首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of caffeine on Chinese hamster V79 cells after treatment with the highly mutagenic (+/-)-7 beta,8 alpha-dihydroxy-9 alpha, 10 alpha-7,8,9,10-tetrahydrobenzo[a]pyrene, and the weaker mutagen (+/-)-7 beta,8 alpha-dihydroxy-9 beta,10 beta-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene, B[a]P-deiol-epoxide II, was studied at both the biological and molecular levels. Caffeine, at nontoxic dose levels, caused a synergistic reduction in cell survival induced by both isomers and also inhibited DNA elongation as measured by alkaline sucrose-gradient analysis of nascent DNA. However, caffeine did not affect the induction of either ouabain-resistant mutants or sister-chromatid exchanges by either isomer. These results suggest that enhanced cell killing by caffeine in benzo[a]pyrene-diol-epoxide treated V79 cells may be related to caffeine's inhibitory effect on DNA elongation. However, inhibition of DNA elongation by caffeine did not influence the resulting induced levels of mutagenesis or sister-chromatid exchanges.  相似文献   

2.
Chinese hamster V79 cells were treated with either (+/-)-7 beta, 8 alpha-dihydroxy-9 alpha, 10 alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (B[a]P-diol epoxide I) or (+/-)-7 beta,8 alpha-dihydroxy-9 beta,10 beta-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (B[a]P-diol epoxide II) and the nascent DNA was labeled with [Me-3H]thymidine. The cells were harvested for determination of cytotoxicity, sister-chromatid exchanges (SCE), ouabain-resistant (Or) mutations and the size of newly synthesized daughter-strand DNA. Both isomers caused dose-dependent decreases in survival of cells and in the size of nascent DNA. Increases in the frequencies of SCE and of Or mutation were found in cells treated with either isomer. However, B[a]P-diol epoxide I caused 10--20-fold more Or mutations and 50-100% more SCE than did B[a]P-diol epoxide II at equal molar dose levels. In contrast to the marked difference in the frequencies of both SCE and Or mutations caused by both compounds, the isomers induced similar reductions in the size of the nascent DNA at equal dose levels. In comparing the molecular and biological effects of the two isomers the reduction in the size of nascent DNA was more closely related to cytotoxicity than to the induction of SCE or Or mutations.  相似文献   

3.
We have used a newly developed pH stepwise alkaline elution method to show that caffeine enhances DNA initiation (DNA replication in sub-replicon size nascent strands) in (+/-)-7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9, 10-tetrahydrobenzo[a]pyrene (BPDEI) damaged mouse primary epidermal cells. Caffeine alone caused a dose-dependent increase in DNA initiation without an effect on DNA elongation (joining of replicon-sized nascent DNA). BPDEI alone inhibited DNA elongation as shown by a relative increase in sub-replicon size nascent DNA. When BPDEI treated cells were incubated with caffeine, there was a dose-dependent increase in sub-replicon size nascent DNA without a significant effect on the proportion of joined replicons. Therefore, caffeine can enhance DNA initiation in mammalian cells damaged with a reactive form of the carcinogen benzo[a]pyrene and this may account for the biological interaction between caffeine and the ultimate carcinogenic form of benzo[a]pyrene.  相似文献   

4.
M Kaneko 《Mutation research》1984,131(3-4):157-161
The rate of removal of DNA adducts of several benzo[a]pyrene metabolites from nuclear DNA was compared by introducing a microsome-activating system in human fibroblast cells. Confluent human fibroblasts were exposed to benzo[a]pyrene in the presence of a microsomal activating system and DNA adducts were formed in the nuclear DNA. The adducts present in DNA were determined after 1 h of incubation and 48 h later. There was no difference in the rate of removal between 7S- and 7R -N2-[10-(7 beta, 8 alpha-trihydroxy-7,8,9,10- tetrahydrobenzo[a]pyrene)yl]deoxyguanosine, 7R -N2-[10(7beta, 8 alpha, 9 beta-trihydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene)yl]deoxyguanosine and the covalent adduct of 9-hydroxybenzo[a]pyrene-4,5-epoxide to guanosine. This finding does not agree with the idea that metabolites forming 'persistent DNA adducts' are always responsible for the carcinogenicity of their parent compound.  相似文献   

5.
The survival of UV-irradiated Simian virus 40 (SV40) in CV-1P African green monkey kidney cells treated with (+/-)7 beta, 8 alpha-dihydroxy-9 alpha, 10 alpha epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BP-diol epoxide I) was studied. Enhanced survival of UV damaged SV40 was detected when CV-1P cells were treated with dose levels of BP-diol epoxide I corresponding to the exponential portion (0.33-1.11 microM) of a CV-1P cell survival curve. Dose levels of BP-diol epoxide I corresponding to the shoulder region (less than or equal to 0.16 microM) of a CV-1P survival curve did not induce viral reactivation. The shoulder region concentrations of BP-diol epoxide I selectively inhibited DNA initiation while the concentrations on the exponential portion of the curve preferentially inhibited DNA elongation. It was shown in a time course of enhanced viral survival at 0.66 microM BP-diol epoxide I that the reactivation response was fully induced by 24 h. In conclusion, the viral reactivation response was associated with concentrations of BP-diol epoxide I which induced lethal damage and preferentially inhibited DNA elongation.  相似文献   

6.
Normal human fibroblasts treated with r-7,t-8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) yielded DNA polymerase alpha with elevated levels of activity, incorporated [3H]thymidine as a function of unscheduled DNA synthesis, and exhibited restoration of normal DNA-strand length as a function of unscheduled DNA synthesis. Lipoprotein-deficient fibroblasts treated with BPDE did not show elevated levels of DNA polymerase alpha activity, exhibited minimal [3H]thymidine incorporation, and had fragmented DNA after 24 h of repair in the absence of lipoprotein or phosphatidylinositol supplementation. When DNA polymerase beta activity was inhibited, cells with normal lipoprotein uptake exhibited [3H]thymidine incorporation into BPDE-damaged DNA but did not show an increase in DNA-strand length. DNA polymerase alpha activity and [3H]thymidine incorporation in lipoprotein-deficient fibroblasts increased to normal levels when the cells were permeabilized and low-density lipoproteins or phosphatidylinositol were introduced into the cells. DNA polymerase alpha isolated from normal human fibroblasts, but not from lipoprotein-deficient fibroblasts, showed increased specific activity after the cells were treated with BPDE. When BPDE-treated lipoprotein-deficient fibroblasts were permeabilized and 32P-ATP was introduced into the cells along with lipoproteins, 32P-labeled DNA polymerase alpha with significantly increased specific activity was isolated from the cells. These data suggest that treatment of human fibroblasts with BPDE initiates unscheduled DNA synthesis, as a function of DNA excision repair, which is correlated with increased activity of DNA polymerase alpha, and that increased DNA polymerase alpha activity may be correlated with phosphorylation of the enzyme in a reaction that is stimulated by low-density lipoprotein or by the lipoprotein component, phosphatidylinositol.  相似文献   

7.
The formation and removal of covalent adducts of racemic 7 beta, 8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE I) was studied in nucleosomal DNA of confluent cultures of normal human fibroblasts (NF). For this purpose NF were prelabeled in their DNA with [14C]-thymidine and treated with [3H]BPDE I. The adducts were composed of 77% (7R)-N2-(7 beta, 8 alpha, 9 alpha-trihydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene-10-yl)deoxyguanosine, 12% of the corresponding 7S-enantiomer and of minor amounts of adducts to cytosine and adenine. The adduct composition did not change significantly in 24-h post treatment incubation. Bulk mononucleosomes were prepared from micrococcal nuclease digested nuclei and their DNA analyzed by gel electrophoresis. The adduct concentrations were determined in 145 base pair (b.p.) nucleosomal core-DNA, 165 b.p. chromatosomal DNA and in total nuclear DNA. From these data the concentration in nucleosomal linker-DNA was calculated. The initial adduct distribution was non-random and 6.3 times higher in 47 b.p. linker-DNA relative to 145 b.p. core-DNA and 9.2 times higher in 27 b.p. linker-DNA relative to 165 b.p. chromatosomal DNA. Adduct removal was very rapid during the first 8 h and more efficient from linker-DNA than from core-DNA. After this early phase the adducts located in 145 b.p. core-DNA became refractory to further excision and represent a major fraction of the adducts persisting in DNA of NF over a prolonged period. In contrast, further adduct removal was observed from nucleosomal linker-DNA.  相似文献   

8.
The DNA adducts formed in Salmonella typhimurium when bacteria are incubated with radioactive benzo[a]pyrene and liver microsomal enzymes from several sources has been investigated. When enzyme preparations from Aroclor I254 or 3-methylcholanthrene induced C57BL/6N (B6) mice were used to mediate activation, the predominant product was an adduct between the 10 position of 7 beta, 8 alpha-dihydroxy-9 alpha, 10 alpha epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene and the N-2 position of deoxyguanosine. Similar results were obtained with human liver and with Aroclor-induced rat-liver enzyme preparations. This adduct is also the major DNA product previously found when human tissues or certain rodent cells were incubated with benzo[a]pyrene. On the other hand, when activation of benzo[a]pyrene was mediated by a phenobarbital-induced B6 mouse-liver enzyme preparation, the extent of binding was quite low and the profile of DNA adducts in S. typhimurium DNA was quite different. Thus, under appropriate conditions, the activation and DNA binding of benzo[a]pyrene inthe microsome mediated S. typhimurium mutagenesis assay generally resembles that seen in intact mammalian cells. Caution must be exercised, however, in the choice of microsome-activation systems.  相似文献   

9.
The conformational properties of GpU modified with the reactive derivative of benzo[a]pyrene, (+/-)-7beta,8alpha-dihydroxy-9alpha,10alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene, has been investigated utilizing circular dichroism spectroscopy. Binding of this carcinogen to the N2 of G residues in GpU resulted in the formation of four compounds (I to IV) representing two pairs of diastereoisomers. The molar ellipticity values of the modified dimers were approximately twofold higher than those of the modified guanosine monomers. These values were decreased appreciably when the spectra of the dimers were obtained at 80 degrees C or in methanol rather than at 25 degrees C in water, suggesting that under the latter conditions there is a stacking interaction between the carcinogen and the neighboring uridine residue. Based on these results, a conformation is proposed for modified GpU. It includes insertion of the benzo[a]pyrene moiety, by rotation of the modified guanine residue about its glycoside bond, coplanar to the neighboring uridine and perpendicular to the phosphodiester backbone.  相似文献   

10.
Chung WY  Jung YJ  Surh YJ  Lee SS  Park KK 《Mutation research》2001,478(1-2):199-206
Benzo[a]pyrene diol epoxide, a metabolite of benzo[a]pyrene (BaP), and chlorohydrin, the reaction product of chloride and the epoxide, form in vitro the same trans- and cis-stereoisomeric DNA adducts, but in different proportions. In this study, we asked whether the DNA adduct concentration can be kept the same by applying the appropriate dose of (+/-)-7r,8t-dihydroxy-9t,10t-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (anti-BPDE)and (+/-)-7r,8t,9t-trihydroxy-10c-chloro-7,8,9,10-tetrahydrobenzo[a]pyrene (trans-BPDCH) to rodent skin and whether the DNA adducts formed differ only in their trans- and cis-stereoisomerism. Skin from C57Bl6 mice, spontaneous hypertension rats (SHR) and Sprague-Dawley (SD) rats was treated ex vivo immediately after the death of the animals with anti-BPDE and its corresponding bay region chlorohydrin trans-BPDCH and the epidermis was analyzed for DNA adducts 1h after the application. We found that adduct formation at the exocyclic amino groups of deoxyguanosine and deoxyadenosine in epidermal DNA followed a linear dose-response within 6--100 nmol/cm(2) with both chemicals. In order to achieve the same adduct concentration in mouse, spontaneous hypertension rat (SHR), and Sprague-Dawley (SD) rat skin, respectively, a 37-, 23- and 10-fold lower dose of anti-BPDE than of trans-BPDCH had to be applied. The order of 2'-deoxyguanosine (dGuo) adduct concentration with anti-BPDE was similar to what has been reported, but the order with trans-BPDCH was (+)-cis-BPDE-N(2)-dGuo adduct>(+)-trans-BPDE-N(2)-dGuo=(-)-trans-BPDE-N(2)-dGuo>(-)-cis-BPDE-N(2)-dGuo in mouse skin. Irrespective of species or strain, a significantly higher proportion of cis-adducts was obtained after treatment with trans-BPDCH than after treatment with anti-BPDE. Therefore, DNA adduct concentration can be kept the same by applying the appropriate dose of anti-BPDE and trans-BPDCH to rodent skin and the DNA adducts formed differ only in their trans- and cis-stereoisomerism.  相似文献   

11.
Shuttle vector-based systems are extensively employed to study the mutational properties of various mutagens in mammalian cells. Such vectors are designed for the detection of point mutations, that is small deletions and single base and tandem substitutions. However, mutant target genes carrying two or more point mutations, referred to as multiple mutations, can also be found in various proportions depending on the mutagen and the cells used. To evaluate the frequency and characteristics of multiple mutations, we used a system where the plasmid, pYZ289, was treated by ultraviolet irradiation, aflatoxin B(1) or (+/-)-7 beta,8 alpha-dihydroxy-9 alpha, 10 alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene before transfection into mouse fibroblast cells. The kinds of mutations and the mutational spectra were different for single and multiple mutations. In addition, in at least 75% of the cases, mutations of multiples appeared to arise in the same strand. Furthermore, mutational spectra for multiple mutations were different for 5' and 3' members of multiple sets. These observations suggest that multiple mutations arise via a different mechanism than single mutations. Moreover, these findings suggest that multiples arise during translesion DNA synthesis and involve an error-prone polymerase able to introduce a base opposite misinstructive or noninstructional DNA lesions and subject to subsequent misincorporation errors.  相似文献   

12.
The aim of this study was to generate and identify a novel benzo[a]pyrene (BP)-derived DNA adduct found both in vitro and in vivo. To date, the majority of studies have focused on N(2)-[10 beta(7 beta,8a,9a-trihydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene)yl]-deoxyguanosine (anti-BPDE-dG), the major adduct generated following bioactivation of BP. However, a second adduct is also formed following bioactivation of BP which has been speculated to result from further metabolism of 9-OH-BP. In order to identify this second reaction pathway, the ultimate DNA binding species, and the DNA base involved, we have synthesized and characterized a dG-derived DNA adduct arising from further bioactivation of 9-OH-BP in the presence of rat liver microsomes. Analysis of the adducted nucleotides was conducted using both the (32)P-postlabeling assay and capillary electrophoresis-mass spectrometry (CE-MS).  相似文献   

13.
Synchronized Chinese hamster ovary (CHO) cells treated with (+/-)7 beta,8 alpha- dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-dihydrobenzo[a]pyrene (BP diol epoxide I) were used to test the 'block-gap' model of replicative bypass repair in mammalian cells. One feature of the model is that carcinogenic or mutagenic DNA adducts act as blocks to the DNA replication fork on the leading strand. Using synchronized CHO cells, the rate of S phase progression by BrdUrd labeling of newly replicated DNA was measured. The rate of S phase progression was reduced by 22% and 42%, when the cells were treated at the G1/S boundary with 0.33 and 0.66 microM BP diol epoxide I, respectively. Using the pH step alkaline elution assay, it was found that the reduced rate of S phase progression was due to a delay in the appearance of multiple replicon size nascent DNA. This observation was consistent with the frequency of BP-DNA adducts present in the leading strand. A second feature of the 'block-gap' model is that the adduct-induced blockage on the lagging strand will produce gaps. It was determined by the use of high-resolution agarose gel electrophoresis, that the ligation of Okazaki size replication intermediates was blocked in a dose-dependent manner in BP diol epoxide I treated, synchronized CHO cells. These data are consistent with a block to the leading strand of DNA replication at DNA-carcinogen adducts. An inhibition of the ligation of Okazaki size fragments by BP diol epoxide I implies a block to replication of the DNA lagging strand leading to gap formation. The data presented here are, therefore, supportive of the 'block-gap' model of replicative bypass repair in carcinogen damaged mammalian cells.  相似文献   

14.
Insights into the mechanisms of chemical carcinogenesis can sometimes be gained by comparing the effects of closely related chemicals which differ in carcinogenic potency. We have treated Chinese hamster ovary (CHO) cells with a non-carcinogenic metabolite of benzo[a]pyrene, 9r,10t-dihydroxy-7c,8c-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE-III), and measured the formation and persistence of DNA adducts. We have correlated this binding data with cytotoxicity and mutagenicity in a DNA-repair-proficient CHO cell line (AT3-2) and in two derived lines, UVL-1 and UVL-10, which are unable to repair bulky DNA adducts. These data are compared with similar studies of the effects of the carcinogenic metabolite, 7r,8t-dihydroxy-9t,10t-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE-I). Synchronous fluorescence spectroscopy was used to measure the levels of BPDE-III-DNA adducts in treated cells. Adduct levels increased linearly with dose, but the absolute binding levels were about 30-fold lower than in comparable incubations with BPDE-I. Measurements of the removal of adducts derived from these two diol epoxides indicated no significant difference in the rate of repair measured 24 h post-treatment. When cells were treated with increasing doses of BPDE-III, survival curves were obtained which exhibited a shoulder region at low doses and an exponential decrease in plating efficiency at higher doses. By comparison of the D0's, the DNA-repair-deficient cell lines were found to be 4-5-fold more sensitive to the killing effects of BPDE-III than were the repair-proficient AT3-2 cells.  相似文献   

15.
The reversible DNA physical binding of a series of non-reactive metabolites and metabolite model compounds derived from benzo[a]pyrene (BP) has been examined in UV absorption and in fluorescence emission and fluorescence lifetime studies. Members of this series have steric and pi electronic properties similar to the highly carcinogenic metabolite trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) and the less potent metabolite 4,5-epoxy-4,5-dihydrobenzo(a)pyrene (4,5-BPE). The molecules examined are trans-7,8-dihydroxy-7,8-dihydrobenzo[a]-pyrene (7,8-di(OH)H2BP), 7,8,9,10-tetrahydroxytetrahydrobenzo[a]pyrene (tetrol) 7,8,9,10-tetrahydrobenzo[a]pyrene (7,8,9,10-H4BP), pyrene, trans-4,5-dihydroxy-4,5-dihydrobenzo[a]pyrene (4,5-di(OH)H2BP) and 4,5-dihydrobenzo[a]pyrene (4,5-H2BP). In 15% methanol at 23 degrees C the intercalation binding constants of the molecules studied lie in the range 0.79-6.1 X 10(3) M-1. Of all the molecules examined the proximate carcinogen 7,8-di(OH)-H2BP is the best intercalating agent. The proximate carcinogen has a binding constant which in UV absorption studies is found to be 2.8-6.0 times greater than that of the other hydroxylated metabolites. Intercalation is the major mode of binding for 7,8-di(OH)H2BP and accounts for more than 95% of the total binding. Details concerning the specific role of physical bonding in BP carcinogenesis remain to be elucidated. However, the present studies demonstrate that the reversible binding constants for BP metabolites are of the same magnitude as reversible binding constants which arise from naturally occurring base-base hydrogen bonding and pi stacking interactions in DNA. Furthermore, previous autoradiographic studies indicate that in human skin fibroblasts incubated in BP, pooling of the unmetabolized hydrocarbons occurs at the nucleus. The high affinity of 7,8-di(OH)H2BP for DNA may play a role in similarly elevating in vivo nuclear concentrations of the non-reactive proximate carcinogen.  相似文献   

16.
Benzopyrene diol epoxide (BPDE; (+)-7R,8S-dihydroxy-9S,10R-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene), the ultimate carcinogen derived from the polycyclic hydrocarbon benzo[a]pyrene, reacts principally with the guanine bases in DNA. Nineteen double stranded, self-complementary oligonucleotides, containing deoxyguanosine in various sequence contexts, were each treated with tritium labelled BPDE. The extent of reaction was determined by releasing the BPDE-guanine adduct with acid, isolating it by chromatography on a reverse-phase column, and estimating it by its radioactivity. Oligonucleotides containing an isolated guanine, such as AAGTACTT, were little affected by BPDE. Reactivity was increased where the guanine was flanked by another guanine on the same strand (e.g. TACCTAGGTA) or on the complementary strand (e.g. TATTCGAATA), and was highest in mixed G-C sequences such as ATCCGGAT. The results should help predict major sites of attack of BPDE on cellular proto-oncogenes.  相似文献   

17.
Induction of 6-thioguanine (TG) resistance by chemical mutagens was examined in a line of cells derived from a human epithelial teratocarcinoma cell clone. The cells, designated as P3 cells, have a stable diploid karyotype with 46(XX) chromosomes, including a translocation between chromosomes 15 and 20. Efficient recovery of TG-resistant mutants induced by the direct-acting mutagens: N-methyl-N'-nitro-N-nitrosoguanidine (MNNG); 7 beta, 8 alpha-dihydroxy-9 alpha, 10 alpha-epoxy-7,8,9,10 -tetrahydrobenzo[a]pyrene (BPDE); and benzo[a]pyrene (B[a]P); activated in a cell-mediated assay, required an expression time of 7 days and a saturation density of 2 X 10(4) cells/60-mm petri dish. The TG-resistant mutant cells induced by MNNG and BPDE maintained their resistant phenotype 4-6 weeks after isolation. This mutant phenotype was associated with a more than 10-fold reduction in hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity relative to that of the parental P3 cell line, which was shown to catalyze the formation of 4.6 pmoles inosine-5'-monophosphate (IMP)/min/microgram protein. Induction of TG resistance was also observed in P3 cells cocultivated in a cell-mediated assay with human breast carcinoma cells, which are capable of polycyclic aromatic hydrocarbon (PAH) metabolism, after treatment with the carcinogenic PAHs: B[a]P, chrysene, 7,12-dimethylbenz[a]anthracene (DMBA), and 3-methylcholanthrene (MCA). The degree of mutant induction in this assay was related to the carcinogenic potency of these PAHs in experimental animals. The most potent mutagen was DMBA, followed in decreasing order by MCA, B[a]P, and chrysene. DMBA, at 0.4 microM, increased the frequency of mutants for TG resistance from 2 for the control to about 200 TG-resistant mutants/10(6) colony-forming cells (CFC). Benzo[e]pyrene (B[e]P) and pyrene, which are not carcinogenic, were not effective in the assay. None of the PAHs was mutagenic in the P3 cells cultivated in the absence of the PAH-metabolizing cells. These results indicate that the P3 cells can be useful for the study of mutagenesis at the HGPRT locus by direct-acting chemical mutagens, as well as by chemicals activated in a cell-mediated assay.  相似文献   

18.
We investigated the methylation reaction catalyzed by 1500-fold purified rat liver DNA methyltransferase (DMase) on native Micrococcal luteus DNA (ML-DNA) and poly(dC-dG) templates containing covalently bound (+)-7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (anti-BPDE), the strongly carcinogenic, principal metabolite of benzo[a]pyrene. Since eukaryotic DNA methyltransferases recognize the dinucleotide 5'd[CG] in DNA as a substrate for methylation, the model polynucleotide poly(dC-dG) was used to study in more detail the mode of interaction and effect on incorporation. With either of these BPDE-modified templates, a progressive inhibition of methylation was correlated with increasing amount of BPDE substitution. The effect of BPDE-dG adducts did not alter the apparent km with respect to the concentration of d[CG] in either unmodified or BPDE-modified poly(dC-dG) (km = 10 microM) but lowered the relative apparent Vmax. In assays in which perturbation by salt of preformed enzyme-DNA complex is measured, no change in the relative stability to either unsubstituted or the carcinogen-modified template was noted, thus, excluding any change in the ionic component of this interaction. However, in competition-type experiments, BPDE-DNA is an inhibitor of the methylation reaction on native DNA. When BPDE-DNA is allowed to interact with the enzyme before the addition of native competitor DNA, the methylation rate is not stimulated, suggesting very tight hydrophobic binding of the enzyme to BPDE-DNA and an inhibition in the dissociation of DMase from the template following a methylation event.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
(±)-7β,8α-Dihydroxy-9β,10β-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BP 7,8-diol-9,10-epoxide) is a suspected metabolite of benzo[a]pyrene that is highly mutagenic and toxic in several strains of Salmonellatyphimurium and in cultured Chinese hamster V79 cells. BP 7,8-diol-9,10-epoxide was approximately 5, 10 and 40 times more mutagenic than benzo[a]pyrene 4,5-oxide (BP 4,5-oxide) in strains TA 98 and TA 100 of S.typhimurium and in V79 cells, respectively. Both compounds were equally mutagenic to strain TA 1538 and non-mutagenic to strain TA 1535 of S.typhimurium. The diol epoxide was toxic to the four bacterial strains at 0.5–2.0 nmole/plate, whereas BP 4,5-oxide was nontoxic at these concentrations. In V79 cells, the diol epoxide was about 60-fold more cytotoxic than BP 4,5-oxide.  相似文献   

20.
The intracellular level of reduced glutathione (GSH) and GSH conjugation have been investigated in primary cell cultures of hepatocytes isolated from control rats, phenobarbitone (PB) and 3-methylcholanthrene (MC) treated rats. The data demonstrate that in all cell cultures the GSH concentrations show a triphasic pattern: (i) within 1 h of culture an initial marked decrease to 50% of the levels found in fresh hepatocytes; (ii) recovery of GSH concentrations to above the levels observed in fresh cells. This occurs after 6 h in culture with control cells and after 10-24 h with cells from either PB or MC treated rats and was most prominent in cells from PB-treated rats. (iii) A slow decline to between 30 and 40 nmol GSH/mg protein from 24 to 96 h in culture. Synthesis of GSH was slower in cultured cells from PB treated rats and this was confirmed by the resynthesis rates when diethylmaleate (DEM) was used to deplete GSH. The formation of GSH conjugates with racemic 7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) was measured in control cells in suspension and after 3 and 24 h in culture. Despite the decrease in GSH concentrations observed between 1 and 4 h after culture, the conjugation rates were not decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号