降。研究表明药用植物大黄、虎杖等所含白藜芦醇成分能有效抑制嗜水气单胞菌毒力, 降低鱼体炎症反应的功效; 腹腔注射25—100 mg/kg白藜芦醇对感染病原菌的异育银鲫有一定保护作用。  相似文献   

11.
This work showed that perturbations of the physiological steady-state level of reactive oxygen species (ROS) affected biofilm genesis and the characteristics of the model bacterium Azotobacter vinelandii. To get a continuous endogenous source of ROS, a strain exposed to chronic sub-lethal oxidative stress was deprived of the gene coding for the antioxidant rhodanese-like protein RhdA (MV474). In this study MV474 biofilm showed (i) a seven-fold higher growth rate, (ii) induction of catalase and alkyl-hydroxyl-peroxidase enzymes, (iii) higher average thicknesses due to increased production of a polysaccharide-rich extracellular matrix and (iv) less susceptibility to hydrogen peroxide than the wild-type strain (UW136). MV474 showed increased swimming and swarming activity and the swarming colonies experienced a higher level of oxidative stress compared to UW136. A continuous exogenous source of ROS increased biofilm formation in UW136. Overall, chronic sub-lethal oxidative events promoted sessile behavior in A. vinelandii.  相似文献   

12.
The CorA Mg2+ transport system of Salmonella typhimurium mediates both influx and efflux of Mg2+. Mutations at the corA locus (83.5 min) confer resistance to Co2+. Using transposon mutagenesis, three additional Co2+ resistance loci (corB, corC, and corD) were found and mapped to 55, 15, and 3min, respectively, on the S. typhimurium chromosome. No mutations corresponding to the reported corB locus at 95 min in Escherichia coli were obtained. The corB, corC, and corD mutations confer levels of Co2+ resistance intermediate between those of the wild-type and corA mutations. Isogenic strains were constructed containing combinations of transposon insertion mutations in each of the three Co(2+)-resistance loci to assess their influence on the CorA Mg2+ transport system. The Vmax and Km values for 28Mg2+ or for 57Co2+ and 63Ni2+ influx, analogues of Mg2+ transported by the CorA system, were changed less than twofold compared with the wild-type values, regardless of the mutation(s) present. However, while efflux of 28Mg2+ through the CorA system was decreased threefold in strains carrying one or two mutant alleles among corB, corC, or corD, efflux was completely abolished in either a corA or a corBCD strain. Thus, although the corA gene product is necessary and sufficient to mediate Mg2+ influx, Mg2+ efflux requires the presence of a wild-type allele of at least one of the corB, corC or corD loci.  相似文献   

13.
Pseudomonas aeruginosa has served as an important organism in the study of biofilm formation; however, we still lack an understanding of the mechanisms by which this microbe transitions to a surface lifestyle. A recent study of the early stages of biofilm formation implicated the control of flagellar reversals and production of an exopolysaccharide (EPS) as factors in the establishment of a stable association with the substratum and swarming motility. Here we present evidence that SadC (PA4332), an inner membrane-localized diguanylate cyclase, plays a role in controlling these cellular functions. Deletion of the sadC gene results in a strain that is defective in biofilm formation and a hyperswarmer, while multicopy expression of this gene promotes sessility. A ΔsadC mutant was additionally found to be deficient in EPS production and display altered reversal behavior while swimming in high-viscosity medium, two behaviors proposed to influence biofilm formation and swarming motility. Epistasis analysis suggests that the sadC gene is part of a genetic pathway that allows for the concomitant regulation of these aspects of P. aeruginosa surface behavior. We propose that SadC and the phosphodiesterase BifA (S. L. Kuchma et al., J. Bacteriol. 189:8165-8178, 2007), via modulating levels of the signaling molecule cyclic-di-GMP, coregulate swarming motility and biofilm formation as P. aeruginosa transitions from a planktonic to a surface-associated lifestyle.  相似文献   

14.
Mesophilic Aeromonas spp. constitutively express a single polar flagellum that helps the bacteria move to more favorable environments and is an important virulence and colonization factor. Certain strains can also produce multiple lateral flagella in semisolid media or over surfaces. We have previously reported 16 genes (flgN to flgL) that constitute region 1 of the Aeromonas hydrophila AH-3 polar flagellum biogenesis gene clusters. We identified 39 new polar flagellum genes distributed in four noncontiguous chromosome regions (regions 2 to 5). Region 2 contained six genes (flaA to maf-1), including a modification accessory factor gene (maf-1) that has not been previously reported and is thought to be involved in glycosylation of polar flagellum filament. Region 3 contained 29 genes (fliE to orf29), most of which are involved in flagellum basal body formation and chemotaxis. Region 4 contained a single gene involved in the motor stator formation (motX), and region 5 contained the three master regulatory genes for the A. hydrophila polar flagella (flrA to flrC). Mutations in the flaH, maf-1, fliM, flhA, fliA, and flrC genes, as well as the double mutant flaA flaB, all caused loss of polar flagella and reduction in adherence and biofilm formation. A defined mutation in the pomB stator gene did not affect polar flagellum motility, in contrast to the motX mutant, which was unable to swim even though it expressed a polar flagellum. Mutations in all of these genes did not affect lateral flagellum synthesis or swarming motility, showing that both A. hydrophila flagellum systems are entirely distinct.  相似文献   

15.
Q Hu  Y Zhu  J Tu  Y Yin  X Wang  X Han  C Ding  B Zhang  S Yu 《PloS one》2012,7(6):e39805
Riemerella anatipestifer causes epizootics of infectious disease in poultry that result in serious economic losses to the duck industry. Our previous studies have shown that some strains of R. anatipestifer can form a biofilm, and this may explain the intriguing persistence of R. anatipestifer on duck farms post infection. In this study we used strain CH3, a strong producer of biofilm, to construct a library of random Tn4351 transposon mutants in order to investigate the genetic basis of biofilm formation by R. anatipestifer on abiotic surfaces. A total of 2,520 mutants were obtained and 39 of them showed a reduction in biofilm formation of 47%-98% using crystal violet staining. Genetic characterization of the mutants led to the identification of 33 genes. Of these, 29 genes are associated with information storage and processing, as well as basic cellular processes and metabolism; the function of the other four genes is currently unknown. In addition, a mutant strain BF19, in which biofilm formation was reduced by 98% following insertion of the Tn4351 transposon at the dihydrodipicolinate synthase (dhdps) gene, was complemented with a shuttle plasmid pCP-dhdps. The complemented mutant strain was restored to give 92.6% of the biofilm formation of the wild-type strain CH3, which indicates that the dhdp gene is associated with biofilm formation. It is inferred that such complementation applies also to other mutant strains. Furthermore, some biological characteristics of biofilm-defective mutants were investigated, indicating that the genes deleted in the mutant strains function in the biofilm formation of R. anatipestifer. Deletion of either gene will stall the biofilm formation at a specific stage thus preventing further biofilm development. In addition, the tested biofilm-defective mutants had different adherence capacity to Vero cells. This study will help us to understand the molecular mechanisms of biofilm development by R. anatipestifer and to study the pathogenesis of R. anatipestifer further.  相似文献   

16.
Enteroaggregative Escherichia coli (EAEC) is distinguished by its characteristic aggregative adherence (AA) pattern to cultured epithelial cells. In this study we investigated the role of type I fimbriae (TIF) in the AA pattern to HEp-2 cells and in biofilm formation. Accentuation of this pattern was observed when the adherence assay was performed in the absence of mannose. This effect was observed in the prototype EAEC strain 042 (O44:H18), O128:H35 strains and for other EAEC serotypes. Antiserum against TIF decreased AA by 70% and 90% for strains 042 and 18 (O128:H35 prototype strain), respectively. A non-polar knockout of fimD, the TIF usher, in strains 042 and 18 resulted in inhibition of the accentuated AA pattern of approximately 80% and 70% respectively, and biofilm formation diminution of 49% for 042::fimD and 76% for 18::fimD. Our data evidence a role for TIF in the AA pattern and in EAEC biofilm formation, demonstrating that these phenotypes are multifactorial.  相似文献   

17.
Serratia marcescens is able to invade, persist, and multiply inside nonphagocytic cells, residing in nonacidic, nondegradative, autophagosome-like vacuoles. In this work, we have examined the physiological role of the PhoP/PhoQ system and its function in the control of critical virulence phenotypes in S. marcescens. We have demonstrated the involvement of the PhoP/PhoQ system in the adaptation of this bacterium to growth on scarce environmental Mg(2+), at acidic pH, and in the presence of polymyxin B. We have also shown that these environmental conditions constitute signals that activate the PhoP/PhoQ system. We have found that the two S. marcescens mgtE orthologs present a conserved PhoP-binding motif and demonstrated that mgtE1 expression is PhoP dependent, reinforcing the importance of PhoP control in magnesium homeostasis. Finally, we have demonstrated that phoP expression is activated intracellularly and that a phoP mutant strain is defective in survival inside epithelial cells. We have shown that the Serratia PhoP/PhoQ system is involved in prevention of the delivery to degradative/acidic compartments.  相似文献   

18.
为了探讨Cpx系统在嗜水气单胞菌生长及毒力等方面发挥的作用, 利用融合PCR和基因同源重组原理, 以自杀质粒pRE112为载体构建缺失57—1879 bp序列的cpxR-A基因簇突变株 Δcpx, 然后比较缺失株和野生株在生长、生物膜形成、应激耐受及毒力等生物学特性方面的差异。普通PCR及荧光定量PCR结果验证了突变株中cpxRA基因簇片段的部分缺失, 表明突变株构建成功; 生物学特性研究结果显示, 突变株在形态、生长、生物膜形成及毒力等方面与野生株没有显著差异, 两者主要在应对高渗透压、SDS (十二烷基磺酸钠)刺激及含有EDTA (乙二胺四乙酸二钠)或多黏菌素B环境表现不同。结果表明Cpx双组分系统在嗜水气单胞菌应对外界刺激方面扮演着重要角色, 但在毒力方面则可能处于次要地位。  相似文献   

19.
Aims:  The aim of this study was to investigate the influence of low iron availability on biofilm formation and adherence to HEp-2 cells of enteroaggregative Escherichia coli (EAEC) strains isolated from diarrhoea cases.
Methods and Results:  The ability of EAEC to form biofilm on a plastic surface was evaluated quantitatively and qualitatively after 3 and 18 h of incubation of strains with or without the iron chelator 2,2-dipyridyl. When submitted to low iron conditions, prototype EAEC 042 strain showed a decrease in biofilm formation. Conversely, an increase in biofilm formation was observed for the clinical EAEC strains cultured in restricted iron condition. Moreover, the reduction of iron concentration inhibited the aggregative adherence to HEp-2 cells of all EAEC strains tested. However, all effects promoted by iron chelation were suppressed by thiourea.
Conclusions:  Low iron availability may modulate biofilm formation and adhesive properties of EAEC strains to HEp-2 cells.
Significance and Impact of the Study:  The data obtained in this study provide useful insights on the influence of low iron conditions possibly associated with redox stress on the pathogenesis of EAEC strains.  相似文献   

20.
The influx of Mg2+ in Salmonella typhimurium LT-2 was studied by both kinetic and genetic techniques. Wild-type cells grown in a high MgSO4 concentration (10 mM) exhibited a Km of 15 microM for Mg2+ influx, with a Vmax of 0.25 nmol of Mg2+ per min per 10(8) cells. The apparent Km decreased to 3 microM, and the Vmax increased 60% after growth in a low MgSO4 concentration (10 microM). Co2+ was a simple competitive inhibitor (Ki = 30 microM) of Mg2+ influx in cells grown in high Mg2+ concentrations but blocked only a portion of the Mg2+ influx in cells grown in low Mg2+ concentrations. Co2+ influx exhibited kinetics similar to those of Mg2+ influx (Km = 30 microM; Vmax = 0.5 nmol of Co2+ per min per 10(8) cells) but was not affected by growth conditions. Co2+ influx was competitively inhibited by both Mg2+ and Mn2+. Mutations affecting Mg2+ uptake were isolated by selection for spontaneous resistance to toxic levels of Co2+. One class of mutants designated corA mapped at 84 min near metE with the following gene order: corA, metE, zie-3161::Tn10, pepQ. A second class designated corB mapped at 98 min near pyrB. Mg2+ influx was decreased in a corA mutant strain (relative to that of the wild type) when grown in high Mg2+ concentrations but was restored when grown in low Mg2+ concentrations. Co2+ transport was completely abolished by the corA mutation under all growth conditions. Recombinant plasmids carrying the corA region from either Escherichia coli K-12 or S. typhimurium complemented the corA mutation in S. typhimurium, restoring uptake of both Co2+ and Mg2+ and conferring sensitivity to Co2+. The S. typhimurium corA gene was localized to a restriction fragment of approximately 1.5 kilobases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号