首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The IgG binding Fcgamma receptors (FcgammaRs) play a key role in defence against pathogens by linking humoral and cell-mediated immune responses. Impaired expression and/or function of FcgammaR may result in the development of pathological autoimmunity. Considering the functions of FcgammaRs, they are potential target molecules for drug design to aim at developing novel anti-inflammatory and immunomodulatory therapies. Previous data mostly obtained by X-ray analysis of ligand-receptor complexes indicate the profound role of the CH2 domain in binding to various FcgammaRs. Our aim was to localize linear segments, which are able to bind and also to modulate the function of the low affinity FcgammaRs, like FcgammaRIIb and FcgammaRIIIa. To this end a set of overlapping octapeptides was prepared corresponding to the 231-298 sequence of IgG1 CH2 domain and tested for binding to human recombinant soluble FcgammaRIIb. Based on these results, a second group of peptides was synthesized and their binding properties to recombinant soluble FcgammaRIIb, as well as to FcgammaRs expressed on the cell surface, was investigated. Here we report that peptide representing the Arg(255)-Ser(267) sequence of IgG1 is implicated in the binding to FcgammaRIIb. In addition we found that peptides corresponding to the Arg(255)-Ser(267), Lys(288)-Ser(298) or Pro(230)-Val(240) when presented in a multimeric form conjugated to branched chain polypeptide in uniformly oriented copies induced the release of TNFalpha, a pro-inflammatory cytokine from MonoMac monocyte cell line. These findings indicate that these conjugated peptides are able to cluster the activating FcgammaRs, and mediate FcgammaR dependent function. Peptide Arg(255)-Ser(267) can also be considered as a lead for further functional studies.  相似文献   

2.
Herpes simplex virus type 1 (HSV-1) glycoprotein gE functions as an immunoglobulin G (IgG) Fc receptor (FcgammaR) that promotes immune evasion. When an IgG antibody binds by the F(ab')(2) domain to an HSV antigen, the Fc domain of some of the same antibody molecules binds to the FcgammaR, which blocks Fc-mediated functions. gE is a type 1 membrane glycoprotein with a large ectodomain that is expressed on the virion envelope and infected-cell surface. Our goal was to determine if immunizing with gE protein fragments could produce antibodies that bind by the F(ab')(2) domain to gE and block the FcgammaR, as measured by competitively inhibiting nonimmune human IgG binding to the FcgammaR. Three gE peptides were constructed in baculovirus spanning almost the entire ectodomain and used to immunize mice and rabbits. Two fragments were highly effective at producing antibodies that bind by the F(ab')(2) domain and block the FcgammaR. The most potent of these two antibodies was far more effective at blocking the FcgammaR than antibodies that are only capable of binding by the Fc domains to the FcgammaR, including anti-gC, anti-gD, and nonimmune IgG. These results suggest that immunizing with gE fragments has potential for preventing immune evasion by blocking activities mediated by the HSV-1 FcgammaR.  相似文献   

3.
《MABS-AUSTIN》2013,5(4):928-942
The neonatal Fc receptor (FcRn) protects immunoglobulin G (IgG) from degradation and increases the serum half-life of IgG, thereby contributing to a higher concentration of IgG in the serum. Because altered FcRn binding may result in a reduced or prolonged half-life of IgG molecules, it is advisable to characterize Fc receptor binding of therapeutic antibody lead candidates prior to the start of pre-clinical and clinical studies.

In this study, we characterized the interactions between FcRn of different species (human, cynomolgus monkey, mouse and rat) and nine IgG molecules from different species and isotypes with common variable heavy (VH) and variable light chain (VL) domains. Binding was analyzed at acidic and neutral pH using surface plasmon resonance (SPR) and biolayer interferometry (BLI).

Furthermore, we transferred the well-accepted, but low throughput SPR-based method for FcRn binding characterization to the BLI-based Octet platform to enable a higher sample throughput allowing the characterization of FcRn binding already during early drug discovery phase. We showed that the BLI-based approach is fit-for-purpose and capable of discriminating between IgG molecules with significant differences in FcRn binding affinities.

Using this high-throughput approach we investigated FcRn binding of 36 IgG molecules that represented all VH/VL region combinations available in the fully human, recombinant antibody library Ylanthia®. Our results clearly showed normal FcRn binding profiles for all samples. Hence, the variations among the framework parts, complementarity-determining region (CDR) 1 and CDR2 of the fragment antigen binding (Fab) domain did not significantly change FcRn binding.  相似文献   

4.
5.
The neonatal Fc receptor (FcRn) protects immunoglobulin G (IgG) from degradation and increases the serum half-life of IgG, thereby contributing to a higher concentration of IgG in the serum. Because altered FcRn binding may result in a reduced or prolonged half-life of IgG molecules, it is advisable to characterize Fc receptor binding of therapeutic antibody lead candidates prior to the start of pre-clinical and clinical studies. In this study, we characterized the interactions between FcRn of different species (human, cynomolgus monkey, mouse and rat) and nine IgG molecules from different species and isotypes with common variable heavy (VH) and variable light chain (VL) domains. Binding was analyzed at acidic and neutral pH using surface plasmon resonance (SPR) and biolayer interferometry (BLI). Furthermore, we transferred the well-accepted, but low throughput SPR-based method for FcRn binding characterization to the BLI-based Octet platform to enable a higher sample throughput allowing the characterization of FcRn binding already during early drug discovery phase. We showed that the BLI-based approach is fit-for-purpose and capable of discriminating between IgG molecules with significant differences in FcRn binding affinities. Using this high-throughput approach we investigated FcRn binding of 36 IgG molecules that represented all VH/VL region combinations available in the fully human, recombinant antibody library Ylanthia®. Our results clearly showed normal FcRn binding profiles for all samples. Hence, the variations among the framework parts, complementarity-determining region (CDR) 1 and CDR2 of the fragment antigen binding (Fab) domain did not significantly change FcRn binding.  相似文献   

6.
Herpes simplex virus type I (HSV-1) virions and HSV-1-infected cells bind to human immunoglobulin G (hIgG) via its Fc region. A complex of two surface glycoproteins encoded by HSV-1, gE and gI, is responsible for Fc binding. We have co-expressed soluble truncated forms of gE and gI in Chinese hamster ovary cells. Soluble gE-gI complexes can be purified from transfected cell supernatants using a purification scheme that is based upon the Fc receptor function of gE-gI. Using gel filtration and analytical ultracentrifugation, we determined that soluble gE-gI is a heterodimer composed of one molecule of gE and one molecule of gI and that gE-gI heterodimers bind hIgG with a 1:1 stoichiometry. Biosensor-based studies of the binding of wild type or mutant IgG proteins to soluble gE-gI indicate that histidine 435 at the CH2-CH3 domain interface of IgG is a critical residue for IgG binding to gE-gI. We observe many similarities between the characteristics of IgG binding by gE-gI and by rheumatoid factors and bacterial Fc receptors such as Staphylococcus aureus protein A. These observations support a model for the origin of some rheumatoid factors, in which they represent anti-idiotypic antibodies directed against antibodies to bacterial and viral Fc receptors.  相似文献   

7.
During virus entry, herpes simplex virus (HSV) glycoprotein D (gD) binds to one of several human cellular receptors. One of these, herpesvirus entry mediator A (HveA), is a member of the tumor necrosis factor receptor (TNFR) superfamily, and its ectodomain contains four characteristic cysteine-rich pseudorepeat (CRP) elements. We previously showed that gD binds the ectodomain of HveA expressed as a truncated, soluble protein [HveA(200t)]. To localize the gD-binding domain of HveA, we expressed three additional soluble forms of HveA consisting of the first CRP [HveA(76t)], the second CRP [HveA(77-120t)], or the first and second CRPs [HveA(120t)]. Biosensor and enzyme-linked immunosorbent assay studies showed that gD bound to HveA(120t) and HveA(200t) with the same affinity. However, gD did not bind to HveA(76t) or HveA(77-120t). Furthermore, HveA(200t) and HveA(120t), but not HveA(76t) or HveA(77-120t), blocked herpes simplex virus (HSV) entry into CHO cells expressing HveA. We also generated six monoclonal antibodies (MAbs) against HveA(200t). MAbs CW1, -2, and -4 bound linear epitopes within the second CRP, while CW7 and -8 bound linear epitopes within the third or fourth CRPs. None of these MAbs blocked the binding of gD to HveA. In contrast, MAb CW3 recognized a discontinuous epitope within the first CRP of HveA, blocked the binding of gD to HveA, and exhibited a limited ability to block virus entry into cells expressing HveA, suggesting that the first domain of HveA contains at least a portion of the gD binding site. The inability of gD to bind HveA(76t) suggests that additional amino acid residues of the gD binding site may reside within the second CRP.  相似文献   

8.
The effect of neomycin, a phosphoinositide-binding aminoglycoside, on herpes simplex virus type 1 (HSV-1) infection of BHK cells was studied. We showed earlier that it specifically inhibits HSV-1 production but not HSV-2 production (Langeland et al., Biochem Biophys. Res. Commun. 141:198-203, 1986). We now show that neomycin had no effect on cellular protein synthesis, as judged by the appearance of 35S-labeled polypeptides separated by polyacrylamide gel electrophoresis. Virus-induced polypeptides, however, were strongly inhibited at neomycin concentrations above 2 mM. Comparison among different aminoglycosides showed a variation in inhibition of HSV-1 production that paralleled the cationic charge of the aminoglycosides. HSV-1 receptor binding at 4 degrees C was completely inhibited by neomycin. At 37 degrees C both receptor binding and internalization, as measured by an indirect assay, appeared to be inhibited by more than 90%. The effect of neomycin on the infection was almost immediate upon the addition of the drug and preceded virus internalization. Possible mechanisms of the neomycin effect are discussed.  相似文献   

9.
A virally encoded, high-affinity Fc receptor (FcR) is found on herpes simplex virus type 1 (HSV-1) particles and infected cells where its binding of non-immune IgG protects cells from host-mediated lysis. Whilst mutation or aglycosylation of the IgG CH2 domain reduced binding to human FcR, the interaction with HSV-1 FcR was not affected. However, the HSV-1 FcR, unlike human FcR, discriminates between human IgG1 allotypes, being sensitive to changes at positions 214 (CH1) and 356/358 (CH3), away from its proposed binding site at the CH2-CH3 interface. The biological consequences are not known but this is the first evidence of a major functional difference between IgG1 allotypes.  相似文献   

10.
11.
The CH2-CH3 interface of the IgG Fc domain contains the binding sites for a number of Fc receptors including Staphylococcal protein A and the neonatal Fc receptor (FcRn). It has recently been proposed that the CH2-CH3 interface also contains the principal binding site for an isoform of the low affinity IgG Fc receptor II (Fc gamma RIIb). The Fc gamma RI and Fc gamma RII binding sites have previously been mapped to the lower hinge and the adjacent surface of the CH2 domain although contributions of the CH2-CH3 interface to binding have been suggested. This study addresses the question whether the CH2-CH3 interface plays a role in the interaction of IgG with Fc gamma RI and Fc gamma RIIa. We demonstrate that recombinant soluble murine Fc gamma RI and human Fc gamma RIIa did not compete with protein A and FcRn for binding to IgG, and that the CH2-CH3 interface therefore appears not to be involved in Fc gamma RI and Fc gamma RIIa binding. The importance of the lower hinge was confirmed by introducing mutations in the proposed binding site (LL234,235AA) which abrogated binding of recombinant soluble Fc gamma RIIa to human IgG1. We conclude that the lower hinge and the adjacent region of the CH2 domain of IgG Fc is critical for the interaction between Fc gamma RIIa and human IgG, whereas contributions of the CH2-CH3 interface appear to be insignificant.  相似文献   

12.
The herpes simplex virus type 1 (HSV-1) origin binding protein (OBP), the product of the UL9 gene, is one of seven HSV-encoded proteins required for viral DNA replication. OBP performs multiple functions characteristic of a DNA replication initiator protein, including origin-specific DNA binding and ATPase and helicase activities, as well as the ability to interact with viral and cellular proteins involved in DNA replication. Replication initiator proteins in other systems, including those of other DNA viruses, are known to be regulated by phosphorylation; however, the role of phosphorylation in OBP function has been difficult to assess due to the low level of OBP expression in HSV-infected cells. Using a metabolic labeling and immunoprecipitation approach, we obtained evidence that OBP is phosphorylated during HSV-1 infection. Kinetic analysis of metabolically labeled cells indicated that the levels of OBP expression and phosphorylation increased at approximately 4 h postinfection. Notably, when expressed from a transfected plasmid, a recombinant baculovirus, or a recombinant adenovirus (AdOBP), OBP was phosphorylated minimally, if at all. In contrast, superinfection of AdOBP-infected cells with an OBP-null mutant virus increased the level of OBP phosphorylation approximately threefold, suggesting that HSV-encoded viral or HSV-induced cellular factors enhance the level of OBP phosphorylation. Using HSV mutants inhibited at sequential stages of the viral life cycle, we demonstrated that this increase in OBP phosphorylation is dependent on early protein synthesis and is independent of viral DNA replication. Based on gel mobility shift assays, phosphorylation does not appear to affect the ability of OBP to bind to the HSV origins.  相似文献   

13.
14.
Herpes simplex virus 1 (HSV-1) glycoprotein E (gE) mediates cell-to-cell spread and functions as an IgG Fc receptor (FcγR) that blocks the Fc domain of antibody targeting the virus or infected cell. Efforts to assess the functions of the HSV-1 FcγR in vivo have been hampered by difficulties in preparing an FcγR-negative strain that is relatively intact for spread. Here we report the FcγR and spread phenotypes of NS-gE264, which is a mutant strain that has four amino acids inserted after gE residue 264. The virus is defective in IgG Fc binding yet causes zosteriform disease in the mouse flank model that is only minimally reduced compared with wild-type and the rescue strains. The presence of zosteriform disease suggests that NS-gE264 spread functions are well maintained. The HSV-1 FcγR binds the Fc domain of human, but not murine IgG; therefore, to assess FcγR functions in vivo, mice were passively immunized with human IgG antibody to HSV. When antibody was inoculated intraperitoneally 20 h prior to infection or shortly after virus reached the dorsal root ganglia, disease severity was significantly reduced in mice infected with NS-gE264, but not in mice infected with wild-type or rescue virus. Studies of C3 knockout mice and natural killer cell-depleted mice demonstrated that the HSV-1 FcγR blocked both IgG Fc-mediated complement activation and antibody-dependent cellular cytotoxicity. Therefore, the HSV-1 FcγR promotes immune evasion from IgG Fc-mediated activities and likely contributes to virulence at times when antibody is present, such as during recurrent infections.  相似文献   

15.
The herpes simplex virus (HSV) ICP47 protein inhibits the MHC class I antigen presentation pathway by inhibiting the transporter associated with antigen presentation (TAP) which translocates peptides across the endoplasmic reticulum membrane. At present, ICP47 is the only inhibitor of TAP. Here, we show that ICP47 produced in bacteria can block human, but not mouse, TAP, and that heat denaturation of ICP47 has no effect on its ability to block TAP. ICP47 inhibited peptide binding to TAP without affecting ATP binding, consistent with previous observations that the peptide binding and ATP binding sites of TAP are distinct. ICP47 bound to TAP with a higher affinity (KD approximately 5 x 10(-8) M) than did peptides, and ICP47 did not dissociate from TAP. ICP47 was not transported by TAP and remained sensitive to proteases added from the cytosolic surface of the membrane. Peptides acted as competitive inhibitors of ICP47 binding to TAP, and this inhibition required a 100- to 1000-fold molar excess of peptide. These results demonstrate that ICP47 binds to a site which includes the peptide binding domain of TAP and remains bound to this site in a stable fashion.  相似文献   

16.
G Dubin  I Frank    H M Friedman 《Journal of virology》1990,64(6):2725-2731
Two herpes simplex virus type 1 glycoproteins, gE and gI, have been shown to form a complex that binds the Fc domain of immunoglobulin G (IgG). We demonstrate that this complex is required for the binding of monomeric nonimmune IgG but that gE alone is sufficient for binding polymeric IgG in the form of IgG complexes. Evidence that gE but not gI is required for binding IgG complexes is as follows. IgG complexes bound equally well to cells infected with gI-negative mutants or with wild-type virus, whereas cells infected with gE-negative mutants did not bind IgG complexes. Furthermore, L cells transiently transfected to express gE bound IgG complexes. Additional evidence that gI fails to augment binding of IgG complexes comes from experiments in which the gI gene was inducibly expressed in cells after infection. Inducible gI expression failed to increase binding of IgG complexes to infected cells in comparison with cells not capable of inducible gI expression. In contrast, expression of both gE and gI was necessary for binding of monomeric IgG, as demonstrated by flow cytometry using cells infected with gE-negative and gI-negative mutants. These observations demonstrate that herpes simplex virus type 1 Fc receptors (FcRs) have different binding characteristics for monomeric IgG and IgG complexes. Furthermore, it appears that gE is the FcR for IgG complexes and that gE and gI form the FcR for monomeric IgG.  相似文献   

17.
18.
We describe a novel function of the Fc receptor of herpes simplex virus type 1 (HSV-1), its ability to participate in antibody bipolar bridging. This refers to the binding of a single immunoglobulin G (IgG) molecule by its Fab end to its antigenic target and by its Fc end to an Fc receptor (FcR). We demonstrate that various immune IgG antibodies, including polyclonal rabbit antibodies to HSV-1 glycoproteins gC1 and gD1 and monoclonal human antibody to gD1 blocked rosetting of IgG-coated erythrocytes at IgG concentrations 100- to 2,000-fold lower than required for rosette inhibition with nonimmune IgG. Steric hindrance did not account for the observed differences between immune and nonimmune IgG since rabbit anti-gC1 F(ab')2 fragments did not block rosetting. Murine anti-gC1 or anti-gD1 IgG, a species of IgG incapable of binding by its Fc end to the HSV-1 FcR, also did not block rosetting. When cells were infected with a gC1-deficient mutant, anti-gC1 IgG inhibited rosetting to the same extent as nonimmune IgG. This indicates that binding by the Fab end of the IgG molecule was required for maximum inhibition of rosetting. Bipolar bridging was shown to occur even when small concentrations of immune IgG were present in physiologic concentrations of nonimmune IgG. The biologic relevance of antibody bipolar bridging was evaluated by comparing antibody- and complement-dependent virus neutralization of an FcR-negative mutant and its parent HSV-1 strain. By engaging the Fc end of antiviral IgG, the parent strain resisted neutralization mediated by the classical complement pathway. These observations provide insight into the role of the HSV-1 FcR in pathogenesis and may help explain the function of FcR detected on other microorganisms.  相似文献   

19.
Binding of herpes simplex virus (HSV) glycoprotein D (gD) to a cell surface receptor is required to trigger membrane fusion during entry into host cells. Nectin-1 is a cell adhesion molecule and the main HSV receptor in neurons and epithelial cells. We report the structure of gD bound to nectin-1 determined by x-ray crystallography to 4.0 Å resolution. The structure reveals that the nectin-1 binding site on gD differs from the binding site of the HVEM receptor. A surface on the first Ig-domain of nectin-1, which mediates homophilic interactions of Ig-like cell adhesion molecules, buries an area composed by residues from both the gD N- and C-terminal extensions. Phenylalanine 129, at the tip of the loop connecting β-strands F and G of nectin-1, protrudes into a groove on gD, which is otherwise occupied by C-terminal residues in the unliganded gD and by N-terminal residues in the gD/HVEM complex. Notably, mutation of Phe129 to alanine prevents nectin-1 binding to gD and HSV entry. Together these data are consistent with previous studies showing that gD disrupts the normal nectin-1 homophilic interactions. Furthermore, the structure of the complex supports a model in which gD-receptor binding triggers HSV entry through receptor-mediated displacement of the gD C-terminal region.

Authors Summary

Herpes simplex virus (HSV) is a widespread human pathogen. Four viral glycoproteins (gD, gB, gH/gL) are required for HSV entry into host cells. gD binding to a cell surface receptor triggers conformational changes in the other viral glycoproteins leading to membrane fusion and viral entry. Two structurally unrelated cellular protein receptors, nectin-1 and HVEM, can mediate HSV entry upon binding to gD. The structure presented here reveals the molecular basis for the stable interaction between HSV-1 gD and the receptor nectin-1. Comparison with the previously determined structures of the gD/HVEM complex and unliganded gD shows that, despite the fact that the two receptors interact with different binding sites, they both cause a similar conformational change in gD. Therefore, our data point to a conserved mechanism for receptor mediated activation of the HSV entry process. In addition, the gD/Nectin-1 structure reveals that the gD-binding site overlaps with a surface involved in nectin-1 homo-dimerization. This observation explains how gD interferes with the cell adhesion function of nectin-1. Finally, the gD/Nectin-1 complex displays similarities with other viral ligands bound to immunoglobulin-like receptors suggesting a convergent mechanism for receptors selection and usage.  相似文献   

20.
Recently determined crystal structures of the complex between immunoglobulin constant regions (Fc) and their Fc-respective receptors (FcR) have revealed the detailed molecular interactions of this receptor-ligand pair. Of particular interest is the contribution of a glycosylation at Asn(297) of the C(H)2 domain of IgG to receptor recognition. The carbohydrate moieties are found outside the receptor.Fc interface in all receptor.Fc complex structures. To understand the role of glycosylation in FcR recognition, the receptor affinities of a deglycosylated IgG1 and its Fc fragment were determined by solution binding studies using surface plasmon resonance. The removal of carbohydrates resulted in a non-detectable receptor binding to the Fc alone and a 15- to 20-fold reduction of the receptor binding to IgG1, suggesting that the carbohydrates are important in the function of the FcgammaRIII. Structurally, the carbohydrates attached to Asn(297) fill the cavity between the C(H)2 domains of Fc functioning equivalently as a hydrophobic core. This may stabilize a favorable lower hinge conformation for the receptor binding. The structure of the complex also revealed the dominance of the lower hinge region in receptor.Fc recognition. To evaluate the potential of designing small molecular ligands to inhibit the receptor function, four lower hinge peptides were investigated for their ability to bind to the receptor FcgammaRIII. These peptides bind specifically to FcgammaRIII with affinities 20- to 100-fold lower than IgG1 and are able to compete with Fc in receptor binding. The results of peptide binding illustrate new ways of designing therapeutic compounds to block Fc receptor activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号