首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The 16 African large barb fish species of Lake Tana inhabit different ecological niches, exploit different food webs and have different temporal and spatial spawning patterns within the lake. This unique fish species flock is thought to be the result of adaptive radiation within the past 5 million years. Previous analyses of major histocompatibility class II B exon 2 sequences in four Lake Tana African large barb species revealed that these sequences are indeed under selection. No sharing of class II B alleles was observed among the four Lake Tana African large barb species. In this study we analysed the class II B exon 2 sequences of seven additional Lake Tana African large barb species and African large barbs from the Blue Nile and its tributaries. In addition, the presence and variability of major histocompatibility complex class I UA exon 3 sequences in six Lake Tana and Blue Nile African large barb species was analysed. Phylogenetic lineages are maintained by purifying or neutral selection on non-peptide binding regions. Class II B intron 1 and exon 2 sequences were not shared among the different Lake Tana African large barb species or with the riverine barb species. In contrast, identical class I UA exon 3 sequences were found both in the lacustrine and riverine barb species. Our analyses demonstrate complete partitioning of class II B alleles among Lake Tana African large barb species. In contrast, class I alleles remain for the large part shared among species. These different modes of evolution probably reflect the unlinked nature of major histocompatibility genes in teleost fishes.Electronic Supplementary Material Supplementary material is available for this article at .An erratum to this article can be found at  相似文献   

2.
3.
4.
Genes of the major histocompatibility complex (MHC) play a pivotal role in the vertebrate immune system and are attractive markers for functional, fitness-related, genetic variation. Although bats (Chiroptera) represent the second largest mammalian order and are prone to various emerging infectious diseases, little is known about MHC evolution in bats. In the present study, we examined expressed MHC class II DRB sequences (exons 1 to 4) of New World bat species, Saccopteryx bilineata, Carollia perspicillata, Noctilio albiventris and Noctilio leporinus (only exon 2). We found a wide range of copy number variation of DRB loci with one locus detected in the genus Noctilio and up to ten functional loci observed in S. bilineata. Sequence variation between alleles of the same taxa was high with evidence for positive selection. We found statistical support for recombination or gene conversion events among sequences within the same but not between bat species. Phylogenetic relationships among DRB alleles provided strong evidence for independent evolution of the functional MHC class II DRB genes in the three investigated species, either by recent gene duplication, or homogenization of duplicated loci by frequent gene conversion events. Phylogenetic analysis of all available chiropteran DRB exon 2 sequences confirmed their monophyletic origin within families, but revealed a possible trans-species mode of evolution pattern in congeneric bat species, e.g. within the genera Noctilio and Myotis. This is the first study investigating phylogenetic relationships of MHC genes within bats and therefore contributes to a better understanding of MHC evolution in one of the most dominant mammalian order.  相似文献   

5.
The genes of the major histocompatibility complex (MHC) are amongst the most variable in vertebrates and represent some of the best candidates to study processes of adaptive evolution. However, despite the number of studies available, most of the information on the structure and function of these genes come from studies in mammals and birds in which the MHC class I and II genes are tightly linked and class II alpha exhibits low variability in many cases. Teleost fishes are among the most primitive vertebrates with MHC and represent good organisms for the study of MHC evolution because their class I and class II loci are not physically linked, allowing for independent evolution of both classes of genes. We have compared the diversity and molecular mechanisms of evolution of classical MH class II α and class II β loci in farm populations of three salmonid species: Oncorhynchus kisutch, Oncorhynchus mykiss and Salmo salar. We found single classical class II loci and high polymorphism at both class II α and β genes in the three species. Mechanisms of evolution were common for both class II genes, with recombination and point mutation involved in generating diversity and positive selection acting on the peptide-binding residues. These results suggest that the maintenance of variability at the class IIα gene could be a mechanism to increase diversity in the MHC class II in salmonids in order to compensate for the expression of one single classical locus and to respond to a wider array of parasites.  相似文献   

6.
Electrophoretically detected genetic polymorphism of human MHC class III genes, factor B (Bf) and complement C4A and C4B, was studied in the Finnish population. Bf alleles were determined in a panel of sera from 70 unrelated individuals. The common Bf alleles, Bf*S and Bf*F, had frequencies of 73% and 26%, respectively. Only in 1 individual was another allele, Bf*F1, detected. The frequencies of the C4A and C4B alleles were based on studies of 254 unrelated individuals. In this panel, five different alleles were detected at the C4A locus and four at the C4B locus. At both loci an allele without a gene product, i.e. a 'null' allele, was observed with high frequency, 11% for C4A 'null' and 17% for C4B 'null'. The association of complotypes to HLA haplotypes was analyzed in 70 chromosomes. The most common combination, defined by class I and class III alleles, was HLA-B7-S31 (13%), followed by HLA-B35-F20 (8.4%) and HLA-B8-S03 (7.1%). Some HLA-B specificities, for example B15, B27 and B40, were associated with a variety of complotypes. The importance of complotyping in HLA genetics is discussed.  相似文献   

7.
Stress genes can be ascribed to have been generated by the organism for their intrinsic urge to survive against the changing environmental odds, during the evolutionary process. This concept has been supported by a large number of reports describing individual types of phenomena. These have been reconciled and globalised in terms of their relevance in this article. Supporting evidences have been drawn from the literature which indicated that by using different types of inducer one can express heat shock proteins. Similarly, several types of stress inducers, such as calorie restriction, LPS stimulation and Staphylococcal Protein-A stimulation, it was possible to induce a wide array of biological, biochemical and immunological reactions. Such biological reactions rendered protection against toxic, carcinogenic, metabolic, as well as biological stresses induced by microorganisms. Heat shock proteins have been implicated as having a role in providing resistance to the host against different types of stressors. In this article, some mechanistic schemes have been proposed as possible pathways globalising such phenomena. A minute amount of stress inducers has been observed to have helped expression of stress resistance genes, providing increased capability to the host to protect itself against myriads of both biotic and abiotic stressors. More understanding about such phenomena would help in keeping our physiological systems vigilant and our bodies healthy, fighting out the stress-related events effectively.  相似文献   

8.
Mutator genes in different species   总被引:1,自引:0,他引:1  
  相似文献   

9.
10.
11.
The construction and interpretation of gene trees is fundamental in molecular systematics. If the gene is defined in a historical (coalescent) sense, there can be multiple gene trees within the single contiguous set of nucleotides, and attempts to construct a single tree for such a sequence must deal with homoplasy created by conflict among divergent histories. On a larger scale, incongruence is expected among gene tree topologies at different loci of individuals within sexually reproducing species, and it has been suggested that this discordance can be used to delimit species. A practical concern for such topological methods is that polymorphisms may be maintained through numerous cladogenic events; this polymorphism problem is less of a concern for nontopological approaches to species delimitation using molecular data. Although a central theoretical concern in molecular systematics is discordance between a given gene tree and the true "species tree," the primary empirical problem faced in reconstructing taxic phylogeny is incongruence among the trees inferred from different sequences. Linkage relationships limit character independence and thus have important implications for handling multiple data sets in phylogenetic analysis, particularly at the species level, where incongruence among different historically associated loci is expected. Gene trees can also be reconstructed for loci that influence phenotypic characters, but there is at best a tenuous relationship between phenotypic homoplasy and homoplasy in such gene trees. Nevertheless, expression patterns and orthology relationships of genes involved in the expression of phenotypes can in theory provide criteria for homology assessment of morphological characters.  相似文献   

12.
13.
14.
15.
16.
17.
18.
Organization of human class I homeobox genes   总被引:5,自引:0,他引:5  
We report the genomic organization of 20 human class I homeoboxes and the predicted primary sequence of the encoded homeodomains. These homeoboxes are clustered in four complex HOX loci on chromosomes 2, 7, 12, and 17. The homeoboxes of one HOX locus can be aligned to the homeoboxes of the other HOX loci so that corresponding homeodomains in all loci can share the maximal peptide sequence identity. This correspondence of individual homeoboxes in different chromosomal loci suggests the hypothesis of large-scale duplications of a single complex locus. The existence of an ancestral complex locus might have predated the divergence of vertebrates and invertebrates.  相似文献   

19.
Small, acid-soluble proteins (SASP) of both the alpha/beta- and gamma-type were present in spores of Sporosarcina ureae and S. halophila, and three genes encoding alpha/beta-type SASP in these species have been cloned and sequenced. The amino acid sequences of the Sporosarcina alpha/beta-type SASP are extremely homologous to those of Bacillus SASP, further indicative of the close evolutionary relationship between these genera.  相似文献   

20.
A cluster of genes corresponding to the early ecdysone stimulated puff 2B of the Drosophila melanogaster X chromosome has been localized using in situ hybridization in eight Drosophila species. Genes ecs, dor and swi from this cluster have been mapped in D. funebris, D. virilis, D. hydei, D. repleta, D. mercatorum and D. paranaensis to the telomeric region of the X chromosome, in D. kanekoi to the distal region, and in D. pseudoobscura, to the proximal region of the X chromosome. It is assumed that organization of this cluster in these species is conserved. In D. hydei, multiple hybridization sites of certain DNA probes from this region were found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号