首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When Chinese hamster (CHO-K1) cells are grown as monolayer cultures, they eventually reach a population-density plateau after which no net increase in cell numbers occurs. the kinetics of aged cells in nutritionally deprived (starved) or density-inhibited (fed) late plateau-phase cultures were studied by four methods: (i) Reproductive integrity and cell viability were monitored daily by clonogenic-cell assay and erythrosin-b dye-exclusion techniques. (ii) Mitotic frequencies of cells from 18 day old cultures were determined during regrowth by analysing time-lapse video microscope records of dividing cells. (iii) Tritiated-thymidine ([3H]TdR) auto-radiography was used to determine the fractions of DNA-synthesizing cells in cultures entering plateau phase and during regrowth after harvest. (iv) the rate of labelled nucleoside uptake and incorporation into DNA was measured using liquid scintillation or sodium iodide crystal counters after labelling with [3H]TdR or [125]UdR. Non-cycling cells in starved cultures accumulate primarily as G1, phase cells. Most cells not in G1 phase had stopped in G2, phase. Very few cells (< 2%) were found in S phase. In contrast, about half of the cells in periodically fed cultures were found to be in DNA-synthetic phase, and the percentage of these S phase cells fluctuated in a manner reflecting the frequency of medium replacement. Populations of both types of plateau-phase cultures demonstrate extremely coherent cyclic patterns of DNA synthesis upon harvest and reculturing. They retain this high degree of synchrony for more than three generations after the resumption of growth. From these data it is concluded that nutritionally deprived (starved) late plateau-phase cells generally stop in either G1, or G2, phase, whereas periodically fed late plateau-phase cultures contain a very large fraction of cycling cells. Populations of cells from these two types of non-expanding cultures are kinetically dissimilar, and should not be expected to respond to extracellular stimuli in the same manner.  相似文献   

2.
A comparison of gamma-ray dose fractionation effects was made using plateau-phase cultures of C3H 10T1/2 cells and their transformed counterparts in an attempt to simulate basically similar populations of cells that differ primarily in their turnover rates. The status of cell populations with respect to their turnover rates may be an important factor influencing dose fractionation effects in early- and late-responding tissues. In this cell culture system, the rate of cell turnover was approximately three times higher for the plateau-phase transformed cultures. While the single acute dose survival curves for log-phase cells were indistinguishable, there were significant differences between the survival curves for plateau-phase cultures of the two cell types. These differences were qualitatively similar to the differences recently postulated for the survival of target cells governing early and late tissue responses. Both cell lines had a similar capacity for repair of sublethal damage, but untransformed cells had a much greater capacity to repair potentially lethal damage in plateau phase. Further, untransformed plateau-phase cultures were much more sensitive to a radiation-induced G1 (or G0 to G1) delay than transformed cultures. Multifraction survival curves were determined for both cell lines for doses per fraction ranging from 9.0 to 0.8 Gy, and from these isoeffect curves of log total dose versus dose per fraction were derived. The isoeffect curve for the slowly cycling, untransformed cells was found to be appreciably steeper than that for the more rapidly cycling transformed cells, a finding consistent with previously reported differences in dose fractionation isoeffect curves for early- and late-responding tissues in vivo.  相似文献   

3.
Quiescence in 9L cells and correlation with radiosensitivity and PLD repair   总被引:4,自引:0,他引:4  
The onset of quiescence, changes in X-ray sensitivity, and changes in capacity for potentially lethal damage (PLD) repair of unfed plateau-phase 9L44 cell cultures have been systematically investigated. The quiescent plateau phase in 9L cells was the result of nutrient deprivation and was not a cell contact effect. Eighty-five to 90% of the plateau-phase cells had a G1 DNA content and a growth fraction less than or equal to 0.15. The cell kinetic shifts in the population were temporally correlated with a developing radioresistance, which was characterized by a larger shoulder in the survival curve of the quiescent cells (Dq = 5.71 Gy) versus exponentially growing cells (Dq = 4.48 Gy). When the quiescent plateau-phase cells were refed, an increase in radiosensitivity resulted which approached that of exponentially growing 9L cells. Delayed plating experiments after irradiation of exponentially growing cells, quiescent plateau-phase cells, and synchronized early to mid-G1-phase cells indicated that while significant PLD repair was evident in all three populations, the quiescent 9L cells had a higher PLD repair capacity. Although data for immediate plating indicated that 9L cells may enter quiescence in the relatively radioresistant mid-G1 phase, the enhanced PLD repair capacity of quiescent cells cannot be explained by redistribution into G1 phase. When the unfed quiescent plateau-phase 9L cells were stimulated to reenter the cell cycle by replating into fresh medium, the first G1 was extended by 6 h compared with the G1 of exponentially growing or refed plateau-phase 9L cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Populations of G1 phase 3T3 and SV40 3T3 mouse fibroblasts have been isolated from exponentially growing cultures by the technique of centrifugal elutriation. Return of the G1 phase cells to growth conditions results in their synchronous passage through the cell cycle, as determined from monitoring of cell number, [3H]thymidine ([3H]TdR) incorporation and fraction of [3H]TdR labeled nuclei. The durations of G1, S and G2 phases are consistent with values obtained by previous investigators using conventional induction techniques for synchronization. The method for isolation of the G1 phase cells is rapid, the yield is high and the process does not appear to alter the temporal aspects of the cell cycle in either cell type.  相似文献   

5.
Clonogenic survival response to 254-nm ultraviolet light was measured in 2 strains of repair-proficient normal human fibroblasts and 4 strains of xeroderma pigmentosum (XP) fibroblasts belonging to complementation groups A, C, D and variant. In all strains except XPA, cells irradiated in plateau phase and subcultured immediately were much more resistant to the lethal effect of UV than cells irradiated in the exponential phase of growth. Typically, 10-20% of plateau-phase cells were extremely resistant. When the cultures were held in plateau phase for 24 h after irradiation and before subculture, there was a further enhance of survival. By use of a UV-specific endonuclease assay, no difference was found in the number of DNA lesions induced in exponentially growing and plateau cultures by the same dose of UV light. Thus plateau-phase cells appear to be more efficient in their DNA-repair capability than cells in exponential growth. XP group A cells were uniquely found to be deficient in the processes which lead to plateau-phase resistance. Since plateau-phase repair was not lacking in XP groups C, D and variant, it may be related to a DNA-repair process different from that which is responsible for the overall UV sensitivity of these cells.  相似文献   

6.
When exponentially growing KB cells were deprived of arginine, cell multiplication ceased after 12 h but viability was maintained throughout the experimental period (42-48 h). Although tritiated thymidine ([(3)H]TdR) incorporation into acid-insoluble material declined to 5 percent of the initial rate, the fraction of cells engaged in DNA synthesis, determined by autoradiography, remained constant throughout the starvation period and approximately equal to the synthesizing fraction in exponentially growing controls (40 percent). Continous [(3)H]TdR-labeling indicated that 80 percent of the arginine-starved cells incorporated (3)H at some time during a 48-h deprivation period. Thus, some cells ceased DNA synthesis, whereas some initially nonsynthesizing cells initiated DNA synthesis during starvation. Flow microfluorometric profiles of distribution of cellular DNA contents at the end of the starvation period indicated that essentially no cells had a 4c or G2 complement. If arginine was restored after 30 h of starvation, cultures resumed active, largely asynchronous division after a 16-h lag. Autoradiographs of metaphase figures from cultures continuously labeled with [(3)H]TdR after restoration indicated that all cells in the culture underwent DNA synthesis before dividing. It was concluded that the majority of cells in arginine-starved cultures are arrested in neither a normal G1 nor G2. It is proposed that for an exponential culture, i.e. from most positions in the cell cycle, inhibition of cell growth after arginine with withdrawal centers on the ability of cells to complete replication of their DNA.  相似文献   

7.
Growth control is investigated in detail in fed and unfed HeLa-S3 suspension cultures. Two-step acridine orange staining and flow cytometric analysis indicated declines in cellular red fluorescence (proportional to RNA content) of 40-50% between exponential and plateau phase in both culture types. Cellular green fluorescence (DNA content) assessed simultaneously indicates an increment of cells with Gi-DNA content in plateau phase in the unfed cultures, while fed cultures show a brief increment in G1-phase cells in the transition phase followed by a recovery in plateau phase to a value similar to that of exponential cultures. Temporal declines in the 3H-thymidine pulse-labeling index are observed in both culture systems. These data along with the flow cytometry data indicate a distinct G1-arrest in the unfed plateau cultures and suggest a random arrest of cells about the cell cycle in fed plateau cultures. Acidic acridine orange staining and flow cytometric analysis furthermore indicate the occurrence of a quiescent population comprising approximately 345 of the total cells and consisting of both dead and viable cells in plateau phase unfed cultures. In contrast, fed plateau cultures show approximately 14% quiescent, mostly dead cells. Also, both culture systems show temporal declines in the clonogenic index and a longer cell-cycle transit time in plateau phase relative to exponential phase. These findings confirm earlier work which indicates that the environment has a profound influence on the mode of growth control for mammalian cells in vitro.  相似文献   

8.
Experiments were performed to study the influence of hypoxic pretreatment on the radiation response of A431 human squamous carcinoma cells. Reaeration for 10 min after chronic hypoxia (greater than 2 h) was found to enhance the radiosensitivity of A431 cells, and the maximal effect was seen for those cells reaerated after 12 h of hypoxia. The radiosensitivity enhancement for reaerated cells after 12 h of hypoxia was maximized by 5 min after the return to aerobic conditions and reached the control level by 12 h of reaeration. This enhanced radiosensitive state was characterized by a reduced shoulder region and increased slope of the radiation dose-response curve for cells in both the exponential and plateau phases of growth. There was a slight increase in the number of G1 and decrease in the number of S and G2 + M cells for both exponential- and plateau-phase cultures following 12 h hypoxic treatment. Although growth inhibition induced by 12 h of hypoxia was seen for cells in the exponential phase, there was no cell number change in the plateau-phase culture after hypoxia. Plating efficiency (PE) of cells in both growth phases was reduced by 30% after hypoxia. Furthermore, in the exponential-phase culture, the extent of reduction in PE after hypoxia was similar among cells in different phases of the cell cycle. Although S-phase cells in exponentially growing cultures were relatively more resistant to radiation than G1 and G2 + M cells, the cell age-response pattern was the same whether the cells had been aerobic or hypoxic before reaeration and irradiation. Furthermore, the enhancement ratio associated with reaeration after 12 h of hypoxia for these three subpopulations of cells was 1.3. Our results indicate that the increase in radiosensitivity due to reaeration after chronic hypoxia is unlikely to be related to the changes of cell cycle stage and growth phase during hypoxic treatment.  相似文献   

9.

1. 1.|Cultured Chinese hamster V79 cells were trypsinized plated and grown attached or inoculated into spinner flasks and grown in suspension from exponnential growth to plateau-phase growth and their thermal sensitivity was measured after various growth times.

2. 2.|For attached cells, cultures were trypsinized and replated either 2 h before or after heating and the results were qualitatively the same: the thermal sensitivity remained approximately the same for the first 20 h and then increased and reached a maximum at 40–70 h. During this time, cells were in an exponential growth phase, and little or no change was observed in the cell-cycle age distribution as measured by flow cytometry (FMF) or [3H]thymidine pulse ([3H]Tdr) labelling.

3. 3.|At longer times after plating, cells grew into plateau phase, and thermal sensitivity decreased and became less than for the cells in exponential growth phase at the beginning of the experiment.

4. 4.|FMF and [3H]Tdr labelling showed that cells were accumulating in G1 phase as the population density increased and that this accumulation was maximum at about 120–140 h as cells grew into plateau phase. This would account for the decrease in heat sensitivity and the increase in radiosensivity observed in plateau-phase cells.

5. 5.|For cells cultured in suspension there was no change in thermal sensitivity while cells were in exponential growth phase, As cell entered plateau phase, thermal resistance increased and most of the cell population had accumulated in G1 as measured by FMF.

Author Keywords: Chinese hamster V79 cells; thermal sensitivity; cell cycle; heat injury  相似文献   


10.
DNA synthesis in cells deprived of arginine was examined. Three lines of evidence indicated that tritiated thymidine ([3H]TdR) incorporation in arginine-starved cells was due to replicative rather than repair DNA synthesis. (a) When made in the presence of bromodeoxyuridine, the [3H]TdR-labeled DNA sedimented at hybrid density in isopycnic gradients. (b) As determined by the diphenylamine reaction, there was a 15% increase in the chemical amount of DNA per culture 30 h after arginine deprivation. (c) [3H]TdR incorporation was hydroxyurea- sensitive. Alkaline velocity sedimentation of the total DNA made during starvation revealed the existence of two distinct size classes: most of the DNA sedimented at a position analogous to that of control DNA, but 40% migrated one-third the distance of the bulk. After arginine restoration, these shorter pieces appeared to be chased into DNA of normal length; thus, one lesion in deprived cultures may cause an arrest in completion of DNA stretches to mature size. These findings, together with results of morphological studies of starved cells, suggest that changes induced by arginine deficiency effect the organization of nucleoproteins. These changes are reversible upon arginine restoration.  相似文献   

11.
Repair of potentially lethal damage (PLD) was investigated in a gamma-ray-sensitive Chinese hamster cell mutant, XR-1, and its parent by comparing survival of plateau-phase cells plated immediately after irradiation with cells plated after a delay. Previous work indicated that XR-1 cells are deficient in repair of double-strand DNA breaks and are gamma-ray sensitive in G1 but have near normal sensitivity and repair capacity in late S phase. At irradiation doses from 0 to 1.0 Gy (100 to 10% survival), the delayed- and immediate-plating survival curves of XR-1 cells were identical; however, at doses greater than 1.0 Gy a significant increase in survival was observed when plating was delayed (PLD repair), approaching a 20-fold increase at 8 Gy. Elimination of S-phase cells by [3H]thymidine suicide dramatically increased gamma-ray sensitivity of plateau-phase XR-1 mutant cells and reduced by 600-fold the number of cells capable of PLD repair after a 6-Gy dose. In contrast, elimination of S-phase cells in plateau-phase parental cells did not alter PLD repair. These results suggest that the majority of PLD repair observed in plateau-phase XR-1 cells occurs in S-phase cells while G1 cells perform little PLD repair. In contrast, G1 cells account for the majority of PLD repair in plateau-phase parental cells. Thus, in the XR-1 mutant, a cell's ability to repair PLD seems to depend upon the stage of the cell cycle at which the irradiation is delivered. A possible explanation for these findings is discussed.  相似文献   

12.
Kinetics of G1 transit following brief starvation for serum factors   总被引:7,自引:0,他引:7  
Growing fibroblasts such as 3T3 cells are well-known to enter a quiescent state (G0) after many hours of serum deprivation. They emerge from G0 upon readdition of serum and initiate DNA synthesis about 12 h later. In this paper, we analyzed the effects of brief periods of serum deprivation on the ability of cells in G1 to initiate DNA synthesis. Exponentially growing 3T3 fibroblasts were briefly deprived of serum and their progress into S phase was monitored by autoradiography of labeled nuclei. When 10% serum was added back to cultures deprived of serum for a few hours, the progress of G1 cells into S phase was delayed for intervals far in excess of the length of the serum deprivation. Longer serum starvations resulted in longer excess delays. Several transformed 3T3 derivatives were markedly less sensitive to this serum-induced G1 regression following deprivation. When 1 microgram/ml insulin (rather than 10% serum) was added back to the starved cultures, the G1 cells entered S phase immediately. Delay in S phase entry following serum readdition was completely prevented if insulin (and, to a lesser extent, EGF) was present during the starvation, was diminished if a lower serum concentration was used for readdition, and was partially abolished if 10% serum plus insulin was restored to the cultures. The above results, then, suggest that serum deprivation sensitizes the cells to an unidentified serum component which sets the cells back in G1, unless insulin is present to maintain the flow of cells into S.  相似文献   

13.
The antibody Ki-67, which detects proliferating cells, was used in combination with propidium iodide, a DNA-specific dye. The double-staining method allowed discrimination of cells in the phases of the cell cycle as well as the recognition of Ki-67 staining characteristics. Suspension cultures of U937 cells were measured in exponential growth and plateau phase in nutritional deprivation. The fraction of Ki-67 positive cells was nearly 100% 2 days after dilution and 46% 7 days after dilution of the cultures. Stathmokinetic measurements with colchicine and flow cytometry measurements with the BrdU-Hoechst technique yielded close to 100% proliferation at day 2 but only 18% and 6%, respectively, at day 7. The discrepancy between Ki-67 results and the results of the two other methods is considered to be a characteristic of nutritionally deprived cells.  相似文献   

14.
Abstract. The antibody Ki-67, which detects proliferating cells, was used in combination with propidium iodide, a DNA-specific dye. The double-staining method allowed discrimination of cells in the phases of the cell cycle as well as the recognition of Ki-67 staining characteristics. Suspension cultures of U937 cells were measured in exponential growth and plateau phase in nutritional deprivation. The fraction of Ki-67 positive cells was nearly 100% 2 days after dilution and 46% 7 days after dilution of the cultures. Stathmokinetic measurements with colchicine and flow cytometry measurements with the BrdU-Hoechst technique yielded close to 100% proliferation at day 2 but only 18% and 6%, respectively, at day 7. The discrepancy between Ki-67 results and the results of the two other methods is considered to be a characteristic of nutritionally deprived cells.  相似文献   

15.
Summary The effect of beta-arabinofuranosyladenine (araA) on the repair of radiation induced DNA damage, as measured by the DNA unwinding technique, was studied in exponentially growing and plateau-phase CHO-cells after exposure to x-rays. Induction of DNA damage by radiation was found to be similar in exponentially growing and plateau-phase cells. In the absence of araA, repair of radiation induced DNA damage proceeded with similar kinetics in exponentially growing and plateau-phase cells. AraA at concentrations between 0–1500 µM inhibited DNA repair both in exponentially growing and in plateau-phase cells. However, the degree of inhibition was significantly higher (by a factor of 3) in plateau-phase cells. A similar degree of repair inhibition by araA was observed in plateau phase cells treated in their conditioned medium, as well as in plateau phase cells that were transfered in fresh growth medium just before treatment initiation. These results indicate the importance of biochemical parameters associated with alterations in the growth state of the cells for the inhibitory effect of araA and may help in the elucidation of the molecular mechanism(s) underlying repair inhibition by inhibitors of DNA replication.  相似文献   

16.
Feulgen cytophotometry and autoradiography were used to study DNA content and DNA synthesis in starved and starved-refed Tetrahymena pyriformis GL-C. It was found that (1) the cell population shows a limited increase in cell number during starvation and this increase is restricted to the first 7 h of starvation; (2) at the end of starvation, there is a portion of the cell population whose DNA content is similar to that for standard G2 cells; (3) a significant portion of the dividing cells at the first division following refeeding in the presence of [3H]TdR are unlabeled; (4) these unlabeled cells are among the first to divide and, upon division, generally enter into a cell cycle either lacking a G1 phase or with a shortened G1 phase.  相似文献   

17.
Cellular uptake of [3H]thymidine [( 3H]TdR) and incorporation into DNA of Ehrlich ascites tumour cells were studied in relation to the cell cycle by measuring the activity in the acid-soluble and insoluble parts of the cell material. Cells were synchronized at various stages of the cell cycle using centrifugal elutriation. The degree of synchrony of the various cell fractions was measured by flow-cytofluorometric DNA analysis. From the cellular uptake, the TdR triphosphate (dTTP) concentration of a mean cell in an unseparated cell population was calculated to be 20 X 10(-18) mol/cell. The pool activity of G1 cells was unmeasurable but rose to maximum values at the border of the G1-S phase. It decreased again during G2. The [3H]TdR incorporation into DNA was low during early S phase, reached a maximum value at two-thirds of the S phase and decreased again during late S phase. These changes in DNA synthesis were not due to changes in the dTTP pool being a limiting factor. During maximum DNA synthesis, 10% X min-1 of the dTTP pool was utilized, at which time the pool size also decreased by about 30%. Changes in pool size during the cell cycle have to be taken into account when the results of incorporation of radioactive TdR into DNA are discussed.  相似文献   

18.
Clonogenic survival was measured in plateau-phase cultures of the 10T1/2 mouse cell line exposed to 254 nm ultra-violet light. The survival curve was found to be biphasic, Do for the two components being 37 and 1191 erg/mm2 respectively. This extreme resistance at higher doses can only be partly accounted for by the increased cytoplasmic absorption of U.V.L. due to an increased thickness of plateau-phase cells. When the cultures were held for 24 hours in plateau phase in conditioned medium after irradiation, recovery yielding a 1.4-fold enhancement of survival was found at higher doses. This recovery process was inhibited by neither caffeine nor cycloheximide. When caffeine was given for 48 hours after sub-culture, the effect on survival was also negligible. We propose that this plateau-phase recovery process is associated with excision repair of DNA adducts induced by U.V.L. Delayed sub-culturing favours the excision mode of repair and renders the post-replication mode less necessary.  相似文献   

19.
Synchronized myogenic cell cultures have been used to demonstrate differential sensitivity to BUdR during segments of the S period. Synchronization of the cells was achieved by two methods. First, cells were initiated in medium containing FUdR, an inhibitor of DNA synthesis. Following FUdR blockade reversal with TdR after 19 hr in vitro, the synchronized cells were allowed to replicate their DNA with BUdR for periods corresponding to early and late S. Determinations of percentage labeled cells during synchronization with FUdR indicate that about 90% of the cycling population of cells accumulates at the G1/S interface of the cell-cycle and that the duration of the S period following blockade reversal with TdR is not altered. Since BUdR is pulsed to these cultures immediately after the point of synchronization, a high degree of synchrony is obtained. In the second method of synchrony, cohorts of cells which had been in G2, late S, or early S during a BUdR pulse were collected in metaphase arrest with Colcemid and selectively removed from the cultures. With the mitotic selection method the point of synchronization occurred several hours after the BUdR pulse. In both methods the cells were allowed to resume myogenesis and scored for percentage fused nuclei after approx 50 hr in vitro. With both methods of synchrony, BUdR incorporation into early replicating DNA results in a striking decline in myoblast fusion, whereas incorporation into late replicating DNA is without effect. The results cannot be attributed to a disproportionate uptake of nucleotide during early S. Further fractionation of the 4-hr S phase into 1-hr periods indicates that the BUdR sensitive target is replicated during the second hr of DNA synthesis.  相似文献   

20.
C3H10T1/2 mouse embryo cells exhibiting strong contact inhibition of growth at confluency were grown in the presence of 5-bromodeoxyuridine (BrdUrd) or 5-iododeoxyuridine (IdUrd) (0-1.2 microM) with daily refeeding and exposed to gamma-rays (6 Gy) either in the logarithmic or the plateau phase of growth. Sensitization to radiation was observed in both growth states with increasing concentration of BrdUrd or IdUrd but the degree of sensitization achieved was lower for plateau-phase cells. Because the degree of [H3]BrdUrd incorporation was found to be similar in exponentially growing and plateau-phase cells, it is hypothesized that the radiosensitization caused by pyrimidine analogues may be affected by the physiological state of the cells at the time of irradiation. Delayed plating of plateau-phase cells (6 h) caused an increase in survival, indicating repair of potentially lethal damage (PLD). A greater increase in cell survival was observed in cells that had been grown in the presence of BrdUrd and IdUrd and it was found to increase with increasing concentrations. This analogue-concentration dependent PLD repair activity resulted in an almost complete loss of the radiosensitizing effect in delayed plated plateau-phase cells up to a concentration of about 0.6 microM of BrdUrd and IdUrd. Both compounds, but especially BrdUrd, caused a relaxation in the mechanism of contact inhibition and led to higher cell densities in the plateau phase. The results suggest that repair and/or expression of PLD might be involved in the mechanism underlying BrdUrd and IdUrd-mediated radiosensitization and point out the potential importance of PLD repair in the modulation of the radiosensitizing effect of these compounds in their clinical application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号