首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It was shown previously that Ea4-peptide of trout pro-IGF-I exerted mitogenic activity in non-transformed cells and inhibited colony formation in a soft agar medium of established human cancer cells. Here we report that the same peptide inhibits the invasion of human breast cancer cells (MDA-MB-231) through a matrigel membrane in a dose-dependent manner. The expression of urokinase-type plasminogen activator (uPA), tissue-type plasminogen activator (tPA) and plasminogen activator inhibitor 1 (PAI1) genes in MDA-MB-231 cells were downregulated by treatment with rtEa4-peptide. The inhibition of expression of these genes in response to rtEa4-peptide treatment was reduced to the control level when inhibitors for c-Jun N-terminal kinase 1/2 (JNK1/2), mitogen activated protein kinase kinase 1/2 (Mek1/2), p38 mitogen activated protein kinase (p38 MAPK), phosphatidylinositol 3-kinase (PI3K), and phosphokinase C (PKC) were used. These results suggest that inhibition of invasion of MDA-MB-231 cells by rtEa4-peptide may be mediated via the suppression of uPA, tPA, and PAI1 gene activities through signal transduction pathways.  相似文献   

2.
E-peptide of pro-IGF-I was considered as biologically inactive. We have demonstrated that rainbow trout (rt) Ea4-peptide exerted biological activities in several established tumor cell lines [Chen et al., 2002; Kuo and Chen, 2002]. Here we report the activity of rtEa4-peptide in promoting attachment of human breast cancer cells (MDA-MB-231). While rtEa2-, rtEa3-, and rtEa4-peptides enhanced the attachment of MDA-MB-231 cells in a dose dependent manner, rtEa4-peptide possessed the highest activity. Antibodies specific to alpha2 and beta1 integrins significantly inhibited the attachment of cells to rtEa4-peptide coated-plates by 40%. In addition, rtEa4-peptide induced the expression of fibronectin 1 and laminin receptor genes in MDA-MB-231 cells. Blocking new protein synthesis by cycloheximide significantly reduced the attachment of MDA-MB-231 cells to rtEa4-peptide coated wells by 50%. These results suggest that rtEa4-peptide may promote cell attachment by interacting with alpha2/beta1 integrin receptors at the cell surface and by inducing the expression of fibronectin 1 and laminin receptor genes. Expression of fibronectin 1 gene induced by rtEa4-peptide in MDA-MB-231 cells was abolished by inhibitors of PI3K, PKC, Mek1/2, JNK1/2, and p38 MAPK signaling transduction molecules. These results suggested that induction of fibronectin 1 gene expression in MDA-MB-231 cells by rtEa4-peptide may be mediated via PI3K, PKC, Mek1/2, JNK1/2, and p38 MAPK signal transduction molecules.  相似文献   

3.
E-peptide of the pro-Insulin-like growth factor-I (pro-IGF-I) is produced from pre-pro-IGF-I by proteolytic cleavage in the post-translational processing. The human Eb-peptide (hEb-peptide), derived from the E domain of pro-IGF-IB isoform, is a bioactive molecule whose exact physiological role remains elusive. Accumulated evidence reported from our laboratory indicated that hEb-peptide possesses activity against multiple hallmark characteristics of solid tumor in different cancer cell types. In human breast carcinoma cells (MDA-MB-231), it was demonstrated that hEb-peptide can promote cell attachment to substratum, inhibit colony formation in a semisolid medium, reduce cancer cell invasion, and inhibit cancer-induced angiogenesis. Like the action of other peptide hormones, these cellular responses triggered by hEb may be initiated through binding to a receptor molecule residing on the surface of the cell. Our laboratory and the others have previously provided evidence demonstrating the existence of hEb-peptide specific binding components residing on the cell membrane. In this study, we report the isolation and identification of eight protein molecules bound reversibly with hEb-peptide from the membrane preparation of MDA-MB-231 cells. Some of the identified proteins are known to be present at cell surface and function as receptors while the others are not. The functions of these molecules reveal strong correlation with the demonstrated activities of hEb-peptide on MDA-MB-231cells, suggesting hEb-peptide activity on cancer cells might be mediated by these molecules.  相似文献   

4.
Analogs of the decapeptide, gonadotropin-releasing hormone (GnRH), used in the treatment of hormone-dependent tumors, contain numerous unnatural amino acids, giving rise to many adverse effects. lGnRH-III, a natural isoform of GnRH isolated from the sea lamprey, is a weak agonist of GnRH in the pituitary, but inhibits the growth of human cancer cells in micromolar concentrations. As lGnRH-III is not a natural ligand in humans, it is possible that a more potent peptide, also containing only natural amino acids, can be synthesized. A positional scanning peptide library, focused on the variable region of the GnRH family of peptides, residues 5-8, was synthesized. The synthesized peptides were analyzed in competitive binding experiments and six new analogs were designed on the basis of the results. Their biological activities were evaluated in cell growth experiments. The only natural sequence selected was chicken GnRH-II. The synthetic library did not yield a more potent peptide than lGnRH-III.  相似文献   

5.
Platycodin D (PD), an active triterpenoid saponin from Platycodon grandiflorum, has been known to inhibit the proliferation of a variety of cancer cells, but the effect of PD on the invasiveness of cancer cells is largely unknown. In this study, we first determined the molecular mechanism by which PD inhibits the migratory and invasive abilities of the highly metastatic MDA-MB-231 breast cancer cell line. We demonstrated that a non-cytotoxic concentration of PD markedly suppressed wound healing migration, invasion through the matrigel, and adhesion to an ECM-coated substrate in a dose-dependent manner. Moreover, PD inhibited cell invasion by reducing matrix metalloproteinase (MMP)-9 enzyme activity and mRNA expression. Western blot analysis indicated that PD potently suppressed the phosphorylation of extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK) as well as blocked the phosphatidylinositol-3-kinase (PI3K)/Akt/mTOR signaling pathway. Furthermore, PD treatment inhibited the DNA binding activity of NF-κB, which is known to mediate the expression of epidermal growth factor receptor (EGFR), as observed by electrophoretic mobility shift assay. Specific mechanisms of action exerted by PD involved the downregulation of EGFR and the inhibition of EGF-induced activation of the EGFR, MAPK, and PI3K/Akt pathways. The in vivo studies showed that PD significantly inhibited the growth of MDA-MB-231 xenograft tumors in BALB/c nude mice. These results suggest that PD might be a potential therapeutic candidate for the treatment of breast cancer metastasis.  相似文献   

6.
In the search for a breast cancer prevention strategy which would avoid undesirable effects of orally administered tamoxifen, the percutaneous administration of the highly active metabolite 4OHTamoxifen (4OHTam) has been proposed. Percutaneous 4OHTam penetrates the skin to reach breast tissues. It, thus, avoids the hepatic first pass effect, and offers an optimal local/systemic effect. However, trans-4OHTamoxifen can spontaneously isomerize into the cis-isomer, which may have estrogen agonist action. The aim of this study was to examine the effect of cis-4OHTam on normal human breast epithelial (HBE) cells in culture.

Spontaneous isomerization of trans- into cis-4OHTam occurred within 24–48 h, but stabilized rapidly at a trans/cis ratio of 70/30, whether in stock solution, culture medium or cultured cells. The cis-4OHTam did not stimulate HBE cell growth according to histometric cell counts and scanning electron microscopy analysis, but inhibited E2-induced cell growth, albeit two to three times less than trans-4OHTam.

In conclusion, spontaneous isomerization of trans- to cis-4-OHTam is limited and 4OHTam retains a marked antiestrogenic effect. It may prove to be a useful alternative to tamoxifen in breast cancer prevention, especially if administered percutaneously.  相似文献   


7.
The transport of l-leucine by two human breast cancer cell lines has been examined. l-Leucine uptake by MDA-MB-231 and MCF-7 cells was via a BCH-sensitive, Na+-independent pathway. l-Leucine uptake by both cell lines was inhibited by l-alanine, d-leucine and to a lesser extent by l-lysine but not by l-proline. Estrogen (17β-estradiol) stimulated l-leucine uptake by MCF-7 but not by MDA-MB-231 cells. l-Leucine efflux from MDA-MB-231 and MCF-7 cells was trans-stimulated by BCH in a dose-dependent fashion. The effect of external BCH on l-leucine efflux from both cell types was almost abolished by reducing the temperature from 37 to 4 °C. There was, however, a significant efflux of l-leucine under zero-trans conditions which was also temperature-sensitive. l-Glutamine, l-leucine, d-leucine, l-alanine, AIB and l-lysine all trans-stimulated l-leucine release from MDA-MB-231 and MCF-7 cells. In contrast, d-alanine and l-proline had little or no effect. The anti-cancer agent melphalan inhibited l-leucine uptake by MDA-MB-231 cells but had no effect on l-leucine efflux. Quantitative real-time PCR revealed that LAT1 mRNA was approximately 200 times more abundant than LAT2 mRNA in MCF-7 cells and confirmed that MDA-MB-231 cells express LAT1 but not LAT2 mRNA. LAT1 mRNA levels were higher in MCF-7 cells than in MDA-MB-231 cells. Furthermore, LAT1 mRNA was more abundant than CD98hc mRNA in both MDA-MB-231 and MCF-7 cells. The results suggest that system L is the major transporter for l-leucine in both MDA-MB-231 and MCF-7 cells. It is possible that LAT1 may be the major molecular correlate of system L in both cell types. However, not all of the properties of system L reflected those of LAT1/LAT2/CD98hc.  相似文献   

8.
The anti-growth effect of a palladium(II) complex—[PdCl(terpy)](sac)·2H2O] (sac = saccharinate, and terpy = 2,2′:6′,2″-terpyridine)—was tested against human breast cancer cell lines, MCF-7 and MDA-MB-231. Anti-growth effect was assayed by the MTT and ATP viability assays in vitro and then confirmed on Balb/c mice in vivo. The mode of cell death was determined by both histological and biochemical methods. The Pd(II) complex had anti-growth effect on a dose dependent manner in vitro and in vivo. The cells died by apoptosis as evidenced by the pyknotic nucleus, cleavage of poly-(ADP-ribose) polymerase (PARP) and induction of active caspase-3. These results suggest that the palladium(II) saccharinate complex of terpyridine represents a potentially active novel complex for the breast cancer treatment, thus warrants further studies.  相似文献   

9.
The solid‐phase synthesis, structural characterization, and biological evaluation of a small library of cancer‐targeting peptides have been determined in HepG2 hepatoblastoma cells. These peptides are based on the highly specific Pep42 motif, which has been shown to target the glucose‐regulated protein 78 receptors overexpressed and exclusively localized on the cell surface of tumors. In this study, Pep42 was designed to contain varying lengths (3–12) of poly(arginine) sequences to assess their influence on peptide structure and biology. Peptides were effectively synthesized by 9‐fluorenylmethoxycarbonyl‐based solid‐phase peptide synthesis, in which the use of a poly(ethylene glycol) resin provided good yields (14–46%) and crude purities >95% as analyzed by liquid chromatography–mass spectrometry. Peptide structure and biophysical properties were investigated using circular dichroism spectroscopy. Interestingly, peptides displayed secondary structures that were contingent on solvent and length of the poly(arginine) sequences. Peptides exhibited helical and turn conformations, while retaining significant thermal stability. Structure–activity relationship studies conducted by flow cytometry and confocal microscopy revealed that the poly(arginine) derived Pep42 sequences maintained glucose‐regulated protein 78 binding on HepG2 cells while exhibiting cell translocation activity that was contingent on the length of the poly(arginine) strand. In single dose (0.15 mM) and dose‐response (0–1.5 mM) cell viability assays, peptides were found to be nontoxic in human HepG2 liver cancer cells, illustrating their potential as safe cancer‐targeting delivery agents. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
11.
"Loss of function" alterations in growth inhibitory signal transduction pathways are common in cancer cells. In this study, we show that growth arrest (GA) treatments--serum and growth factor withdrawal and growth inhibitory IL-6 family cytokines (Interleukin-6 and Oncostatin M (OSM))--increase STAT3 phosphorylation (pSTAT3), increase CCAAT enhancer binding protein delta (C/EBPdelta) gene expression and induce GA of primary, finite-lifespan human mammary epithelial cells (HMECs), and immortalized breast cell lines (MCF-10A and MCF-12A). In contrast, serum and growth factor withdrawal from human breast cancer cell lines (MCF-7, SK-BR-3, T-47D, and MDA-MB-231) for up to 48 h induced a relatively modest increase in pSTAT3 levels and C/EBPdelta gene expression and resulted in varying levels of GA. In most breast cancer cell lines, IL-6 family cytokine treatment increased pSTAT3 levels and C/EBPdelta gene expression, however, growth inhibition was cell line dependent. In addition to "loss of function" alterations in growth inhibitory pathways, breast cancer cell lines also exhibit "gain of function" alterations in growth signaling pathways. The Akt growth/ survival pathway is constitutively activated in T-47D and MCF-7 breast cancer cells. The Akt inhibitor LY 294,002 significantly enhanced T-47D growth inhibition by serum and growth factor withdrawal or IL-6 family cytokine treatment. Finally, we show that activation of the pSTAT3/C/EBPdelta growth control pathway is independent of estrogen receptor status. These results demonstrate that "loss of function" alterations in the pSTAT3/C/EBPdelta growth inhibitory signal transduction pathway are relatively common in human breast cancer cell lines. Defective activation of the pSTAT3/ C/EBPdelta growth inhibitory signal transduction pathway, in conjunction with constitutive activation of the Akt growth stimulatory pathway, may play a synergistic role in the etiology or progression of breast cancer.  相似文献   

12.
13.
The biochemical mechanisms of apoptosis-induction by all-trans-retinoic acid (atRA) and N-(4-hydroxyphenyl)retinamide (4HPR) in cultured MCF7 cancer cells were studied by multiparameter flow cytometry. Retinoid treatment induced formation of two biochemically distinct cell subpopulations, which preceded the appearance of cells with fragmented nuclei. Exposure to atRA led to a transient increase in NADH level and mitochondrial oxidative turnover and a slow decline in reduced thiol level and mitochondrial membrane potential, suggesting that atRA treatment induces a transient defense mechanism. The synthetic retinoid 4HPR, in contrast, caused a gradual decrease in mitochondrial oxidative turnover and cardiolipin level together with a small decline in mitochondrial membrane potential, suggesting that 4HPR induces oxidation of cardiolipin and subsequent leakage of the mitochondria. Co-incubation with cyclosporin A, an inhibitor of the mitochondrial permeability transition, did not prevent formation of fragmented nuclei or induction of changes in mitochondrial parameters by retinoids. Thus, the mitochondrial permeability transition does not appear to be involved in retinoid induction of apoptosis in MCF7 cells. Retinoid exposure of diploid human mammary epithelial cells induced mild oxidative stress but did not lead to formation of two cell subpopulations. We conclude that atRA and 4HPR induce apoptosis in MCF7 cells by two distinct and novel biochemical mechanisms.  相似文献   

14.
Increased tyrosine phosphorylation has been correlated with human cancer, including breast cancer. In general, the activation of tyrosine kinases (TKs) can be antagonized by the action of protein-tyrosine phosphatases (PTPs). However, in some cases PTPs can potentiate the activation of TKs. In this study, we have investigated the functional role of PTPε in human breast cancer cell lines. We found the up-regulation and activation of receptor PTPε (RPTPε) in MCF-7 cells and MDA-MB-231 upon PMA, FGF, and serum stimulation, which depended on EGFR and ERK1/2 activity. Diminishing the expression of PTPε in human breast cancer cells abolished ERK1/2 and AKT activation, and decreased the viability and anchorage-independent growth of the cells. Conversely, stable MCF-7 cell lines expressing inducible high levels of ectopic PTPε displayed higher activation of ERK1/2 and anchorage-independent growth. Our results demonstrate that expression of PTPε is up-regulated and activated in breast cancer cell lines, through EGFR, by sustained activation of the ERK1/2 pathway, generating a positive feedback regulatory loop required for survival of human breast cancer cells.  相似文献   

15.
We have demonstrated previously in Hs578T cells that insulin‐like growth factor binding protein (IGFBP)‐3 can significantly accentuate ceramide (C2)‐induced apoptosis, but has no effect on cell death induced by integrin detachment [using an arginine‐glycine‐aspartic acid (RGD)‐containing peptide]. In contrast we found that IGFBP‐5 could inhibit apoptosis induced by either C2 or integrin detachment. It is now clear that the mitochondria not only provide the energy required for cell viability, but can also play an important role during the commitment phase to apoptosis. We used a mitochondrial respiratory chain inhibitor, antimycin A, at both apoptotic and nonapoptotic doses to further investigate the IGF‐independent actions of IGFBP‐3 and IGFBP‐5 on C2 and RGD‐induced apoptosis in the Hs578T cells. Hs578T cells had one of three treatments. 1: They were incubated with increasing doses of antimycin A for 24 h. 2: They were coincubated with an apoptotic dose of either C2 or RGD together with a nonapoptotic dose of antimycin A for 24 h. 3: They were incubated with a binding protein (100 ng/ml) for 24 h followed by coincubation of the binding protein with an apoptotic dose of antimycin A for a further 24 h. Cell viability was assessed by trypan blue dye exclusion and MTT assay, and apoptosis was confirmed and measured by morphologic assessment and flow cytometry. We found that antimycin A initiated apoptosis at 10 μmol/L and above. We also demonstrated that a nonapoptotic dose of antimycin A (0.1 μmol/L) significantly inhibited C2‐induced apoptosis, whereas it significantly accentuated RGD‐induced cell death. In addition, we found that cell death induced by antimycin A can be accentuated by IGFBP‐3 but is not affected by IGFBP‐5. These data indicate that IGFBP‐3 can directly enhance apoptosis triggered via the mitochondria; either directly by a mitochondrial inhibitor or by C2 (which we demonstrate to act via effects on the mitochondria in this model). IGFBP‐5, however, appears to confer survival effects via a distinct pathway not involving the mitochondria. J. Cell. Biochem. 80:248–258, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

16.
The anticancer activity of salinomycin has evoked excitement due to its recent identification as a selective inhibitor of breast cancer stem cells (CSCs) and its ability to reduce tumor growth and metastasis in vivo. In prostate cancer, similar to other cancer types, CSCs and/or progenitor cancer cells are believed to drive tumor recurrence and tumor growth. Thus salinomycin can potentially interfere with the end-stage progression of hormone-indifferent and chemotherapy-resistant prostate cancer. Androgen-responsive (LNCaP) and androgen-refractive (PC-3, DU-145) human prostate cancer cells showed dose- and time-dependent reduced viability upon salinomycin treatment; non-malignant RWPE-1 prostate cells were relatively less sensitive to drug-induced lethality. Salinomycin triggered apoptosis of PC-3 cells by elevating the intracellular ROS level, which was accompanied by decreased mitochondrial membrane potential, translocation of Bax protein to mitochondria, cytochrome c release to the cytoplasm, activation of the caspase-3 and cleavage of PARP-1, a caspase-3 substrate. Expression of the survival protein Bcl-2 declined. Pretreatment of PC-3 cells with the antioxidant N-acetylcysteine prevented escalation of oxidative stress, dissipation of the membrane polarity of mitochondria and changes in downstream molecular events. These results are the first to link elevated oxidative stress and mitochondrial membrane depolarization to salinomycin-mediated apoptosis of prostate cancer cells.  相似文献   

17.

Background

Mitochondrial dysfunction contributes to degenerative neurological disorders, consequently there is a need for mitochondria-targeted therapies that are effective within the brain. One approach to deliver pharmacophores is by conjugation to the lipophilic triphenylphosphonium (TPP) cation that accumulates in mitochondria driven by the membrane potential. While this approach has delivered TPP-conjugated compounds to the brain, the amounts taken up are lower than by other organs.

Methods

To discover why uptake of hydrophobic TPP compounds by the brain is relatively poor, we assessed the role of the P-glycoprotein (Mdr1a/b) and breast cancer resistance protein (Bcrp) ATP binding cassette (ABC) transporters, which drive the efflux of lipophilic compounds from the brain thereby restricting the uptake of lipophilic drugs. We used a triple transgenic mouse model lacking two isoforms of P-glycoprotein (Mdr1a/1b) and the Bcrp.

Results

There was a significant increase in the uptake into the brain of two hydrophobic TPP compounds, MitoQ and MitoF, in the triple transgenics following intra venous (IV) administration compared to control mice. Greater amounts of the hydrophobic TPP compounds were also retained in the liver of transgenic mice compared to controls. The uptake into the heart, white fat, muscle and kidneys was comparable between the transgenic mice and controls.

Conclusion

Efflux of hydrophobic TPP compounds by ABC transporters contributes to their lowered uptake into the brain and liver.

General significance

These findings suggest that strategies to bypass ABC transporters in the BBB will enhance delivery of mitochondria-targeted antioxidants, probes and pharmacophores to the brain.  相似文献   

18.
Voltage-gated sodium channels (VGSC) are a well-established drug target for anti-epileptic, anti-arrhythmic and pain medications due to their presence and the important roles that they play in excitable cells. Recently, their presence has been recognized in non-excitable cells such as cancer cells and their overexpression has been shown to be associated with metastatic behavior in a variety of human cancers. The neonatal isoform of the VGSC subtype, Nav1.5 (nNav1.5) is overexpressed in the highly aggressive human breast cancer cell line, MDA-MB-231. The activity of nNav1.5 is known to promote the breast cancer cell invasion in vitro and metastasis in vivo, and its expression in primary mammary tumors has been associated with metastasis and patient death. Metastasis development is responsible for the high mortality of breast cancer and currently there is no treatment available to specifically prevent or inhibit breast cancer metastasis. In the present study, a 3D-QSAR model is used to assist the development of low micromolar small molecule VGSC blockers. Using this model, we have designed, synthesized and evaluated five small molecule compounds as blockers of nNav1.5-dependent inward currents in whole-cell patch-clamp experiments in MDA-MB-231 cells. The most active compound identified from these studies blocked sodium currents by 34.9?±?6.6% at 1?μM. This compound also inhibited the invasion of MDA-MB-231 cells by 30.3?±?4.5% at 1?μM concentration without affecting the cell viability. The potent small molecule compounds presented here have the potential to be developed as drugs for breast cancer metastasis treatment.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号