首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
Simultaneous treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA) and dibutyryl cyclic AMP (diBu-cAMP) for 72 h induced neurites in NG108-15 cells significantly longer than treatment with each alone. Treatment for 72 h with both drugs induced irreversible neurite extension and a decline in protein kinase C activity, although neurites extended by diBu-cAMP alone disappeared after the withdrawal of the drug. The expression of growth-associated protein-43 (GAP-43) mRNA was also observed by a combined application of TPA and diBu-cAMP. The increased level of GAP-43 mRNA induced by treatment with both drugs for 72 h was maintained at least 24 h after withdrawal of the drugs. In cells transfected with GAP-43 cDNA, neurites induced by treatment with diBu-cAMP alone for 72 h were maintained at least 48 h after removal of the drugs. These results suggest that GAP-43 could be involved in the maintenance of elongated neurites and that a decline in protein kinase C activity may be involved in the accumulation of GAP-43.  相似文献   

2.
Abstract: We have investigated the presence and expression of laminin and neuropeptide Y (NPY) in several NG108-15 cell lines transfected with synapsin Ib, IIa, or IIb. The content of laminin, a basal membrane glycoprotein that promotes adhesion and induces neurite outgrowth and neuronal differentiation, was increased in all transfected cell lines examined. In cells that were chemically differentiated with prostaglandin E1 plus 3-isobutyl-1-methylxanthine, laminin levels were increased even further. The content of NPY, suggested to be a neurotransmitter/neuromodulator in peripheral sympathetic neurons as well as in central neurons, was also increased in all transfected cell lines examined. Immunohistochemical analysis combined with confocal laser microscopy showed that NPY staining was granular and very often enriched in neuritic varicosities. The distribution and the staining pattern of NPY were consistent with storage of NPY in large dense-cored vesicles. The results indicate that, in differentiated neurons, the synapsins increase the levels of a neuropeptide transmitter stored in large dense-cored vesicles and of an extracellular matrix protein associated with neuronal maturation.  相似文献   

3.
Abstract: Phosphatidylethanol is formed by phospholipase D in animal cells exposed to ethanol. Previous reports have demonstrated that the degradation of phosphatidylethanol is slow, indicating that this lipid may be present in the cells after ethanol itself has disappeared. Accumulation of an abnormal alcohol metabolite may influence cellular functions. In the present study, cultivation of NG108–15 neuroblastoma × glioma hybrid cells in the presence of ethanol resulted in an accumulation of phosphatidylethanol and a simultaneous increase in basal inositol 1,4,5-trisphosphate levels. The direct effects of phosphatidylethanol on the phosphoinositide signal transduction system were examined through incorporation of exogenous phosphatidylethanol into membranes of ethanol-naive cells. An incorporation amounting to 2.8% of cellular phospholipids was achieved after a 5-h incubation with 30 μ M phosphatidylethanol. Phosphatidylethanol was found to cause a time-and dose-dependent increase in the basal levels of inositol 1,4,5-trisphosphate. The effects on inositol 1,4,5-trisphosphate levels of exogenously added phosphatidylethanol and ethanol exposure for 2 days were not additive. No effect on bradykinin-stimulated inositol 1,4,5-trisphosphate production could be detected. However, the increase in basal inositol 1,4,5-trisphosphate levels indicates that phosphatidylethanol affects inositol 1,4,5-trisphosphate turnover and emphasizes the importance of considering phosphatidylethanol as a possible mediator of ethanol-induced effects on cellular processes.  相似文献   

4.
Chronic treatment of neuroblastoma X glioma NG108-15 hybrid cells with opiate agonist resulted in loss of the acute opiate inhibition of adenylate cyclase activity with a concomitant increase in the enzymatic activity observable on addition of the antagonist naloxone. The role of membrane lipids in the cellular expression of these chronic opiate effects was investigated by the hydrolysis of phospholipids with various lipases. Treatment with phospholipase C from Clostridium welchii produced an enzyme concentration-dependent decrease of prostaglandin E1-stimulated adenylate cyclase activity in control or etorphine-treated (1 microM for 4 h) hybrid cells. In addition, incubation of hybrid cells with phospholipase C concentrations of greater than or equal to 0.5 U/ml completely abolished the compensatory increase in adenylate cyclase activity after chronic opiate treatment. This attenuation of the increase in adenylate cyclase activity by phospholipase C could be prevented by inclusion of phosphatidylcholine but not of phosphatidic acid during the enzymatic incubations. The specificity of the phospholipids involved in expression of the chronic opiate effect could be demonstrated further by the absence of effect exhibited by phospholipase C from Bacillus cereus and phospholipase D. Hydrolysis of the acyl side chains of phospholipids with phospholipase A2 did not alter the chronic opiate effect after removal of lysophosphatides with bovine serum albumin. Because the guanylylimidodiphosphate- and NaF-sensitive adenylate cyclase activities were not affected by these phospholipase treatments, the expression of the compensatory increase in adenylate cyclase activity is mediated via an increase in the coupling between hormonal receptor and adenylate cyclase with the participation of the polar head groups of the phospholipids and not the hydrophobic side chains.  相似文献   

5.
Abstract: Prior treatment of NG108-15 cells with phosphatase inhibitors including okadaic acid and calyculin A inhibited the elevation of cytosolic Ca2+ concentration ([Ca2+]i) induced by bradykinin by ∼63%. This inhibition was dependent on the concentration of okadaic acid with an IC50 of 0.15 n M . Okadaic acid treatment only lowered the maximal response of [Ca2+]i increase and had no effect on the EC50 value for bradykinin regardless of the presence of extracellular Ca2+. Neither the capacity of 45Ca2+ accumulation within intracellular nonmitochondrial Ca2+ stores nor the magnitude of [Ca2+]i increase induced by thapsigargin was reduced by the treatment of okadaic acid. In contrast, the same phosphatase inhibitor treatment inhibited the bradykinin-evoked inositol 1,4,5-trisphosphate (IP3) generation, the Mn2+ influx, and the capacity of mitochondrial Ca2+ accumulation. Furthermore, the sensitivity of IP3 in the Ca2+ release was suppressed by okadaic acid pretreatment. Our results suggest that the reduction of bradykinin-induced [Ca2+]i rise by the promotion of protein phosphorylation was attributed to the reduced activity of phospholipase C, the decreased sensitivity to IP3, and the slowed rate of Ca2+ influx. Thus, phosphorylation plays a role in bradykinin-sensitive Ca2+ signaling cascade in NG108-15 cells.  相似文献   

6.
The increase in hormone-stimulated cyclic AMP accumulation observed in a variety of intact cells after chronic pretreatment with drugs that inhibit adenylate cyclase activity has been attributed to an increase in adenylate cyclase activity following withdrawal of the inhibitory drug. In NG 108-15 mouse neuroblastoma X rat glioma hybrid cells (NG cells) chronically treated with the muscarinic cholinergic agonist carbachol, we have found a significant decrease in the apparent degradation rate constant for cyclic AMP, in addition to an increase in the prostaglandin E1 (PGE1)-stimulated cyclic AMP synthesis rate in intact cells. In carbachol-pretreated NG cells that were stimulated with a maximally effective dose of PGE1, and that accumulated steady-state cyclic AMP concentrations fourfold or more higher than in control cells, the apparent rate constant for degradation was about 53% lower than the value for control cells. In carbachol-pretreated cells stimulated with a submaximal dose of PGE1 to yield a steady-state cyclic AMP concentration comparable to control cells, the apparent rate constant was 31% lower than the value for control cells. In S49 mouse lymphoma cells (S49 cells) chronically treated with an analog of the inhibitory agonist somatostatin, the first-order rate constant for cyclic AMP degradation in intact cells following isoproterenol stimulation was 29% lower than the value for control cells. Despite these changes in the kinetics of cyclic AMP degradation in intact NG cells and S49 cells, there was either no change or a minimal change (less than 10%) in phosphodiesterase activities assayed in extracts of cells chronically exposed to inhibitory drugs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Chronic pertussis toxin treatment (5 days) of NG108-15 neuroblastoma X glioma hybrid cells had no significant effect on basal cyclic AMP levels whereas it effectively blocked the inhibitory action of acute (10 min) exposure of carbachol (10(-4)M) on intracellular cyclic AMP accumulation, stimulated by prostaglandin E1. This action of pertussis toxin was found to be long lasting: exposure of the cells to pertussis toxin (100 ng/ml) for only 24 h followed by a 5-day withdrawal period still was shown effective on day 7 in abolishing the inhibitory action of carbachol on prostaglandin E1-stimulated cyclic AMP production. Chronic exposure (5 days) of NG108-15 cells to carbachol (10(-5)M) causes an increase in basal cyclic AMP levels by 98%, and a desensitization of the muscarinic inhibition of cyclic AMP accumulation, assessed after a 24-h withdrawal period. When carbachol treatment is carried out in the presence of pertussis toxin (100 ng/ml) both of these effects of carbachol are abolished.  相似文献   

8.
Electrophysiological evidence shows that voltage-dependent calcium channel (VDCC) activity can be regulated by a large number of neurotransmitters. In particular, guanine nucleotide binding regulatory protein (G protein)-mediated inhibitory modulation of the channel activity has been deduced from evidence that GTP analogues and purified G proteins are able to mimic this effect. The G proteins involved are pertussis toxin (PTx) sensitive. The purpose of the present study was to investigate, using biochemical techniques, whether G protein activation modulates the recognition site for omega-conotoxin GVIA (CgTx), a peptide neurotoxin that selectively labels a population of high-threshold VDCC. Undifferentiated and differentiated (1 mM dibutyryl cyclic AMP, 4 days) NG 108-15 cells were used. In both crude cellular extracts specific binding of 125I-CgTx was characterized. Differentiation induced a sixfold increase in the number of binding sites and doubled the KD value. The in vitro addition of guanylylimidodiphosphate (GMP-PNP; a nonhydrolyzable analogue of GTP) to extracts prepared from differentiated cells reduced the 125I-CgTx binding by 48%. This effect, observed in undifferentiated cells as well, was also caused by other triphosphate guanine nucleotides, such as GTP, but not by guanosine 5'-O-(2-thiodiphosphate) or adenine nucleotides. Treatment of the cells with PTx prevented the GMP-PNP effect. Moreover, the results obtained after preincubation with specific antisera raised against the alpha subunits of Gi1-2 and Go suggest that Go is the G protein responsible for the observed effect.  相似文献   

9.
Various prostaglandins (PGs) (10 nM-30 microM) were added to NG108-15 cells in culture, and changes in the levels of intracellular cyclic GMP and Ca2+ were investigated. Exposure of the cells to PGF2 alpha, PGD2, and PGE2 (10 microM) transiently increased the cyclic GMP content 7.5-, 3.9-, and 3.1-fold, respectively. Furthermore, the increased levels of cyclic GMP correlated well with the rise in cytosolic free Ca2+ concentrations induced by the PGs. Other PGs (10 microM), including metabolites and synthetic analogs, which had no effect on intracellular Ca2+, failed to increase the cyclic GMP content in the cells. When extracellular Ca2+ was depleted from the culture medium, the PG-induced increase in cyclic GMP level was almost completely abolished. In addition, treatment of the cells with quin 2 tetraacetoxymethyl ester dose-dependently inhibited the PG-induced cyclic GMP formation. The increase in cyclic GMP content caused by treatment of the cells with a high K+ level (50 mM) was completely blocked by voltage-dependent Ca2+ entry blockers, such as verapamil (10 microM), nifedipine (1 microM), and diltiazem (100 microM); however, the PG (10 microM)-induced increase in cyclic GMP content was not affected by such Ca2+ entry blockers. These findings indicate that PG-induced cyclic GMP formation may require the rise in intracellular Ca2+ level and that the voltage-dependent Ca2+ channels may not be involved in the PG-induced rise in Ca2+ content.  相似文献   

10.
Abstract: Extracellular ATP has neurotransmitter-like properties in the CNS and PNS that are mediated by a cell-surface P2 purinergic receptor. In the present study, we have extensively characterized the signal transduction pathways that are associated with activation of a P2U receptor in a cultured neuroblastoma × glioma hybrid cell line (NG108-15 cells). The addition of ≥1 μM ATP to NG108-15 cells caused a transient increase in [Ca2+]i that was inhibited by 40% when extracellular calcium was chelated by EGTA. ATP concentrations ≥500 μM also elicited a sustained increase in [Ca2+]i that was inhibited when extracellular calcium was chelated by EGTA. The increase in [Ca2+]i elicited by ATP occurred concomitantly with the hydrolysis off [32P]-phosphatidylinositol 4,5-bisphosphates and an increase in the level of inositol 1,4,5-trisphosphate. ATP also caused a time- and dose-dependent increase in levels of [3H]inositol monophosphates in lithium-treated cells. Separation of the inositol monophosphate isomers by ion chromatography revealed a specific increase in the level of inositol 4-monophosphate. The magnitude of the increase in [Ca2+]i elicited by ATP correlated with the concentration of the fully ionized form of ATP (ATP4-) in the medium and not with the concentration of magnesium-ATP (MgATP2-). Similar to ATP, UTP also induced polyphosphoinositide breakdown, inositol phosphate formation, and an increase in [Ca2+]i. ADP, ITP, TTP, GTP, ATP-γS, 2-methylthio ATP, β,γ-imidoATP or 3′-O-(4-benzoyl)benzoylATP, but not CTP, AMP, β,γ-methylene ATP, or adenosine, also caused an increase in [Ca2+]i. In cells labeled with [32P]Pi or [14C]-arachidonic acid, ATP caused a transient increase in levels of labeled phosphatidic acids, but had no effect on levels of arachidonic acid. The increase in phosphatidic acid levels elicited by ATP apparently was not due to activation of a phospholipase D because ATP did not induce the formation of phosphatidylethanol in [14C]myristic acid-labeled cells incubated in the presence of ethanol. These findings support the hypothesis that a P2 nucleotide receptor in NG108-15 cells is coupled to a signal transduction pathway involving the activation of a phospholipase C and a plasma membrane calcium channel, but not the activation of phospholipases A2 and D.  相似文献   

11.
Abstract: The present article investigates chronic opioid regulation of the stimulatory adenylate cyclase-coupled prostaglandin E1 (PGE1) receptor system in neuroblastoma × glioma (NG108-15) hybrid cells. Persistent activation of δ-opioid receptors by morphine (10 µmol/L; 3 days) substantially down-regulates the number of PGE1 binding sites by ~30%, without affecting their affinity. Radioligand binding studies performed in the presence of GTPγS (100 µmol/L) further revealed that the remaining PGE1 binding sites are still capable of interacting functionally with their associated stimulatory G proteins, Gs. On the postreceptor level, neither changes in the abundance nor in the intrinsic activity of the α subunit of Gs (Gsα) were found during the state of opioid dependence, as has been verified by western blot and S49 cyc? reconstitution experiments, respectively. Evaluation of the functional interaction between PGE1 receptors and Gs by means of receptor-stimulated, cholera toxin-catalyzed ADP-ribosylation of Gsα revealed a significant increase in the ability of PGE1 receptors to activate Gsα (3.3-fold increase in EC50; p < 0.05) in cells chronically exposed to morphine. This effect was completely blocked by coincubation of the cells together with the opiate antagonist naloxone (100 µmol/L; 3 days), whereas precipitation of morphine withdrawal by naloxone (100 µmol/L) had no further effect on sensitization in PGE1 receptor/Gs coupling. These findings provide evidence that the stimulatory adenylate cyclase-coupled PGE1 receptor system represents a potential target of chronic δ-opioid receptor activation in NG108-15 hybrid cells. They further suggest that sensitization in stimulatory signal transduction plays a critical role in the generation of opioid dependence.  相似文献   

12.
The accumulation of inositol phosphates (IPs) in response to prostaglandins (PGs) was studied in NG108-15 cells preincubated with myo-[3H]inositol. As a positive control, bradykinin caused accumulation of IPs transiently at an early phase (within 1 min) and continuously during a late phase (15-60 min) of incubation in the cells. PGD2 and PGF2 alpha did not significantly cause the accumulation of IPs at an early phase but significantly stimulated inositol bisphosphate (IP2) and inositol monophosphate (IP) formation at late phase of incubation. The maximum stimulation was obtained at greater than 10(-7) M concentrations of these PGs, the levels being three-and twofold for IP2 and IP1, respectively. 9 alpha, 11 beta-PGF2 has a slight effect but PGE2 and the metabolites of PGD2 and PGF2 alpha have no effect up to 10(-6)M. The effects of PGD2 and PGF2 alpha were not additive, but the effect of each PG was additive to that of bradykinin at a late phase of incubation. Inositol 1-monophosphate was mainly identified in the stimulation by 10(-5) M PGD2 and 10(-5) M PGF2 alpha, whereas both inositol 1-monophosphate and inositol 4-monophosphate were produced in the stimulation by 10(5) M bradykinin. Depletion of extracellular Ca2+ diminished the stimulatory effect of PGD2 and PGF2 alpha and late-phase effect of bradykinin, but simple Ca2+ influx into the cells by high K+, ionomycin, or A23187 failed to cause such late-phase effects. These results suggest that PGD2 and PGF2 alpha specifically stimulate hydrolysis of inositol phospholipids.  相似文献   

13.
Abstract: Administration of carbachol, noradrenaline, and bradykinin induced Egr-1 mRNA expression within 1 h in mouse neuroblastoma × rat gliomahybrid NG108–15 cells. With specific receptor antagonists, the Egr-1 inductions by carbachol and noradrenaline were shown to be mediated via cholinergic muscarinic and α2-adrenergic receptors, respectively. At their saturation levels for Egr-1 induction, the two agonists had additive effects when added together, but no prolongation of the effect on Egr-1 induction was observed. Addition of carbachol or noradrenaline 6 h after primary stimulation with carbachol or noradrenaline did not result in secondary Egr-1 induction, probably because of receptor desensitization. On the other hand, bradykinin consistently had an additive effect on Egr-1 induction, irrespective of the time of its addition, suggesting that the signal pathways for Egr-1 induction by carbachol or noradrenaline and by bradykinin are different. Treatment of cells with pertussis toxin or cholera toxin strongly inhibited Egr-1 induction by carbachol or noradrenaline but only partially inhibited the induction by bradykinin. Thus, the signals transduced in NG108–15 cells by different neurotransmitter receptors appear to have different effects on Egr-1 induction, depending on the times of stimulation and the combinations of receptors stimulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号