首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A recombinant plasmid pool of the Saccharomyces diastaticus genome was constructed in plasmid YEp13 and used to transform a strain of Saccharomyces cerevisiae. Six transformants were obtained which expressed amylolytic activity. The plasmids each contained a 3.9-kilobase (kb) BamHI fragment, and all of these fragments were cloned in the same orientations and had identical restriction maps, which differed from the map of the STA1 gene (I. Yamashita and S. Fukui, Agric. Biol. Chem. 47:2689-2692, 1983). The glucoamylase activity exhibited by all S. cerevisiae transformants was approximately 100 times less than that of the donor strain. An even lower level of activity was obtained when the recombinant plasmid was introduced into Schizosaccharomyces pombe. No expression was observed in Escherichia coli. The 3.9-kb BamHI fragment hybridized to two sequences (4.4 and 3.9 kb) in BamHI-digested S. diastaticus DNA, regardless of which DEX (STA) gene S. diastaticus contained, and one sequence (3.9 kb) in BamHI-digested S. cerevisiae DNA. Tetrad analysis of crosses involving untransformed S. cerevisiae and S. diastaticus indicated that the 4.4-kb homologous sequence cosegregated with the glucoamylase activity, whereas the 3.9-kb fragment was present in each of the meiotic products. Poly(A)+ RNA fractions from vegetative and sporulating diploid cultures of S. cerevisiae and S. diastaticus were probed with the 3.9-kb BamHI fragment. Two RNA species, measuring 2.1 and 1.5 kb, were found in both the vegetative and sporulating cultures of S. diastaticus, whereas one 1.5-kb species was present only in the RNA from sporulating cultures of S. cerevisiae.  相似文献   

2.
To improve the efficiency of the glucoamylase signal peptide (GSP) of Saccharomyces diastaticus for the secretion of foreign proteins, hybrid plasmids containing one of four types of GSP mutant (m1, Pro(-18)-->Leu(-18); m2, Tyr(-13)-->Leu(-13); m3, Ser(-9)-->Leu(-9); m4, Asn(-5)-->Pro(-5)) were constructed and evaluated in Saccharomyces cerevisiae using Bacillus endo-1,4-beta-D-glucanase (CMCase) as a reporter gene. CMCase secretion by m1, m2 and m3 GSP mutants was increased, likely resulting from a higher probability of the modified GSP to assume an alpha-helical structure. Especially in the case of m3, the substitution of Leu for a polar residue, Ser(-9), in the hydrophobic region resulted in approximately a twofold increase in extracellular CMCase activity. In mutant 4, which disrupts the alpha-helix of GSP, CMCase was less efficiently secreted.  相似文献   

3.
The hsp70 multigene family of Saccharomyces cerevisiae is a complex multigene family, composed of members exhibiting complex patterns of regulation. Expression of some members is induced after a heat shock, whereas expression of others is repressed. Some members of the family are expressed during exponential growth. One gene, SSA3, shows an unusual pattern of expression during approach to stationary phase. While most RNAs decrease in abundance, SSA3 RNA levels dramatically increase. The constitutive expression of SSA3 in cells lacking adenylate cyclase activity suggests that cAMP modulates SSA3 expression.  相似文献   

4.
DNA coding for extracellular glucoamylase genes STA1 and STA3 was isolated from DNA libraries of two Saccharomyces diastaticus strains, each carrying STA1 or STA3. Cells transformed with a plasmid carrying either the STA1 or STA3 gene secreted glucoamylases having the same enzymatic and immunological properties and the same electrophoretic mobilities in acrylamide gel electrophoresis as those of authentic glucoamylases. Southern blot analysis of genomic DNA from S. diastaticus and a glucoamylase-non-secreting yeast, Saccharomyces cerevisiae, revealed that the STA1 and STA3 loci of S. diastaticus showed a high degree of homology, and that both yeast species (S. diastaticus and S. cerevisiae) contained DNA segments highly homologous to those of the extracellular glucoamylase genes. Restriction maps of the homologous DNA segments suggested that the extracellular glucoamylase genes of S. diastaticus may have arisen from recombination among the resident DNA segments in S. cerevisiae.  相似文献   

5.
Any one of three homologous genes - STA1, STA2 and STA3 - encoding glucoamylase isozymes I, II and III respectively, allows the Saccharomyces species to utilize starch as a sole carbon source. We show in this paper that glucoamylase II production can be increased 4-fold over the level produced by STA2 strains, by using a two-step fermentation and a yeast strain transformed with a high-copy-number plasmid carrying the STA2 gene. The accumulation of anomalous STA2 mRNA species, mainly differing at their 5' ends, and saturation of step(s) in the secretory pathway appear to be among the major factors limiting glucoamylase expression in synthetic media.  相似文献   

6.
The complete nucleotide sequence of the extracellular glucoamylase gene STA1 from the yeast Saccharomyces diastaticus has been determined. A single open reading frame codes for a 778-amino-acid protein which contains 13 potential N-glycosylation sites. In the 5'- and 3'-flanking regions of the gene, there are striking sequence homologies to the corresponding regions of ADH1 for alcohol dehydrogenase and MAT alpha 2 for mating type control in the yeast Saccharomyces cerevisiae. The putative precursor begins with a hydrophobic segment that presumably acts as a signal sequence for secretion. The presumptive signal sequence showed a significant homology to that of Bacillus subtilis alpha-amylase precursor. The next segment, of ca. 320 amino acids, contains a threonine-rich tract in which direct repeat sequences of 35 amino acids exist, and is bordered by a pair of basic amino acid residues (Lys-Lys) which may be a proteolytic processing signal. The carboxy-terminal half of the precursor is a presumptive glucoamylase which contains several peptide segments showing a high degree of homology with alpha-amylases from widely diverse organisms including a procaryote (B. subtilis) and eucaryotes (Aspergillus oryzae and mouse). Analysis of both the nucleotide sequence of the STA1 gene and the amino acid composition of the purified glucoamylase suggested that the putative precursor is processed to yield subunits H and Y of mature enzyme by both trypsin-like and chymotrypsin-like cleavages.  相似文献   

7.
Leh-Louis V  Wirth B  Potier S  Souciet JL  Despons L 《Genetics》2004,167(4):1611-1619
The influence of duplicated sequences on chromosomal stability is poorly understood. To characterize chromosomal rearrangements involving duplicated sequences, we compared the organization of tandem repeats of the DUP240 gene family in 15 Saccharomyces cerevisiae strains of various origins. The DUP240 gene family consists of 10 members of unknown function in the reference strain S288C. Five DUP240 paralogs on chromosome I and two on chromosome VII are arranged as tandem repeats that are highly polymorphic in copy number and sequence. We characterized DNA sequences that are likely involved in homologous or nonhomologous recombination events and are responsible for intra- and interchromosomal rearrangements that cause the creation and disappearance of DUP240 paralogs. The tandemly repeated DUP240 genes seem to be privileged sites of gene birth and death.  相似文献   

8.
9.
10.
Summary The protoplast fusion technique provides a useful method for improving industrial yeasts and agglutinant agents like polyethylene glycol (PEG) MW 4000 and Ca++ ions are widely used to stimulate the fusion process. Commercial Baker's yeast Saccharomyces cerevisiae and Saccharomyces diastaticus were selected as parental strains for somatic fusion. The Saccharomyces diastaticus carried a spontaneous petite mutation and could not metabolize starch unlike respiratory competent Saccharomyces diastaticus from which it was derived, that readily could.A medium containing soluble starch as a carbon source and 3 % agar was used as fusion products selection medium. Respiratory competent fusion products were capable of using dextrins and starch as carbon sources.  相似文献   

11.
12.
A fusion gene which encoded a polypeptide comprised of 1116 amino acids was constructed using the alpha-amylase and glucoamylase cDNAs of Aspergillus shirousamii. When the fusion gene was expressed in Saccharomyces cerevisiae using a yeast expression plasmid under the control of the yeast ADH1 promoter, a bifunctional fusion protein (145 kDa) having both alpha-amylase and glucoamylase activities was secreted into the culture medium. The fusion protein had higher raw-starch-digesting activity than those of the original alpha-amylase and glucoamylase, and adsorbed onto raw starch like the glucoamylase. It was suggested that the characteristics are a result of the raw-starch-affinity site in the glucoamylase domain of the fusion protein.  相似文献   

13.
14.
The extracellular glucoamylase from certain strains of Saccharomyces cerevisiae can be purified from culture medium by a simple chromatographic procedure. The native enzyme is heavily glycosylated and has an Mr of about 250,000, but gel filtration indicates the existence of oligomers of larger size. Dissociation yields a form of Mr about 70,000. The glucoamylase is rich in serine and threonine and in aspartic acid plus asparagine, and has a pI of 4.62 and a pH optimum of 4.5-6.5. The thermostability and resistance to denaturants of the yeast enzyme is compared with those of two other fungal glucoamylases. Kinetic data for the yeast enzyme and a variety of substrates is presented; the enzyme is particularly ineffective in cleaving alpha-(1----6)-glycosidic bonds.  相似文献   

15.
16.
Zusammenfassung Die lichtinduzierte Pigmentbildung wird in Abhängigkeit von verschiedenen Faktoren untersucht und ihre Kinetik gemessen. Der Farbstoff entsteht nur in einem stickstoffhaltigen Medium. — Der Temperaturbereich, innerhalb dessen Pigmentbildung möglich ist, liegt zwischen 14° und 39° C mit einem Optimum bie 29° C. — Für die Anfangskonzentration von Glucose im Medium wird ein Optimum bei 3% gefunden. Nach Verbrauch der Glucose hört die Farbstoffbildung auf, sofern nicht ein anderer Faktor begrenzend wirkt wie z. B. hohe Lichtintensität, durch die die Pigmentproduktion stark eingeschränkt, schließlich sogar völlig verhindert wird. In Abhängigkeit von der Lichtintensität findet sich ein Optimum der Pigmentbildung je nach Lichtsensibilität der Zellen zwischen 26 und 45 kerg · sec-1 · cm-2. Hohe Lichtintensität wirkt zerstörend auf bereits entstandenes Pigment. — Die Aktivität des pigmentbildenden Systems sowie die erreichbare Farbstoffendkonzentration hängen ferner vom Beginn der Belichtung ab. Nennenswerte Pigmentsynthese ist nur möglich bei einem Belichtungsbeginn innerhalb der ersten 10–12 Std und ist um so intensiver, je früher die Belichtung einsetzt. — Bei im übrigen günstigen Kulturbedingungen arbeitet das pigmentbildende System nur während der Lichteinwirkung. — Kinetische Untersuchungen der Farbstoffbildung zeigen, daß das Pigment im Medium entsteht und von dort in die Zellen aufgenommen wird. Demnach muß eine Synthese von Pigmentvorstufen in den Zellen und ihre Abgabe an das Medium angenommen werden.
Light-induced pigment production by Saccharomyces cerevisiae var. ellipsoideus Physiology of pigment production
Summary Light-induced pigment synthesis by cells of Saccharomyces cerevisiae var. ellipsoideus is investigated under the influence of various factors, and kinetic studies of its formation are performed. Pigmentation only occurs with nitrogen in the medium. The temperature favouring pigment production ranges between 14° C and 39° C, and has its optimum at 29° C. Optimum glucose concentration in the medium is 3%. Pigment formation continues until glucose is completely exhausted provided that no other factor — as for instance high light intensity — limits pigment synthesis before. The lowest possible light intensity for pigment production was found at 3 kerg · sec-1 · cm-2, the optimum lies between 26 and 45 kerg ¢ sec-1 · cm-2 — depending on the light sensibility of the cells. Still higher light intensities finally destroy part of the pigment already formed. — There is a clear influence of the onset of light exposure a) on the activity of the pigment producing system and b) on the end concentration of pigment. Only cells exposed to light within the first 10–12 hours of culture give rise to considerable pigment synthesis which is the more active the more the onset of light approaches that of the culture. If all other factors are favourable the pigment producing system once working continues to do so only as long as light is on. —Kinetic experiments show the pigment to be formed in the medium and then to be incorporated by the cells. It must be concluded therefore that pigment precursors are synthesised in the cell and from there transferred into the medium.


Herrn Prof. Dr. W. Simonis zum 60. Geburtstag gewidmet.  相似文献   

17.
Carboxy-terminal deletions were introduced into the raw starch-binding domain (A-515 to R-615) encoded by the gene for glucoamylase I (GAI) from Aspergillus awamori var. kawachi. Genes coding for proteins designated GA596 (A-1 to E-596), GA570 (A-1 to A-570), and GA559 (A-1 to N-559) were constructed and resulted in truncated proteins. All of the mutant genes were expressed heterologously in Saccharomyces cerevisiae. GA596 adsorbed to raw starch and digested it. GA570 and GA559 did not adsorb to raw starch or to an alpha-cyclodextrin-Sepharose CL-4B gel under our experimental conditions. However, GA570 was able to digest raw starch, and the digestion of raw starch by GA570 was inhibited by beta-cyclodextrin. Residue Trp-562 of GAI, which was suggested previously to contribute to formation of an inclusion complex with raw starch, was replaced by Leu (GAW562L), Phe (GAW562F), and Gly (GAW562G). GAW562L and GAW562F adsorbed to raw starch and an alpha-cyclodextrin gel, but GAW562G did not. Although GAW562L digested raw starch to the same extent as wild-type GAI (designated GAY), GAW562F and GAW562G exhibited less ability to digest raw starch. On the basis of our results, it appears that the sequence around Trp-562, PL(W-562)YVTVTLPA, is the minimal sequence necessary for digestion of raw starch and that hydrophobic residue Trp-562 contributes to formation of an inclusion complex. The sequence near Trp-589, which has abundant hydrogen bond-forming residues and the charged amino acid residues needed for stable adsorption to raw starch, probably assists in the formation of the inclusion complex.  相似文献   

18.
A novel multigene family has been identified that is likely to encode odorant receptors on olfactory sensory neurons. Further studies on this gene family are likely to shed light on the molecular mechanisms underlying information coding in the mammalian olfactory system. This review is also published in Current Opinion in Genetics and Development 1992, 2:467-473.  相似文献   

19.
A novel multigene family has been identified that is likely to encode odorant receptors on olfactory sensory neurons. Further studies on this gene family are likely to shed light on the molecular mechanisms underlying information coding in the mammalian olfactory system. This review is also published in Current Opinion in Neurobiology 1992, 2:282-288.  相似文献   

20.
In the yeast Saccharomyces cerevisiae, glucoamylase activity appears specifically in sporulating cells heterozygous for the mating-type locus (MAT). We identified a sporulation-specific glucoamylase gene (SGA) and show that expression of SGA is positively regulated by the mating-type genes, both MATa1 and MAT alpha 2. Northern blot analysis revealed that control of SGA is exerted at the level of RNA production. Expression of SGA or the consequent degradation of glycogen to glucose in cells is not required for meiosis or sporulation, since MATa/MAT alpha diploid cells homozygous for an insertion mutation at SGA still formed four viable ascospores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号