首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Confinement of the obligate intracellular bacterium Chlamydia trachomatis to a membrane-bound vacuole, termed an inclusion, within infected epithelial cells neither prevents secretion of chlamydial antigens into the host cytosol nor protects chlamydiae from innate immune detection. However, the details leading to chlamydial antigen presentation are not clear. By immunoelectron microscopy of infected endometrial epithelial cells and in isolated cell secretory compartments, chlamydial major outer membrane protein (MOMP), lipopolysaccharide (LPS) and the inclusion membrane protein A (IncA) were localized to the endoplasmic reticulum (ER) and co-localized with multiple ER markers, but not with markers of the endosomes, lysosomes, Golgi nor mitochondria. Chlamydial LPS was also co-localized with CD1d in the ER. Since the chlamydial antigens, contained in everted inclusion membrane vesicles, were found within the host cell ER, these data raise additional implications for antigen processing by infected uterine epithelial cells for classical and non-classical T cell antigen presentation.  相似文献   

2.
3.
The intracellular bacterial pathogen Chlamydia is sequestered from the host cell cytoplasm by remaining within an inclusion body during its replication cycle. Nevertheless, CD8(+) T cells recognizing Chlamydia Ags in the context of MHC class I molecules are primed during infection. We have recently described derivation of Chlamydia-specific human CD8(+) T cells by using infected dendritic cells as a surrogate system to reflect Chlamydia-specific CD8(+) T cell responses in vivo. These CD8(+) T cell clones recognize chlamydial Ags processed via the conventional class Ia processing pathway, as assessed by treatment of infected APC with lactacystin and brefeldin A, suggesting that the Ags are translocated from the chlamydial inclusion into the host cell cytosol. In this study, outer membrane protein 2 (OmcB) was identified as the Ag recognized by one of these Chlamydia-specific human CD8(+) T cells, and we defined the HLA*A0101-restricted epitope from this Ag. CD8(+) T cell responses to this epitope were present at high frequencies in the peripheral blood of both of two HLA*A0101 donors tested. In vitro chlamydial growth was completely inhibited by the OmcB-specific CD8(+) T cell clone independently of lytic mechanisms. OmcB is a 60-kDa protein that has been postulated to be associated with the Chlamydia outer membrane complex. The subcellular localization of OmcB to the cytosol of infected cells, as determined by conventional MHC class I Ag processing and presentation, suggests the possibility of an additional, cytosolic-associated function for this protein.  相似文献   

4.
During the asexual stage of malaria infection, the intracellular parasite exports membranes into the erythrocyte cytoplasm and lipids and proteins to the host cell membrane, essentially "transforming" the erythrocyte. To investigate lipid and protein trafficking pathways within Plasmodium falciparum-infected erythrocytes, synchronous cultures are temporally analyzed by confocal fluorescence imaging microscopy for the production, location and morphology of exported membranes (vesicles) and parasite proteins. Highly mobile vesicles are observed as early as 4 h postinvasion in the erythrocyte cytoplasm of infected erythrocytes incubated in vitro with C6-NBD-labeled phospholipids. These vesicles are most prevalent in the trophozoite stage. An immunofluorescence technique is developed to simultaneously determine the morphology and distribution of the fluorescent membranes and a number of parasite proteins within a single parasitized erythrocyte. Parasite proteins are visualized with FITC- or Texas red-labeled monoclonal antibodies. Double-label immunofluorescence reveals that of the five parasite antigens examined, only one was predominantly associated with membranes in the erythrocyte cytoplasm. Two other parasite antigens localized only in part to these vesicles, with the majority of the exported antigens present in lipid-free aggregates in the host cell cytoplasm. Another parasite antigen transported into the erythrocyte cytoplasm is localized exclusively in lipid-free aggregates. A parasite plasma membrane (PPM) and/or parasitophorous vacuolar membrane (PVM) antigen which is not exported always colocalizes with fluorescent lipids in the PPM/PVM. Visualization of two parasite proteins simultaneously using FITC- and Texas red-labeled 2 degrees antibodies reveals that some parasite proteins are constitutively transported in the same vesicles, whereas other are segregated before export. Of the four exported antigens, only one appears to cross the barriers of the PPM and PVM through membrane-mediated events, whereas the others are exported across the PPM/PVM to the host cell cytoplasm and surface membrane through lipid (vesicle)-independent pathways.  相似文献   

5.
Chlamydiae are obligate intracellular pathogens that must coordinate the acquisition of host cell-derived biosynthetic constituents essential for bacterial survival. Purified chlamydiae contain several lipids that are typically found in eukaryotes, implying the translocation of host cell lipids to the chlamydial vacuole. Acquisition and incorporation of sphingomyelin occurs subsequent to transport from Golgi-derived exocytic vesicles, with possible intermediate transport through endosomal multivesicular bodies. Eukaryotic host cell-derived sphingomyelin is essential for intracellular growth of Chlamydia trachomatis, but the precise role of this lipid in development has not been delineated. The present study identifies specific phenotypic effects on inclusion membrane biogenesis and stability consequent to conditions of sphingomyelin deficiency. Culturing infected cells in the presence of inhibitors of serine palmitoyltransferase, the first enzyme in the biosynthetic pathway of host cell sphingomyelin, resulted in loss of inclusion membrane integrity with subsequent disruption in normal chlamydial inclusion development. Surprisingly, this was accompanied by premature redifferentiation to and release of infectious elementary bodies. Homotypic fusion of inclusions was also disrupted under conditions of sphingolipid deficiency. In addition, host cell sphingomyelin synthesis was essential for inclusion membrane stability and expansion that is vital to reactivation of persistent chlamydial infection. The present study implicates both the Golgi apparatus and multivesicular bodies as key sources of host-derived lipids, with multivesicular bodies being essential for normal inclusion development and reactivation of persistent C. trachomatis infection.  相似文献   

6.
Chlamydiae replicate within an intracellular vacuole, termed an inclusion, that is non-fusogenic with vesicles of the endosomal or lysosomal compartments. Instead, the inclusion appears to intersect an exocytic pathway from which chlamydiae intercept sphingomyelin en route from the Golgi apparatus to the plasma membrane. Chlamydial protein synthesis is required to establish this interaction. In an effort to identify those chlamydial proteins controlling vesicle fusion, we have prepared polyclonal antibodies against several Chlamydia trachomatis inclusion membrane proteins. Microinjection of polyclonal antibodies against three C. trachomatis inclusion membrane proteins, IncA, F and G, into the cytosol of cells infected with C. trachomatis demonstrates reactivity with antigens on the cytoplasmic face of the inclusion membrane, without apparent inhibition of chlamydial multiplication. Microinjection of antibodies against the C. trachomatis IncA protein, however, results in the development of an aberrant multilobed inclusion structure remarkably similar to that of C. psittaci GPIC. These results suggest that the C. trachomatis IncA protein is involved in homotypic vesicle fusion and/or septation of the inclusion membrane that is believed to accompany bacterial cell division in C. psittaci . This proposal is corroborated by the expression of C. trachomatis and C. psittaci IncA in a yeast two-hybrid system to demonstrate C. trachomatis , but not C. psittaci , IncA interactions. Despite the inhibition of homotypic fusion of C. trachomatis inclusions, fusion of sphingomyelin-containing vesicles with the inclusion was not suppressed.  相似文献   

7.
Chlamydiae replicate intracellularly within a unique vacuole termed the inclusion. The inclusion circumvents classical endosomal/lysosomal pathways but actively intercepts a subset of Golgi-derived exocytic vesicles containing sphingomyelin (SM) and cholesterol. To further examine this interaction, we developed a polarized epithelial cell model to study vectoral trafficking of lipids and proteins to the inclusion. We examined seven epithelial cell lines for their ability to form single monolayers of polarized cells and support chlamydial development. Of these cell lines, polarized colonic mucosal C2BBe1 cells were readily infected with Chlamydia trachomatis and remained polarized throughout infection. Trafficking of (6-((N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl) amino)hexanoyl)sphingosine) (NBD-C(6)-ceramide) and its metabolic derivatives, NBD-glucosylceramide (GlcCer) and NBD-SM, was analyzed. SM was retained within L2-infected cells relative to mock-infected cells, correlating with a disruption of basolateral SM trafficking. There was no net retention of GlcCer within L2-infected cells and purification of C. trachomatis elementary bodies from polarized C2BBe1 cells confirmed that bacteria retained only SM. The chlamydial inclusion thus appears to preferentially intercept basolaterally-directed SM-containing exocytic vesicles, suggesting a divergence in SM and GlcCer trafficking. The observed changes in lipid trafficking were a chlamydia-specific effect because Coxiella burnetii-infected cells revealed no changes in GlcCer or SM polarized trafficking.  相似文献   

8.
The mechanism by which Chlamydia trachomatis is endocytosed by host cells is unclear. Studies of the kinetics of chlamydial attachment and uptake in the susceptible HeLa 229 cell line showed that chlamydial endocytosis was rapid and saturable but limited by the slow rate of chlamydial attachment. To overcome this limitation and to investigate the mechanism of endocytosis, chlamydiae were centrifuged onto the host cell surface in the cold to promote attachment. Endocytosis of the adherent chlamydiae was initiated synchronously by rapid warming to 36 degrees C. Electron micrographs of chlamydial uptake 5 min after onset showed that chlamydial ingestion involves movement of the host cell membrane, leading to interiorization in tight, endocytic vacuoles which were not clathrin coated. Chlamydial ingestion was not inhibited by monodansylcadaverine or amantadine, inhibitors of receptor-mediated endocytosis and chlamydiae failed to displace [3H]sucrose from micropinocytic vesicles. Chlamydial endocytosis was markedly inhibited by cytochalasin D, an inhibitor of host cell microfilament function, and by vincristine or vinblastine, inhibitors of host cell microtubules. Hyperimmune rabbit antibody prevented the ingestion of adherent chlamydiae, suggesting that endocytosis requires the circumferential binding of chlamydial and host cell surface ligands. These findings were incompatible with the suggestion that chlamydiae enter cells by taking advantage of the classic mechanism of receptor-mediated endocytosis into clathrin-coated vesicles, used by the host cell for the internalization of beta-lipoprotein and other macromolecules, but were consistent with the hypothesis that chlamydiae enter cells by a microfilament-dependent zipper mechanism.  相似文献   

9.
Chlamydia trachomatis is an obligate intracellular pathogen that multiples within the confines of a membrane-bound vacuole called an inclusion. Approximately 40-50% of the sphingomyelin synthesized from exogenously added NBD-ceramide is specifically transported from the Golgi apparatus to the chlamydial inclusion (Hackstadt, T., M.A. Scidmore, and D.D. Rockey. 1995. Proc. Natl. Acad. Sci. USA. 92: 4877- 4881). Given this major disruption of a cellular exocytic pathway and the similarities between glycolipid and glycoprotein exocytosis, we wished to determine whether the processing and trafficking of glycoproteins through the Golgi apparatus to the plasma membrane in chlamydia-infected cells was also disrupted. We analyzed the processing of several model glycoproteins including vesicular stomatitis virus G- protein, transferrin receptor, and human histocompatibility leukocyte class I antigen. In infected cells, the posttranslational processing and trafficking of these specific proteins through the Golgi apparatus and subsequent transport to the plasma membrane was not significantly impaired, nor were these glycoproteins found associated with the chlamydial inclusion membrane. Studies of receptor recycling from endocytic vesicles employing fluorescently and HRP-tagged transferrin and anti-transferrin receptor antibody revealed an increased local concentration of transferrin and transferrin receptor around but never within the chlamydial inclusion. However, Scatchard analysis failed to show either an increased intracellular accumulation of transferrin receptor or a decreased number of plasma membrane receptors in infected cells. Furthermore, the rate of exocytosis from the recycling endosomes to the plasma membrane was not altered in chlamydia-infected cells. Thus, although C. trachomatis disrupts the exocytosis of sphingolipids and the Golgi apparatus appears physically distorted, glycosylation and exocytosis of representative secreted and endocytosed proteins are not disrupted. These results suggest the existence of a previously unrecognized sorting of sphingolipids and glycoproteins in C. trachomatis-infected cells.  相似文献   

10.
Chlamydia trachomatis is the main cause of sexually transmitted diseases worldwide. As obligate intracellular bacteria Chlamydia replicate in a membrane bound vacuole called inclusion and acquire nutrients for growth and replication from their host cells. However, like all intracellular bacteria, Chlamydia have to prevent eradication by the host's cell autonomous system. The chlamydial deubiquitinase Cdu1 is secreted into the inclusion membrane, facing the host cell cytosol where it deubiquitinates cellular proteins. Here we show that inactivation of Cdu1 causes a growth defect of C. trachomatis in primary cells. Moreover, ubiquitin and several autophagy receptors are recruited to the inclusion membrane of Cdu1‐deficient Chlamydia. Interestingly, the growth defect of cdu1 mutants is not rescued when autophagy is prevented. We find reduced recruitment of Golgi vesicles to the inclusion of Cdu1 mutants indicating that vesicular trafficking is altered in bacteria without active deubiquitinase (DUB). Our work elucidates an important role of Cdu1 in the functional preservation of the chlamydial inclusion surface.  相似文献   

11.
Following attachment of Neisseria gonorrhoeae to human epithelial cell lines, the cellular pilus receptor CD46 is shed from the cell and accumulates in the media. In this report, we assess Neisseria-induced alterations in CD46 surface distribution and characterize this complement regulatory protein following its release from the infected cell. Within 3 h of attachment of gonococci to human epithelial cell lines, CD46 is enriched beneath sites of microcolony adhesion. By 6 h post infection, differential ultracentrifugation of culture media from ME-180 monolayers resulted in sedimentation of structurally and functionally intact CD46. Electron microscopy of these 100,000 g pellets revealed 30-200 nm vesicles. These vesicles likely originated from the host cell as they contained additional host cell surface proteins including CD55 and the epidermal growth factor receptor. Further, these vesicles were visualized by quick-freeze, deep-etch electron microscopy in association with the surface of infected ME-180 cells and with pili of adherent gonococci. Like CD46 shedding, CD46 redistribution and vesicle release were insensitive to colchicine and cytochalasin-D but dependent on expression of the pilus retraction protein PilT. This vesiculation may represent a host cell defence response in which surface proteins that are commonly exploited by pathogens, such as CD46, are removed from the cell.  相似文献   

12.
Chlamydia spp. are obligate intracellular bacteria that replicate inside the host cell in a bacterial modified unique compartment called the inclusion. As other intracellular pathogens, chlamydiae exploit host membrane trafficking pathways to prevent lysosomal fusion and to acquire energy and nutrients essential for their survival and replication. The Conserved Oligomeric Golgi (COG) complex is a ubiquitously expressed membrane-associated protein complex that functions in a retrograde intra-Golgi trafficking through associations with coiled-coil tethers, SNAREs, Rabs and COPI proteins. Several COG complex-interacting proteins, including Rab1, Rab6, Rab14 and Syntaxin 6 are implicated in chlamydial development. In this study, we analysed the recruitment of the COG complex and GS15-positive COG complex-dependent vesicles to Chlamydia trachomatis inclusion and their participation in chlamydial growth. Immunofluorescent analysis revealed that both GFP-tagged and endogenous COG complex subunits associated with inclusions in a serovar-independent manner by 8 h post infection and were maintained throughout the entire developmental cycle. Golgi v-SNARE GS15 was associated with inclusions 24 h post infection, but was absent on the mid-cycle (8 h) inclusions, indicating that this Golgi SNARE is directed to inclusions after COG complex recruitment. Silencing of COG8 and GS15 by siRNA significantly decreased infectious yield of chlamydiae. Further, membranous structures likely derived from lysed bacteria were observed inside inclusions by electron microscopy in cells depleted of COG8 or GS15. Our results showed that C. trachomatis hijacks the COG complex to redirect the population of Golgi-derived retrograde vesicles to inclusions. These vesicles likely deliver nutrients that are required for bacterial development and replication.  相似文献   

13.
A monoclonal antibody (mcab) raised against a subcellular fraction of Sarcocystis muris cystozoites was used to localize microneme antigens before, during and after invasion of cultured cells. The mcab recognized a 20 and 22 kDa protein under reducing and non-reducing conditions on Western blots and localized an antigen in cystozoites in the apical part of the parasites. Confocal laser scanning microscopy of invading cystozoites revealed the secretion of a microneme antigen at the apical tip of the parasite. The secreted microneme antigen was attached to the host cell surface at the invasion site and spread along the surface of the infected cells. Electron microscopy using immunogold labeling showed that the microneme antigen was distributed in patches on the surface of infected cells and present on infected cells more than 60 min post-infection. The function of microneme antigens during parasite-host cell interactions is discussed.  相似文献   

14.
Chlamydiae alter apoptosis of host target cells, which regulates their growth. Cyclooxygenase-2 (COX-2), the rate-limiting enzyme for prostaglandin E2 (PGE2) production, modulates epithelial cell survival. We addressed whether endogenous PGE2 alters chlamydial growth or apoptosis of epithelial cells infected with Chlamydia muridarum. PGE2 is secreted by infected host cells in the genital tract (GT). Using immunohistochemical techniques, we found that COX-2 enzyme was localized to epithelial cells in the GT in vivo. Pellets of the COX-2 enzyme inhibitor, NS-398, and placebo were implanted in mice subcutaneously and released a constant amount of these chemicals throughout the infection. NS-398-treated mice were found to exhibit 10-fold lower bacterial load than the placebo group on day 3 post infection, suggesting disruption of the chlamydial developmental cycle. To prove this, the human lung adenocarcinoma cell line A549 was then infected with different MOIs of C. muridarum in the presence of multiple concentrations of NS-398 in vitro. There was no difference in inclusion forming units (IFUs) between NS-389-treated and untreated cells. We also found no alterations in C. muridarum IFUs in A549 cells transfected with a 2.0 kb cDNA fragment of human COX-2 cloned in the sense (S) or anti-sense (AS) orientation. However, the inclusion size was reduced and the number of EB was significantly diminished during reinfection in AS-transfected cells. In addition, the absence of COX-2 did not significantly modify apoptosis in infected cells. In total, COX-2 deficiency reduces the infectious burden in vivo and may modulate transmission of the organism.  相似文献   

15.
Morphological changes in erythrocytes induced by malarial parasites   总被引:1,自引:0,他引:1  
Host cell alterations induced by Plasmodium falciparum, P. brasilianum, P. vivax and P. malariae were described by electron microscopy and post-embedding immunoelectron microscopy. P. falciparum infection induces knobs, electron-dense material and clefts in the erythrocyte. Clefts are involved in exporting P. falciparum antigen from the parasite to the erythrocyte membrane. P. falciparum antigen is present in knobs which adhere to endothelial cells causing the blockage of cerebral capillaries and ensuing pathological changes in cerebral tissues. P. brasilianum infection induces knobs, short and long clefts and electron-dense material. These structures appear to contain different P. brasilianum antigens. This indicates that each structure functions independently in trafficking P. brasilianum protein to the erythrocyte surface. P. vivax infection induces caveola-vesicle complexes and clefts in the erythrocyte. These structures are also involved in trafficking P. vivax protein from the parasite to the erythrocyte membrane. P. malariae induces caveolae, electron-dense material, vesicles, clefts and knobs in the erythrocyte. Although vesicles and caveolae are seen in the erythrocyte cytoplasm, they do not form caveola-vesicle complexes as seen in P. vivax-infected erythrocytes. They also appear to be involved in trafficking of malaria antigens. These studies, therefore, indicate that host cell changes occur in order to facilitate the transport of malarial antigens to the host cell membrane. The significance of these phenomena is still not clear.  相似文献   

16.
Chlamydia pneumoniae is a common respiratory pathogen that has been associated with a variety of chronic diseases including asthma and atherosclerosis. Chlamydiae are obligate intracellular parasites that primarily infect epithelial cells where they develop within a membrane-bound vacuole, termed an inclusion. Interactions between the microorganism and eukaryotic cell can be mediated by chlamydial proteins inserted into the inclusion membrane. We describe here a novel C. pneumoniae -specific inclusion membrane protein (Inc) CP0236, which contains domains exposed to the host cytoplasm. We demonstrate that, in a yeast two-hybrid screen, CP0236 interacts with the NFκB activator 1 (Act1) and this interaction was confirmed in HeLa 229 cells where ectopically expressed CP0236 was co-immunoprecipitated with endogenous Act1. Furthermore, we demonstrate that Act1 displays an altered distribution in the cytoplasm of HeLa cells infected with C. pneumoniae where it associates with the chlamydial inclusion membrane. This sequestration of Act1 by chlamydiae inhibited recruitment of the protein to the interleukin-17 (IL-17) receptor upon stimulation of C. pneumoniae -infected cells with IL-17A. Such inhibition of the IL-17 signalling pathway led to protection of Chlamydia -infected cells from NFκB activation in IL-17-stimulated cells. We describe here a unique strategy employed by C. pneumoniae to achieve inhibition of NFκB activation via interaction of CP0236 with mammalian Act1.  相似文献   

17.
A double and triple immunogold labeling technique has been applied to demonstrate that several malarial antigens of the erythrocytic stages of Plasmodium falciparum are exported from the parasite into distinct compartments within the host cell cytoplasm. Multiple species of vesicles, each with specifically packaged contents, are consistent with a sorting function of vesicular structures in the Plasmodium infected erythrocyte. During schizogony, two parasite antigens, an S-antigen and a parasitophorous vacuole membrane antigen, QF 116, become packaged into such vesicles and are transported into the erythrocyte cytoplasm. At this stage of parasite development, host cell material is taken in through the parasitophorous vacuole membrane into the vacuolar space surrounding the parasite.  相似文献   

18.
The obligate intracellular bacterium Chlamydia trachomatis invades into host cells to replicate inside a membrane-bound vacuole called inclusion. Multiple different host proteins are recruited to the inclusion and are functionally modulated to support chlamydial development. Invaded and replicating Chlamydia induces a long-lasting activation of the PI3 kinase signaling pathway that is required for efficient replication. We identified the cell surface tyrosine kinase EphrinA2 receptor (EphA2) as a chlamydial adherence and invasion receptor that induces PI3 kinase (PI3K) activation, promoting chlamydial replication. Interfering with binding of C. trachomatis serovar L2 (Ctr) to EphA2, downregulation of EphA2 expression or inhibition of EphA2 activity significantly reduced Ctr infection. Ctr interacts with and activates EphA2 on the cell surface resulting in Ctr and receptor internalization. During chlamydial replication, EphA2 remains active accumulating around the inclusion and interacts with the p85 regulatory subunit of PI3K to support the activation of the PI3K/Akt signaling pathway that is required for normal chlamydial development. Overexpression of full length EphA2, but not the mutant form lacking the intracellular cytoplasmic domain, enhanced PI3K activation and Ctr infection. Despite the depletion of EphA2 from the cell surface, Ctr infection induces upregulation of EphA2 through the activation of the ERK pathway, which keeps the infected cell in an apoptosis-resistant state. The significance of EphA2 as an entry and intracellular signaling receptor was also observed with the urogenital C. trachomatis-serovar D. Our findings provide the first evidence for a host cell surface receptor that is exploited for invasion as well as for receptor-mediated intracellular signaling to facilitate chlamydial replication. In addition, the engagement of a cell surface receptor at the inclusion membrane is a new mechanism by which Chlamydia subverts the host cell and induces apoptosis resistance.  相似文献   

19.
BACKGROUND: Helicobacter pylori extrudes protein- and lipopolysaccharide-enriched outer membrane vesicles from its cell surface which have been postulated to act to deliver virulence factors to the host. Lewis antigen expression by lipopolysaccharide of H. pylori cells has been implicated in a number of pathogenic roles. The aim of this study was to further characterize the expression of lipopolysaccharide on the surface of these outer membrane vesicles and, in particular, expression of Lewis antigens and their association with antibody production in the host. MATERIALS AND METHODS: H. pylori strains were examined for outer membrane vesicle production using transmission electron microscopy and Lewis antigen expression probed using immunoelectron microscopy. Sera from patients were analyzed for cross-reacting anti-Lewis antibodies and, subsequently, absorbed using outer membrane vesicle preparations to remove the cross-reacting antibodies. RESULTS: The formation of outer membrane vesicles by H. pylori was observed in both in vitro and in vivo samples. Furthermore, vesicles were produced following culture in either liquid or solid medium by all strains examined. Moreover, we observed the presence of Lewis epitopes on outer membrane vesicles using immunoelectron microscopy and immunoblotting. Circulating anti-Lewis antibodies were found in the sera of gastric cancer patients but not in the sera of H. pylori-negative control subjects. Absorption of patient sera with outer membrane vesicles decreased the levels of anti-Lewis autoantibodies. CONCLUSIONS: Our results demonstrate the ability of H. pylori to generate outer membrane vesicles bearing serologically recognizable Lewis antigens on lipopolysaccharide molecules which may contribute to the chronic immune stimulation of the host. The ability of these vesicles to absorb anti-Lewis autoantibodies indicates that they may, in part, play a role in putative autoimmune aspects of H. pylori pathogenesis.  相似文献   

20.
The oestrogen receptor (ER) α-β+ HEC-1B and the ERα+β+ Ishikawa (IK) cell lines were investigated to dissect the effects of oestrogen exposure on several parameters of Chlamydia trachomatis infection. Antibody blockage of ERα or ERβ alone or simultaneously significantly decreased C. trachomatis infectivity (45-68%). Addition of the ERβ antagonist, tamoxifen, to IK or HEC-1B prior to or after chlamydial infection caused a 30-90% decrease in infectivity, the latter due to disrupted eukaryotic organelles. In vivo, endometrial glandular epithelial cells are stimulated by hormonally influenced stromal signals. Accordingly, chlamydial infectivity was significantly increased by 27% and 21% in IK and HEC-1B cells co-cultured with SHT-290 stromal cells exposed to oestrogen. Endometrial stromal cell/epithelial cell co-culture revealed indirect effects of oestrogen on phosphorylation of extracellular signal-regulated kinase and calcium-dependant phospholipase A2 and significantly increased production of interleukin (IL)-8 and IL-6 in both uninfected and chlamydiae-infected epithelial cells. These results indicate that oestrogen and its receptors play multiple roles in chlamydial infection: (i) membrane oestrogen receptors (mERs) aid in chlamydial entry into host cells, and (ii) mER signalling may contribute to inclusion development during infection. Additionally, enhancement of chlamydial infection is affected by hormonally influenced stromal signals in conjunction with direct oestrogen stimulation of the human epithelia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号