首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polycyclic aromatic hydrocarbons (PAHs) are metabolized to trans-dihydrodiol proximate carcinogens by human epoxide hydrolase (EH) and CYP1A1. Human dihydrodiol dehydrogenase isoforms (AKR1C1-AKR1C4), members of the aldo-keto reductase (AKR) superfamily, activate trans-dihydrodiols by converting them to reactive and redox-active o-quinones. We now show that the constitutively and widely expressed human AKR, aldehyde reductase (AKR1A1), will oxidize potent proximate carcinogen trans-dihydrodiols to their corresponding o-quinones. cDNA encoding AKR1A1 was isolated from HepG2 cells, overexpressed in Escherichia coli, purified to homogeneity, and characterized. AKR1A1 oxidized the potent proximate carcinogen (+/-)-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene with a higher utilization ratio (V(max)/K(m)) than any other human AKR. AKR1A1 also displayed a high V(max)/K(m) for the oxidation of 5-methylchrysene-7,8-diol, benz[a]anthracene-3,4-diol, 7-methylbenz[a]anthracene-3,4-diol, and 7,12-dimethylbenz[a]anthracene-3,4-diol. AKR1A1 displayed rigid regioselectivity by preferentially oxidizing non-K-region trans-dihydrodiols. The enzyme was stereoselective and oxidized 50% of each racemic PAH trans-dihydrodiol tested. The absolute stereochemistries of the reactions were assigned by circular dichroism spectrometry. AKR1A1 preferentially oxidized the metabolically relevant (-)-benzo[a]pyrene-7(R),8(R)-dihydrodiol. AKR1A1 also preferred (-)-benz[a]anthracene-3(R),4(R)-dihydrodiol, (+)-7-methylbenz[a]anthracene-3(S),4(S)-dihydrodiol, and (-)-7,12-dimethylbenz[a]anthracene-3(R),4(R)-dihydrodiol. The product of the AKR1A1-catalyzed oxidation of (+/-)-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene was trapped with 2-mercaptoethanol and characterized as a thioether conjugate of benzo[a]pyrene-7,8-dione by LC/MS. Multiple human tissue expression array analysis showed coexpression of AKR1A1, CYP1A1, and EH, indicating that trans-dihydrodiol substrates are formed in the same tissues in which AKR1A1 is expressed. The ability of this general metabolic enzyme to divert trans-dihydrodiols to o-quinones suggests that this pathway of PAH activation may be widespread in human tissues.  相似文献   

2.
Polycyclic aromatic hydrocarbons (PAHs) are metabolized to trans-dihydrodiol proximate carcinogens by CYP1A1 and epoxide hydrolase (EH). CYP1A1 or aldo-keto reductases (AKRs) from the 1C subfamily can further activate the trans-dihydrodiols by forming either anti-diol-epoxides or reactive and redox active o-quinones, respectively. To determine whether other AKR superfamily members can divert trans-dihydrodiols to o-quinones, the cDNA encoding human aldehyde reductase (AKR1A1) was isolated from hepatoma HepG2 cells using RT-PCR, subcloned into a prokaryotic expression vector, overexpressed in E. coli and purified to homogeneity in milligram amounts. Studies revealed that AKR1A1 preferentially oxidized the metabolically relevant (-)-[3R,4R]-dihydroxy-3,4-dihydrobenz[a]anthracene. AKR1A1 also displayed high utilization ratios (V(max)/K(m)) for the following PAH trans-dihydrodiols: (+/-)trans-3,4-dihydroxy-3,4-dihydro-7-methylbenz[a]anthracene, (+/-)trans-3,4-dihydroxy-3,4-dihydro-7,12-dimethylbenz[a]anthracene and (+/-)trans-7,8-dihydroxy-7,8-dihydro-5-methylchrysene. Multiple tissue expression (MTE) arrays were used to measure the co-expressed of CYP1A1, EH and AKR1A1. All the three enzymes co-expressed to sites of PAH activation. The high catalytic efficiency of AKR1A1 for potent proximate carcinogen trans-dihydrodiols and its presence in tissues that contain CYP1A1 and EH suggests that it plays an important role in this alternative pathway of PAH activation (supported by CA39504).  相似文献   

3.
Yu D  Kazanietz MG  Harvey RG  Penning TM 《Biochemistry》2002,41(39):11888-11894
Polycyclic aromatic hydrocarbons (PAHs) require metabolic activation to exert their carcinogenic effects. PAH trans-dihydrodiol proximate carcinogens are oxidized by aldo-keto reductases (AKRs) to their corresponding reactive and redox-active o-quinones which may have the properties of initiators and promoters. To determine whether these o-quinones target protein kinase C (PKC), their effects on human recombinant PKCalpha and PKCdelta and the catalytic fragment of rat brain PKC were determined. Naphthalene-1,2-dione (NP-1,2-dione), benzo[a]pyrene-7,8-dione (BP-7,8-dione), and 7,12-dimethylbenz[a]anthracene-3,4-dione (DMBA-3,4-dione) potently inhibited (IC(50) values 3-5 microM) the basal and stimulated activity of the holoenzymes PKCalpha and PKCdelta in a dose-dependent manner. Inhibition of PKC by BP-7,8-dione was observed irrespective of whether PKCalpha activity was stimulated with phorbol 12-myristate 13-acetate (PMA), phosphatidylserine (PS), or Ca(2+) or whether PKCdelta was stimulated with phorbol 12-myristate 13-acetate (PMA) or phosphatidylserine (PS), suggesting that the inhibition was not cofactor-specific. All three quinones inhibited the catalytic fragment of PKC in vitro, yielding identical IC(50) values (3-5 microM), indicating that they interact with the catalytic domain of PKC rather than the cofactor/activator sites. In contrast, no effect on either the holoenzyme or the catalytic fragment was observed with the corresponding PAH trans-dihydrodiols, indicating that inhibition was o-quinone-specific. Irreversible inhibition of the catalytic fragment of PKC was observed since activity could not be restored by dialysis, suggesting that arylation of the fragment had occurred. NP-1,2-dione and BP-7,8-dione also suppressed PKC activity in human breast cancer MCF-7 cell lysates which express PKCalpha, -beta, -delta, -epsilon, -iota, and -lambda isozymes. These data suggest that PAH o-quinones, generated by AKRs, may affect cellular signaling through suppression of the activity of PKC isoforms.  相似文献   

4.
Polycyclic aromatic hydrocarbon (PAH) o-quinones are products of an NADP+ dependent oxidation of non-K-region trans-dihydrodiols catalyzed by dihydrodiol dehydrogenase (EC 1.3.1.20). Since these PAH o-quinones could be detoxified by non-enzymatic or enzymatic conjugation with cellular thiols, their reactivity with 2-mercaptoethanol, cysteine and glutathione (GSH) was examined by ion-pair reverse phase high pressure liquid chromatography (RP-HPLC). Second-order rate constants for the addition of these thiols to naphthalene-1,2-dione (NPQ) in water ranging from 4.9 x 10(3) - 1.1 x 10(4) min-1 M-1 and the reactions were complete within 10 min. When these reactions were conducted at near physiological pH (50 mM potassium phosphate buffer pH 7.0), the rate constants increased by 2-orders of magnitude. When benzo[a]pyrene-7,8-dione (BPQ) was substituted in these reactions the second-order rate constants decreased by 2-3 orders of magnitude and the reactions took several hours to reach completion. The decrease in reactivity can be explained by the presence of the bay region in BPQ. Methylation influenced the reactivity of PAH o-quinones with GSH and the following order of reactivity was observed: 7,12-dimethyl-benz[a]anthracene-3,4-dione (7,12-DMBAQ) > 12-methyl-BAQ, 7-methyl-BAQ and BAQ > BPQ. Of these quinones 7,12-dimethyl-BAQ was almost equi-reactive with NPQ. This suggests that methyl substitution in the bay and peri regions enhances reactivity with GSH. Using NPQ as a model for other PAH o-quinones, N-acetyl-L-cysteine, L-cysteine and GSH conjugates of NPQ were synthesized and characterized by [1H]- and [13C]NMR. Evidence for Michael type 1,4-addition products was obtained in which the resultant adduct could exist as either a catechol or o-quinone. By contrast, L-cysteine was able to form adducts via S- or N-attack and N-attack gave a purple p-iminoquinone. There was no evidence for the formation of bis-N-acetyl-L-cysteinyl-, bis-glutathionyl adducts or phenolic coupled products. The toxicity of thiol conjugates of NPQ remains to be explored.  相似文献   

5.
Polycyclic aromatic hydrocarbons (PAH) are environmental and tobacco carcinogens. Metabolic activation of intermediate PAH trans-dihydrodiols by aldo-keto reductases (AKRs) leads to the formation of electrophilic and redox-active o-quinones. We investigated whether O-methylation by human recombinant soluble catechol-O-methyltransferase (S-COMT) is a feasible detoxication step for a panel of structurally diverse PAH-catechols produced during the redox-cycling process. Classes of PAH non-K-region o-quinones (bay region, methylated bay region, and fjord region o-quinones) produced by AKRs were employed in the studies. PAH o-quinones were reduced to the corresponding catechols by dithiothreitol under anaerobic conditions and then further O-methylated by human S-COMT in the presence of S-[3H]adenosyl-l-methionine as a methyl group donor. The formation of the O-methylated catechols was detected by HPLC-UV coupled with in-line radiometric detection, and unlabeled products were also characterized by LC-MS/MS. Human S-COMT was able to catalyze O-methylation of all of the PAH-catechols and generated two isomeric metabolites in different proportions. LC-MS/MS showed that each isomer was a mono-O-methylated metabolite. 1H NMR was used to assign the predominant positional isomer of benzo[a]pyrene-7,8-catechol as the O-8-monomethylated catechol. The catalytic efficiency (k(cat)/K(m)) varied among different classes of PAH-catechols by 500-fold. The ability of S-COMT to produce two isomeric products from PAH-catechols was rationalized using the crystal structure of the enzyme. We provide evidence that O-8-monomethylated benzo[a]pyrene-7,8-catechol is formed in three different human lung cell lines. It is concluded that human S-COMT may play a critical role in the detoxication of PAH o-quinones generated by AKRs.  相似文献   

6.
Polycyclic aromatic hydrocarbons (PAH) are environmental and tobacco carcinogens. Human aldo-keto reductases catalyze the metabolic activation of proximate carcinogenic PAH trans-dihydrodiols to yield electrophilic and redox-active o-quinones. Benzo[a]pyrene-7,8-dione a representative PAH o-quinone is reduced back to the corresponding catechol to generate a futile redox-cycle. We investigated whether sulfonation of PAH catechols by human sulfotransferases (SULT) could intercept the catechol in human lung cells. RT-PCR identified SULT1A1, -1A3, and -1E1 as the isozymes expressed in four human lung cell lines. The corresponding recombinant SULTs were examined for their substrate specificity. Benzo[a]pyrene-7,8-dione was reduced to benzo[a]pyrene-7,8-catechol by dithiothreitol under anaerobic conditions and then further sulfonated by the SULTs in the presence of 3'-[(35)S]phosphoadenosine 5'-phosphosulfate as the sulfonate group donor. The human SULTs catalyzed the sulfonation of benzo[a]pyrene-7,8-catechol and generated two isomeric benzo[a]pyrene-7,8-catechol O-monosulfate products that were identified by reversed phase HPLC and by LC-MS/MS. The various SULT isoforms produced the two isomers in different proportions. Two-dimensional (1)H and (13)C NMR assigned the two regioisomers of benzo[a]pyrene-7,8-catechol monosulfate as 8-hydroxy-benzo[a]pyrene-7-O-sulfate (M1) and 7-hydroxy-benzo[a]pyrene-8-O-sulfate (M2), respectively. The kinetic profiles of three SULTs were different. SULT1A1 gave the highest catalytic efficiency (k(cat)/K(m)) and yielded a single isomeric product corresponding to M1. By contrast, SULT1E1 showed distinct substrate inhibition and formed both M1 and M2. Based on expression levels, catalytic efficiency, and the fact that the lung cells only produce M1, it is concluded that the major isoform that can intercept benzo[a]pyrene-7,8-catechol is SULT1A1.  相似文献   

7.
The role of specific cytochrome P-450 isoenzymes in the regio-selective metabolism of 7,12-dimethylbenz[a]anthracene (DMBA) has been studied in microsomal membranes from rat and human liver. An antibody inhibition study using membranes from phenobarbital-treated rats demonstrates that a member(s) of the CYP2C family accounts for up to 90% of the formation of the proximate carcinogen, DMBA-3,4-diol, and makes significant contributions to the formation of DMBA-5,6-diol and DMBA-8,9-diol. In these membranes the formation of DMBA-5,6-diol can be entirely accounted by the combined activity of members of the CYP2C and CYP2B families. The metabolism of DMBA has been investigated in human using microsomes from 10 individuals and the metabolites formed by these membranes were found to be mainly hydroxymethyl- and -diol products. The rates of formation of each metabolite show considerable interindividual variation and there was no correlation between these rates for any pairing of metabolites. The CYP content in these membranes of specific members of families 1, 2, 3 and 4 did correlate with the rates of formation of individual metabolites. Surprisingly there was no correlation between the content of CYP2C and formation of DMBA-3,4-diol but an antibody to rat CYP2C6 partially inhibited the formation of this metabolite. The results indicate that in human both inducible sub-families of CYPs, particularly of the PB-type, and constitutively expressed CYPs may be important in DMBA metabolism and that each metabolite may be produced by the combined activity of several CYP isoforms.  相似文献   

8.
Polycyclic aromatic hydrocarbons (PAHs) are metabolized to trans-dihydrodiol proximate carcinogens by CYP1A1 and epoxide hydrolase (EH). CYP1A1 or aldo–keto reductases (AKRs) from the 1C subfamily can further activate the trans-dihydrodiols by forming either anti-diol-epoxides or reactive and redox active o-quinones, respectively. To determine whether other AKR superfamily members can divert trans-dihydrodiols to o-quinones, the cDNA encoding human aldehyde reductase (AKR1A1) was isolated from hepatoma HepG2 cells using RT-PCR, subcloned into a prokaryotic expression vector, overexpressed in E. coli and purified to homogeneity in milligram amounts. Studies revealed that AKR1A1 preferentially oxidized the metabolically relevant (−)-[3R,4R]-dihydroxy-3,4-dihydrobenz[a]anthracene. AKR1A1 also displayed high utilization ratios (Vmax/Km) for the following PAH trans-dihydrodiols: (±)trans-3,4-dihydroxy-3,4-dihydro-7-methylbenz[a]anthracene, (±)trans-3,4-dihydroxy-3,4-dihydro-7,12-dimethylbenz[a]anthracene and (±)trans-7,8-dihydroxy-7,8-dihydro-5-methylchrysene. Multiple tissue expression (MTE) arrays were used to measure the co-expressed of CYP1A1, EH and AKR1A1. All the three enzymes co-expressed to sites of PAH activation. The high catalytic efficiency of AKR1A1 for potent proximate carcinogen trans-dihydrodiols and its presence in tissues that contain CYP1A1 and EH suggests that it plays an important role in this alternative pathway of PAH activation (supported by CA39504).  相似文献   

9.
10.
The mutagenic activities of trans-7,8-dihydro-7,8-dihydroxybenzo[a]-pyrene (BP 7,8-diol) and of trans-3,4-dihydroxy-7,12-dimethylbenz[a]-anthracene (DMBA 3,4-diol) towards S. typhimurium TA100 were measured in assays that were carried out on a micro-scale in liquid medium in the presence of microsomal fractions prepared from mouse skin or rat liver. In the presence of an NADPH-generating system, microsomal enzymes converted both diols into mutagens that were probably the respective 'bay-region' diol-epoxides. The rate of the enzyme-catalysed conversion of the BP 7,8-diol into mutagens by microsomal preparations from mouse epidermis was similar to that occurring with microsomes from rat liver. Pretreatment of mice by the topical application of benz[a]anthracene (BA) or 7,12-dimethylbenz[a]-anthracene (DMBA) increased the mutagenic activity of BP 7,8-diol mediated by mouse skin microsomal preparations by 2-fold and this was paralleled by a 4-fold increase in epidermal aryl hydrocarbon (benzo[a]pyrene) hydroxylase (AHH) activity. The results are discussed in relation to the high susceptibility of mouse skin to polycyclic aromatic hydrocarbon (PAH) carcinogenesis.  相似文献   

11.
4-Methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) has been identified as one of the strongest nitrosamine carcinogens in tobacco products in all species tested. Carbonyl reduction to 4-methylnitrosamino-1-(3-pyridyl)-1-butanol (NNAL) followed by glucuronosylation is considered to be the main detoxification pathway in humans. In previous investigations, we have identified a microsomal NNK carbonyl reductase as being identical to 11ß-hydroxysteroid dehydrogenase 1, a member of the short-chain dehydrogenase/reductase (SDR) superfamily. Recently, we provided evidence that carbonyl reduction of NNK does also take place in cytosol from mouse and human liver and lung. In human liver cytosol, carbonyl reductase, a SDR enzyme, and AKR1C1, AKR1C2 and AKR1C4 from the aldo-keto reductase (AKR) superfamily were demonstrated to be responsible for NNK reduction. Since NNK and/or its metabolites can diffuse through the placenta and reach fetal tissues, we now investigated NNK carbonyl reduction in the cytosolic fraction of human placenta in addition to that in microsomes. Concluding from the sensitivity to menadione, ethacrynic acid, rutin and quercitrin as specific inhibitors, mainly carbonyl reductase (EC 1.1.1.184) seems to perform this reaction in human placenta cytosol. The presence of carbonyl reductase was confirmed by RT-PCR. This is the first report to provide evidence that NNAL formation in placenta is mediated by carbonyl reductase.  相似文献   

12.
4-Methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) has been identified as one of the strongest nitrosamine carcinogens in tobacco products in all species tested. Carbonyl reduction to 4-methylnitrosamino-1-(3-pyridyl)-1-butanol (NNAL) followed by glucuronosylation is considered to be the main detoxification pathway in humans. In previous investigations, we have identified a microsomal NNK carbonyl reductase as being identical to 11beta-hydroxysteroid dehydrogenase 1, a member of the short-chain dehydrogenase/reductase (SDR) superfamily. Recently, we provided evidence that carbonyl reduction of NNK does also take place in cytosol from mouse and human liver and lung. In human liver cytosol, carbonyl reductase, a SDR enzyme, and AKR1C1, AKR1C2 and AKR1C4 from the aldo-keto reductase (AKR) superfamily were demonstrated to be responsible for NNK reduction. Since NNK and/or its metabolites can diffuse through the placenta and reach fetal tissues, we now investigated NNK carbonyl reduction in the cytosolic fraction of human placenta in addition to that in microsomes. Concluding from the sensitivity to menadione, ethacrynic acid, rutin and quercitrin as specific inhibitors, mainly carbonyl reductase (EC 1.1.1.184) seems to perform this reaction in human placenta cytosol. The presence of carbonyl reductase was confirmed by RT-PCR. This is the first report to provide evidence that NNAL formation in placenta is mediated by carbonyl reductase.  相似文献   

13.
The syntheses of 7,12-dimethylbenz[a]anthracene 5,6-oxide, 7-acetoxymethyl-12-methylbenz[a]anthracene 5,6-oxide and a product that appears to be mainly 7-hydroxymethyl-12-methylbenz[a]anthracene 5,6-oxide are described. The compounds readily rearranged to phenols in the presence of mineral acid, and 7,12-dimethylbenz[a]anthracene 5,6-oxide and its 7-hydroxymethyl derivative reacted slowly with water to yield trans-5,6-dihydro-5,6-dihydroxy-7,12-dimethylbenz[a] anthracene and trans-5,6-dihydro-5,6-dihydroxy-7-hydroxymethyl-12-methylbenz [a]anthracene respectively. Both epoxides were converted enzymically by rat liver microsomal fractions and homogenates into the related trans-dihydrodiols. The epoxides reacted chemically with GSH to form conjugates that were identical with the conjugates formed when the epoxides were incubated with rat liver homogenates. The GSH conjugates were more stable to acid than conjugates derived from other arene oxides. In the alkylation of 4-(p-nitrobenzyl)pyridine, 7,12-dimethyl-benz[a]anthracene 5,6-oxide was more active than the 5,6-oxides of 7-methylbenz[a]-anthracene and benz[a]anthracene.  相似文献   

14.
The role of vicinal diol-epoxides in the metabolic activation of 7,12-dimethylbenz[a]anthracene to intermediates that react with nucleic acids was investigated using Sephadex LH-20 column chromatography and high pressure liquid chromatography. The results show that some of the hydrocarbon-DNA products formed in mouse skin treated in vivo with 7,12-dimethylbenz[a]anthracene arise from the reaction of DNA with 3,4-dihydro-3,4-dihydroxy-7,12-dimethylbenz[a]anthracene 1,2-oxides which, on the basis of this and other evidence, appears to be a biologically-active metabolite of 7,12-dimethylbenz[a]anthracene. However, since other nucleic acid-hydrocarbon adducts were also present that have not been identified as resulting from the reaction of the 3,4-diol 1,2-oxides with DNA, other mechanisms may also be involved in the metabolic activation of 7,12-dimethylbenz[a]anthracene in mouse skin.  相似文献   

15.
9,10-Phenanthrenequinone (9,10-PQ), a major quinone in diesel exhaust particles, induces apoptosis via the generation of reactive oxygen species (ROS) because of 9,10-PQ redox cycling. We have found that intratracheal infusion of 9,10-PQ facilitates the secretion of surfactant into rat alveolus. In the cultured rat lung, treatment with 9,10-PQ results in an increase in a lower-density surfactant by ROS generation through redox cycling of the quinone. The surfactant contains aldo-keto reductase (AKR) 1C15, which reduces 9,10-PQ and the enzyme level in the surfactant increases on treatment with 9,10-PQ suggesting an involvement of AKR1C15 in the redox cycling of the quinone. In six human cell types (A549, MKN45, Caco2, Hela, Molt4 and U937) only type II epithelial A549 cells secrete three human AKR1C subfamily members (AKR1C1, AKR1C2 and AKR1C3) with the surfactant into the medium; this secretion is highly increased by 9,10-PQ treatment. Using in vitro enzyme inhibition analysis, we have identified AKR1C3 as the most abundantly secreted AKR1C member. The AKR1C enzymes in the medium efficiently reduce 9,10-PQ and initiate its redox cycling accompanied by ROS production. The exposure of A549 cells to 9,10-PQ provokes viability loss, which is significantly protected by the addition of the AKR1C3 inhibitor and antioxidant enzyme and by the removal of the surfactants from the culture medium. Thus, the AKR1C enzymes secreted in pulmonary surfactants probably participate in the toxic mechanism triggered by 9,10-PQ.  相似文献   

16.
Docetaxel (DTX) is widely used for treatment of inveterate lung and prostate cancers, but its continuous administration elicits the hyposensitivity. Here, we established the DTX-resistant variants of human lung cancer A549 and androgen-independent prostate cancer Du145 cells and found that the resistance development provoked aberrant up-regulations of aldo-keto reductase (AKR) 1B10 and AKR1C3 in A549 and Du145 cells, respectively. In addition, the sensitivity to the DTX toxicity was significantly decreased and increased by overexpression and knockdown of the two AKR isoforms, respectively. Furthermore, the resistant cells exhibited a decreased level of reactive 4-hydroxy-2-nonenal formed during DTX treatment, and the decrease was alleviated by adding the AKR inhibitors, inferring that the two AKRs confer the chemoresistance through elevating the antioxidant properties. The development of DTX resistance was also associated with enhanced expression of an ATP-binding cassette (ABC) transporter ABCB1 among the ABC transporter isoforms. The combined treatment with inhibitors of the two AKRs and ABCB1 additively sensitized the resistant cells to DTX. Intriguingly, the AKR1B10 inhibitor also suppressed the lung cancer cross-resistance against cisplatin. The results suggest that combined treatment with AKRs (1B10 and 1C3) and ABCB1 inhibitors exerts overcoming effect against the cancer resistance to DTX and cisplatin, and can be used as the adjuvant therapy.  相似文献   

17.
Lin HK  Steckelbroeck S  Fung KM  Jones AN  Penning TM 《Steroids》2004,69(13-14):795-801
Human aldo-keto reductase AKR1C3 (type 2 3alpha-hydroxysteroid dehydrogenase/type 5 17beta-hydroxysteroid dehydrogenase) catalyzes the reduction of Delta(4)-androstene-3,17-dione to yield testosterone, the reduction of 5alpha-dihydrotestosterone to yield 3alpha- and 3beta-androstanediol, and the reduction of estrone to yield 17beta-estradiol. Relatively, high mRNA expression of AKR1C3 was found in human prostate and mammary gland where it is implicated in regulating ligand access to the androgen and estrogen receptor, respectively. AKR1C3 shares high sequence identity >86% with related plastic human 20alpha-hydroxysteroid dehydrogenases (AKR1C1), type 3 3alpha-hydroxysteroid dehydrogenase (AKR1C2) and type 1 3alpha-hydroxysteroid dehydrogenase (AKR1C4), and reagents are urgently needed to discriminate between these enzymes at the mRNA, protein and functional level. We describe the characterization of a high-titer isoform specific monoclonal antibody (Ab) for AKR1C3. It does not cross react with human AKR1C1, AKR1C2 or AKR1C4, human aldehyde reductase AKR1A1 or rat 3alpha-hydroxysteroid dehydrogenase (AKR1C9) on immunoblot analysis. The monoclonal Ab can be used to detect AKR1C3 expression by immunohistochemistry in sections of paraffin-embedded mammary gland and prostate. In the breast enzyme staining was detected in ductal carcinoma in situ where the cancerous cells were strongly immunoreactive. In normal prostate immunoreactivity was limited to stromal cells with only faint staining in the epithelial cells. In adenocarcinoma of the prostate elevated staining was observed in the endothelial cells and carcinoma cells. The reagent thus has utility to access the localized expression of AKR1C3 in hormonal dependent malignancies of the breast and prostate.  相似文献   

18.
《Free radical research》2013,47(11):1371-1385
Abstract

In this study, we show that exposure of human lung cancer A549 cells to cisplatin (cis-diamminedichloroplatinum, CDDP) promotes production of nitric oxide (NO) through generation of reactive oxygen species (ROS) and resulting upregulation of inducible NO synthase (iNOS). The incubation of the cells with a NO donor, diethylenetriamine NONOate, not only reduced the CDDP-induced cell death and apoptotic alterations (induction of CCAAT-enhancer-binding protein homologous protein and caspase-3 activation), but also elevated proteolytic activity of 26S proteasome, suggesting that the activation of proteasome function contributes to the reduction of CDDP sensitivity by NO. Monitoring expression levels of six aldo-keto reductases (AKRs) (1A1, 1B1, 1B10, 1C1, 1C2, and 1C3) during the treatment with the NO donor and subsequent CDDP sensitivity test using the specific inhibitors also proposed that upregulation of AKR1B10 by NO is a key process for acquiring the CDDP resistance in A549 cells. Treatment with CDDP and NO increased amounts of nitrotyrosine protein adducts, indicative of peroxynitrite formation, and promoted the induction of AKR1B10, inferring a relationship between peroxynitrite formation and the enzyme upregulation in the cells. The treatment with CDDP or a ROS-related lipid aldehyde, 4-hydroxy-2-nonenal, facilitated the iNOS upregulation, which was restored by increasing the AKR1B10 expression. In contrast, the facilitation of NO production by CDDP treatment was hardly observed in AKR1B10-overexpressing A549 cells and established CDDP-resistant cancer cells (A549, LoVo, and PC3). Collectively, these results suggest the NO functions as a key regulator controlling AKR1B10 expression and 26S proteasome function leading to gain of the CDDP resistance.  相似文献   

19.
Column chromatography and electron-capture gas chromatography have been applied to the separation and quantitative analysis of the K-region epoxide of 7,12-dimethylbenz(a)anthracene, 5-hydroxy-7,12-dimethylbenz(a)anthracene, and trans-5,6-dihydro-5,6-dihydroxy-7,12-dimethylbenz(a)anthracene. Deactivation of chromatographic alumina with water permitted quantitative elution of the three compounds. In a solution of acetone and water, the epoxide was hydrolyzed to the 5,6-diol, but none of the 5-hydroxy derivative was formed.  相似文献   

20.
Adipogenesis and lipid storage in human adipose tissue are inhibited by androgens such as DHT. Inactivation of DHT to 3α-diol is stimulated by glucocorticoids in human preadipocytes. We sought to characterize glucocorticoid-induced androgen inactivation in human preadipocytes and to establish its role in the antiadipogenic action of DHT. Subcutaneous and omental primary preadipocyte cultures were established from fat samples obtained in subjects undergoing abdominal surgeries. Inactivation of DHT to 3α/β-diol for 24 h was measured in dexamethasone- or vehicle-treated cells. Specific downregulation of aldo-keto reductase 1C (AKR1C) enzymes in human preadipocytes was achieved using RNA interference. In whole adipose tissue sample, cortisol production was positively correlated with androgen inactivation in both subcutaneous and omental adipose tissue (P < 0.05). Maximal dexamethasone (1 μM) stimulation of DHT inactivation was higher in omental compared with subcutaneous fat from men as well as subcutaneous and omental fat from women (P < 0.05). A significant positive correlation was observed between BMI and maximal dexamethasone-induced DHT inactivation rates in subcutaneous and omental adipose tissue of men and women (r = 0.24, n = 26, P < 0.01). siRNA-induced downregulation of AKR1C2, but not AKR1C1 or AKR1C3, significantly reduced basal and glucocorticoid-induced androgen inactivation rates (P < 0.05). The inhibitory action of DHT on preadipocyte differentiation was potentiated following AKR1C2 but not AKR1C1 or AKR1C3 downregulation. Specifically, lipid accumulation, G3PDH activity, and FABP4 mRNA expression in differentiated preadipocytes exposed to DHT were reduced further upon AKR1C2 siRNA transfection. We conclude that glucocorticoid-induced androgen inactivation is mediated by AKR1C2 and is particularly effective in omental preadipocytes of obese men. The interplay between glucocorticoids and AKR1C2-dependent androgen inactivation may locally modulate adipogenesis and lipid accumulation in a depot-specific manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号