首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies were conducted to investigate the survival and multiplication of Legionella spp. in public drinking water supplies. An attempt was made, over a period of several years, to isolate legionellae from a municipal system. Sampling sites included the river water supply, treatment plant, finished water reservoir system, mains, and distribution taps. Despite the use of several isolation techniques, Legionella spp. could not be detected in any of the samples other than those collected from the river. It was hypothesized that this was due to the maintenance of a chlorine residual throughout the system. To investigate the potential for Legionella growth, additional water samples, collected from throughout the system, were dechlorinated, pasteurized, and inoculated with Legionella pneumophila. Subsequent growth indicated that many of these samples, especially those collected from areas affected by an accumulation of algal materials, exhibited a much greater ability to support Legionella multiplication than did river water prior to treatment. Chemical analyses were also performed on these samples. Correlation of chemical data and experimental growth results indicated that the chemical environment significantly affects the ability of the water to support multiplication, with turbidity, organic carbon, and certain metals being of particular importance. These studies indicate that the potential exists for Legionella growth within municipal systems and support the hypothesis that public water supplies may contaminate the plumbing systems of hospitals and other large buildings. The results also suggest that useful methods to control this contamination include adequate treatment plant filtration, maintenance of a chlorine residual throughout the treatment and distribution network, and effective covering of open reservoirs.  相似文献   

2.
An investigation of the chemical environment and growth of Legionella pneumophila in plumbing systems was conducted to gain a better understanding of its ecology in this habitat. Water samples were collected from hospital and institutional hot-water tanks known to have supported L. pneumophila and were analyzed for 23 chemical parameters. The chemical environment of these tanks was found to vary extensively, with the concentrations of certain metals reaching relatively high levels due to corrosion. The effect of various chemical conditions on L. pneumophila growth was then examined by observing its multiplication in the chemically analyzed hot-water tank samples after sterilization and reinoculation with L. pneumophila. L. pneumophila and associated microbiota used in these experiments were obtained from a hot-water tank. These stains were maintained in tap water and had never been passaged on agar. The results of the growth studies indicate that although elevated concentrations of a number of metals are toxic, lower levels of certain metals such as iron, zinc, and potassium enhance growth of naturally occurring L. pneumophila. Parallel observations on accompanying non-Legionellaceae bacteria failed to show the same relationship. These findings suggest that metal plumbing components and associated corrosion products are important factors in the survival and growth of L. pneumophila in plumbing systems and may also be important in related habitats such as cooling towers and air-conditioning systems.  相似文献   

3.
Studies were conducted to investigate the survival and multiplication of Legionella spp. in public drinking water supplies. An attempt was made, over a period of several years, to isolate legionellae from a municipal system. Sampling sites included the river water supply, treatment plant, finished water reservoir system, mains, and distribution taps. Despite the use of several isolation techniques, Legionella spp. could not be detected in any of the samples other than those collected from the river. It was hypothesized that this was due to the maintenance of a chlorine residual throughout the system. To investigate the potential for Legionella growth, additional water samples, collected from throughout the system, were dechlorinated, pasteurized, and inoculated with Legionella pneumophila. Subsequent growth indicated that many of these samples, especially those collected from areas affected by an accumulation of algal materials, exhibited a much greater ability to support Legionella multiplication than did river water prior to treatment. Chemical analyses were also performed on these samples. Correlation of chemical data and experimental growth results indicated that the chemical environment significantly affects the ability of the water to support multiplication, with turbidity, organic carbon, and certain metals being of particular importance. These studies indicate that the potential exists for Legionella growth within municipal systems and support the hypothesis that public water supplies may contaminate the plumbing systems of hospitals and other large buildings. The results also suggest that useful methods to control this contamination include adequate treatment plant filtration, maintenance of a chlorine residual throughout the treatment and distribution network, and effective covering of open reservoirs.  相似文献   

4.
Determination of the concentration of Legionella pneumophila in environmental water sites may be useful for the prediction of the risk of a particular site's causing Legionnaires' disease as well as for experimental studies of environmental growth or remediation. The precision and accuracy of recovery of two different L. pneumophila strains from seeded tap water samples were studied, with either filtration or centrifugation used to concentrate the bacteria. L. pneumophila grown on BCYE alpha agar or in Acanthamoeba castellanii was used to seed sterile tap water. Water samples were then either filtered (0.2-microns pore size) or centrifuged. An average of 53% (95% confidence interval [CI], 47 to 58%; n = 45) of the seeded L. pneumophila organisms were recovered by filtration with flat polycarbonate membranes. This recovery was significantly higher (P < 0.01) than that obtained by filtration with cast membranes (mean, 13%; 95% CI, 11 to 38%; n = 4) or by centrifugation at 3,800 x g for 30 min (mean, 14%; 95% CI, 2 to 25%; n = 9) or at 8,150 x g for 15 min (mean, 32%; 95% CI, 28 to 36%; n = 19). Recovery of L. pneumophila was not significantly different whether the bacteria were grown on plates or in amoebae. Use of a selective medium did not decrease the recovery efficiency, but preplating acid treatment of specimens caused an approximately 30% bacterial loss.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Isolation of Legionella species from drinking water.   总被引:4,自引:2,他引:2       下载免费PDF全文
Three different species of Legionella were recovered from samples of water taken from chlorinated public water supplies where no coliform bacteria were simultaneously detected. Five of 856 samples yielded Legionella isolates. Three isolates were identified as Legionella pneumophila serogroup 1, the fourth was identified as Legionella dumoffii, and the fifth was identified as Legionella jordanis. Studies to determine the survival of L. pneumophila Flint 1 serogroup 1 in tap water at various temperatures and in tap water with added sodium hypochlorite were done. These organisms were found to survive for 299 days in tap water at 24 and 5 degrees C but not at 35 degrees C. A concentration of at least 0.2 mg of residual chlorine per ml was required to eliminate at least 90% of L. pneumophila and Escherichia coli inocula in 2 h.  相似文献   

6.
A naturally occurring suspension of Legionella pneumophila and associated microbiota contained three unidentified non-Legionellaceae bacteria which supported satellite growth of a subculture of L. pneumophila on an L-cysteine-deficient medium and another bacterium which did not support growth of the subculture. Washed suspensions containing 10(3), 10(5), 10(7), or 10(8) CFU of a mixture of isolates of these non-Legionellaceae bacteria failed to support the multiplication of an isolate of agar-grown L. pneumophila which had been washed and seeded into the suspensions. The suspensions which contained 10(3), 10(5), or 10(7) CFU of the non-Legionellaceae bacteria per ml appeared to enhance survival or cryptic growth of agar-grown L. pneumophila. A decline of 1.3 log CFU of L. pneumophila per ml occurred within the first week of incubation in the sample which contained 10(8) CFU of the non-Legionellaceae bacteria per ml. In contrast to these results, naturally occurring L. pneumophila multiplied in the presence of associated microbiota. The necessity to subculture L. pneumophila and the non-Legionellaceae bacteria on artificial medium to obtain pure cultures may have affected the multiplication of L. pneumophila in tap water. Alternatively, other microorganisms may be present in the naturally occurring suspension which support the growth of this bacterium.  相似文献   

7.
AIMS: To characterize the efficacy of widely accepted heat and chlorination on culturable and non-culturable Legionella pneumophila in starved and warm water. METHODS AND RESULTS: For L. pneumophila starved for 1 day (S1), heating at 60 degrees C or more for 30 min or chlorination at 0.5-20 mg l(-1) for 60 min, a loss of 6-8 log culturability was observed, whereas only 17-47% of cells had membrane damage. Non-culturability was also observed after heating or chlorinating the cells starved for 14 days (S14). The effect of heating on membrane deterioration was reduced for S14 cells while the chlorination effect remained. Legionella pneumophila entered a non-culturable phase after being starved for 33-40 days. The disinfection effects of both heating and chlorination on non-culturable N4 and N35 cells (which were collected on the fourth and the 35th days of the non-culturability phase respectively) decreased, indicating the development of disinfection resistance among non-culturable cells that had been subjected to starvation for 1-2 months. CONCLUSIONS: Heating and chlorination significantly reduce the culturability of starved L. pneumophila, and damage cell membrane to a much less extent. SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows the ability of long-term starved L. pneumophila to resist against disinfection treatments, which has implications in terms of public health.  相似文献   

8.
A naturally occurring suspension of Legionella pneumophila and associated microbiota contained three unidentified non-Legionellaceae bacteria which supported satellite growth of a subculture of L. pneumophila on an L-cysteine-deficient medium and another bacterium which did not support growth of the subculture. Washed suspensions containing 10(3), 10(5), 10(7), or 10(8) CFU of a mixture of isolates of these non-Legionellaceae bacteria failed to support the multiplication of an isolate of agar-grown L. pneumophila which had been washed and seeded into the suspensions. The suspensions which contained 10(3), 10(5), or 10(7) CFU of the non-Legionellaceae bacteria per ml appeared to enhance survival or cryptic growth of agar-grown L. pneumophila. A decline of 1.3 log CFU of L. pneumophila per ml occurred within the first week of incubation in the sample which contained 10(8) CFU of the non-Legionellaceae bacteria per ml. In contrast to these results, naturally occurring L. pneumophila multiplied in the presence of associated microbiota. The necessity to subculture L. pneumophila and the non-Legionellaceae bacteria on artificial medium to obtain pure cultures may have affected the multiplication of L. pneumophila in tap water. Alternatively, other microorganisms may be present in the naturally occurring suspension which support the growth of this bacterium.  相似文献   

9.
10.
A preliminary survey of water systems in hospitals and hotels showed that Legionella pneumophila may be found in water storage and distribution systems as well as in the recirculating cooling water of air-conditioning plants. Altogether 42 isolates of L pneumophila were made from 31 establishments, six of which were associated with cases of legionnaires'' disease but in 25 of which there was no known association with disease. In the six establishments implicated epidemiologically as the source of legionnaires'' disease, these organisms were found in each of their water-distribution systems and also in the cooling water from each of the three with cooling towers. In establishments not associated with cases, water from three out of nine cooling towers, four out of 24 taps or showers, and one out of 15 storage tanks was found to contain legionellae. The organisms were isolated by guinea-pig inoculation and subsequent culture of their peritoneal fluid, liver, and spleen. Finding L pneumophila in water systems in the absence of cases of legionnaires'' disease should not at present be an indication for attempts at eradication.  相似文献   

11.
The presence of high levels of Legionella pneumophila in man-made aquatic systems correlates with the incidence of nosocomial Legionnaires' disease. This requires a rapid, reliable, and sensitive quantification of L. pneumophila concentrations in suspected water systems. In this research, a homologous competitor was developed and evaluated in a L. pneumophila competitive polymerase chain reaction (cPCR) to quantify this human pathogen in a quick, cost-effective, and reliable way. Accuracy of cPCR was evaluated by analyzing cooling tower and tap water samples spiked with known concentrations of L. pneumophila bacteria, in parallel with the standard culture method. Legionella pneumophila amounts detected and calculated from cPCR and culture correlated very well: r = 0.998, P = 0.002 for tap water and r = 0.990, P = 0.009 for cooling tower water. Nevertheless, for both kinds of water samples, mean numbers of L. pneumophila calculated from cPCR results were always higher than those obtained by culture. This study makes it clear that the rapid, sensitive, and cost-effective L. pneumophila cPCR is a promising alternative to the standard time-consuming culture method and expensive real-time PCR to enumerate L. pneumophila bacteria in environmental water samples.  相似文献   

12.
A cloned EcoRI fragment from Legionella pneumophila, which includes 16S and 23S rRNA genes, was used to identify bacteria belonging to the genus Legionella by hybridization to a series of species specific restriction fragments. Examination of the type strains of 28 species of legionellae gave different band patterns in every case. When further isolates of these species were tested the patterns obtained were usually either identical, or very similar, to those of the respective type strains. Thirty-one coded isolates were examined and of these 29 were allocated to the correct species. The remaining strains (a non-Legionella and a L. pneumophila) could not be identified using this technique. The rRNA gene probe method should be of great value in the identification of legionellae, particularly for those species which are at present very difficult to distinguish serologically.  相似文献   

13.
A sensitive and specific method has been developed to enumerate viable L. pneumophila and other Legionella spp. in water by epifluorescence microscopy in a short period of time (a few hours). This method allows the quantification of L. pneumophila or other Legionella spp. as well as the discrimination between viable and nonviable Legionella. It simultaneously combines the specific detection of Legionella cells using antibodies and a bacterial viability marker (ChemChrome V6), the enumeration being achieved by epifluorescence microscopy. The performance of this immunological double-staining (IDS) method was investigated in 38 natural filterable water samples from different aquatic sources, and the viable Legionella counts were compared with those obtained by the standard culture method. The recovery rate of the IDS method is similar to, or higher than, that of the conventional culture method. Under our experimental conditions, the limit of detection of the IDS method was <176 Legionella cells per liter. The examination of several samples in duplicates for the presence of L. pneumophila and other Legionella spp. indicated that the IDS method exhibits an excellent intralaboratory reproducibility, better than that of the standard culture method. This immunological approach allows rapid measurements in emergency situations, such as monitoring the efficacy of disinfection shock treatments. Although its field of application is as yet limited to filterable waters, the double-staining method may be an interesting alternative (not equivalent) to the conventional standard culture methods for enumerating viable Legionella when rapid detection is required.  相似文献   

14.
A negative enrichment procedure was developed which was capable of isolating Legionella pneumophila directly from seeded air-conditioning cooling tower water onto laboratory media. This procedure was based on an 8-h incubation under conditions that were bactericidal to the indigenous water microflora but merely bacteriostatic to L. pneumophila.  相似文献   

15.
Aims:  Concentration of pathogens diluted in large volumes of water is necessary for their detection. An automated concentration system placed online in drinking water distribution systems would facilitate detection and mitigate the risk to public health.
Methods and Results:  A prototype concentrator based on dead-end hollow fibre ultrafiltration was used to concentrate Bacillus atrophaeus spores directly from tap water. Backflush was used to recover accumulated particulates for analysis. In field tests conducted on a water utility distribution system, 3·2 × 104–1·4 × 106 CFU ml−1 (6·1 × 106–3·0 × 108 CFU) were recovered from the filter when 2·9 × 107–1·0 × 109 CFU were spiked into the system. Per cent recovery ranged from 21% to 68% for flow volumes of 15–21 l. Tests using spore influent levels <10 CFU l−1 (spike < 1000 CFU) yielded 23–40% recovery for volumes >100 l.
Conclusions:  B. atrophaeus spores at levels <10 CFU l−1 were concentrated directly from tap water using an automated dead-end hollow-fibre ultrafiltration system.
Significance and Impact of the Study:  The prototype concentrator represents a critical step towards an autonomous system that could be installed in drinking water distribution lines or other critical water lines to facilitate monitoring. Recovered samples can be analysed using standard or rapid biosensor methods.  相似文献   

16.
The postantibiotic effects (PAE) of azithromycin, clarithromycin, ciprofloxacin, and levofloxacin were investigated against Legionella pneumophila (L. pneumophila) strains isolated from several hot water systems of different buildings in Istanbul. Each strain in logarithmic phase of growth was exposed to concentrations of antibiotics equal to minimum inhibitory concentration (MIC) and 4× MIC for 1?h. Recovery periods of test cultures were evaluated after centrifugation using the viable counting method. The mean values of PAEs for the strains of L. pneumophila, azithromycin at a concentration equal to and 4 times of MIC values were found 1.75?±?0.28 h and 4.06?±?0.44?h, for clarithromycin 2.98?±?0.70?h and 4.18?±?0.95?h, for ciprofloxacin 2.97?±?0.63?h and 4.70?±?0.63?h, for levofloxacin 2.05?±?0.33?h and 3.78?±?0.46?h, respectively. All of the antibiotics showed increased PAE values in a concentration-dependent manner. The findings of our study may play useful role in selecting the appropriate timing of doses during therapy with antimicrobials to treat patients infected with L. pneumophila.  相似文献   

17.
Legionella pneumophila is the primary cause of the legionellosis diseases (90 %) (Yu et al. in J Infect Dis 186:127–128, 2002; Doleans et al. in J Clin Microbiol 42:458–460, 2004; Den Boer et al. in Clin Microbiol Infect 14:459–466, 2008). In this study, methodologies based on molecular biology were developed in order to provide a quick diagnosis of the bacterial presence in water samples of Spain. Multiplex real-time polymerase chain reaction assays were realized to target the 16S rRNA and macrophage infectivity potentiator (mip) genes of, respectively, Legionella spp. and L. pneumophila including in the design of an internal control. The results obtained by the culture and the gene amplification methods agreed in 94.44 % for the 16S rRNA gene, and a concordance of 66.67 % of the cases was obtained for the mip gene.  相似文献   

18.
Tap water, from an experimental hot water system, containing a known virulent strain of Legionella pneumophila was stored in screw-capped bottles for 14 months. Viable counts showed survival of L. pneumophila and at least three other bacterial species. This reinforces the view that L. pneumophila can survive in stagnant water for relatively long periods of time.  相似文献   

19.
Tap water, from an experimental hot water system, containing a known virulent strain of Legionella pneumophila was stored in screw-capped bottles for 14 months. Viable counts showed survival of L. pneumophila and at least three other bacterial species. This reinforces the view that L. pneumophila can survive in stagnant water foatively long periods of time.  相似文献   

20.
The conjugative properties of an indigenous 85 MDa plasmid (designated pCH1) from Legionella pneumophila were studied. To determine if pCH1 was transmissible by conjugation, mating experiments were performed between legionellae that harboured pCH1 and several plasmid-less recipients. Plasmid transfer was monitored by colony hybridization, using a cloned 21.0 kb SalI restriction fragment from pCH1 as a probe. The results from these experiments showed that pCH1 could be conjugatively transferred into several strains of L. pneumophila serogroup 1 but not into strain Bloomington-2 (serogroup 3) or Escherichia coli. Southern hybridization experiments in which pCH1 DNA was used as a probe showed that pCH1 does not share homology with other indigenous L. pneumophila plasmids. There was no detectable DNA homology between pCH1 and L. pneumophila chromosomal DNA. Additional mating experiments revealed that pCH1 was unable to mobilize the L. pneumophila chromosome. The conjugative transfer of pCH1 into plasmid-less avirulent or virulent serogroup 1 strains did not alter the intracellular growth characteristics of these strains in U937 cells, a human-monocyte-like cell line, or in the amoeba Hartmannella vermiformis. These results suggest that pCH1 does not contribute to the ability of L. pneumophila to enter or grow within eukaryotic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号