首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Traditional classifications of the Old World monkey tribe Papionini (Primates: Cercopithecinae) recognized the mangabey genera Cercocebus and Lophocebus as sister taxa. However, molecular studies have consistently found the mangabeys to be diphyletic, with Cercocebus and Mandrillus forming a clade to the exclusion of all other papionins. Recent studies have identified cranial and postcranial features which distinguish the Cercocebus-Mandrillus clade, however the detailed similarities in cranial shape between the mangabey genera are more difficult to reconcile with the molecular evidence. Given the large size differential between members of the papionin molecular clades, it has frequently been suggested that allometric effects account for homoplasy in papionin cranial form. A combination of geometric morphometric, bivariate, and multivariate methods was used to evaluate the hypothesis that allometric scaling contributes to craniofacial similarities between like-sized papionin taxa. Patterns of allometric and size-independent cranial shape variation were subsequently described and related to known papionin phylogenetic relationships and patterns of development.Results confirm that allometric scaling of craniofacial shape characterized by positive facial allometry and negative neurocranial allometry is present across adult papionins. Pairwise comparisons of regression lines among genera revealed considerable homogeneity of scaling within the Papionini, however statistically significant differences in regression lines also were noted. In particular, Cercocebus and Lophocebus exhibit a shared slope and significant vertical displacement of their allometric lines relative to other papionins. These findings give no support to narrowly construed hypotheses of uniquely shared patterns of allometric scaling, either between sister taxa or across all papionins. However, more general allometric trends do appear to account for a substantial proportion of papionin cranial shape variation, most notably in those features which have influenced traditional morphological phylogenies. Examination of size-uncorrelated shape variation gives no clear support to molecular phylogenies, but underscores the absence of morphometric similarities between the mangabey genera when size effects are controlled. Patterns of allometric and size-uncorrelated shape variation indicate conservatism of cranial form in non- Theropithecus papionins, and suggest that Papio represents the primitive morphometric pattern for the African papionins. Lophocebus exhibits a divergent morphometric pattern, clearly distinguishable from other papionins, most notably Cercocebus. These results clarify patterns of cranial shape variation among the extant Papionini and lay the groundwork for studies of related fossil taxa.  相似文献   

2.
One of the more perplexing problems in primate systematics concerns the phyletic relationships of the large African monkeys--Mandrillus (including drills), Papio, Lophocebus and Cercocebus. For over twenty years, there has been molecular evidence that mangabeys are an unnatural group and that the terrestrial forms--Cercocebus--are the sister taxon of Mandrillus, while the arboreal forms--Lophocebus--are more closely allied with Papio. Nevertheless, most systematists have been reluctant to accept this scheme due to the lack of morphological evidence. In this paper, we undertake a detailed analysis of the scapula, humerus, radius, ulna, pelvis, femur and dentition of papionin primates. We identify a host of features shared by Cercocebus and Mandrillus to the exclusion of Lophocebus and Papio. The polarity of characters is established by examining an outgroup comprised of several species of Macaca. The features shared by Cercocebus and Mandrillus are functionally related to specific feeding and locomotor behaviors that include aggressive manual foraging, the processing of hard-object foods and the climbing of vertical trunks. We hypothesize that the ability to subsist on hard seeds and nuts gleaned from the forest floor is a key adaptation for the Cercocebus-Mandrillus clade.  相似文献   

3.
DNA sequence data of the nuclear-encoded gamma1-gamma2-globin duplication region were used to examine the phylogenetic relationships of 16 cercopithecid (Old World monkey) species representing 12 extant genera. Morphology- and molecular-based hypotheses of Old World monkey branching patterns are generally congruent, except for generic relationships within the subtribe Papionina. The cercopithecids divide into colobines (leaf-eating monkeys) and cercopithecines (cheek-pouched monkeys). The colobines examined by the DNA data divide into an Asian clade (Nasalis, proboscis monkeys; Trachypithecus, langurs) and an African clade (Colobus, colobus monkeys). The cercopithecines divide into tribes Cercopithecini (Erythrocebus, patas monkey; Chlorocebus, green monkeys; Cercopithecus, guenons) and Papionini. Papionins divide into subtribes Macacina (Macaca, macaques) and Papionina (Papio, hamadryas baboons; Mandrillus, drills and mandrills; Theropithecus, gelada baboons; Lophocebus, arboreal mangabeys; Cercocebus, terrestrial mangabeys). In a morphologically based classification, Mandrillus is a subgenus of Papio, whereas Lophocebus is a subgenus of Cercocebus. In contrast, the molecular evidence treats Mandrillus as a subgenus of Cercocebus, and treats both Theropithecus and Lophocebus as subgenera of Papio. Local molecular clock divergence time estimates were used as a yardstick in a "rank equals age" system to propose a reduction in taxonomic rank for most clades within Cercopithecidae.  相似文献   

4.
Phylogenetic relationships of mangabeys within the Old World monkey tribe Papionini are inferred from analyses of nuclear DNA sequences from five unlinked loci. The following conclusions are strongly supported, based on congruence among trees derived for the five separate gene regions: (1) mangabeys are polyphyletic within the Papionini; (2) Cercocebus is the sister taxon to the genus Mandrillus; and (3) Lophocebus belongs to a clade with Papio and Theropithecus, with Papio as its most likely sister taxon. Morphologically based phylogenies positing mangabey monophyly were evaluated by mapping the sequences for each locus on these trees. The data seem to fit these trees poorly in both maximum-parsimony and likelihood analyses. Incongruence among nuclear gene trees occurred in the interrelationships among Lophocebus, Papio, and Theropithecus. Several factors that may account for this incongruence are discussed, including sampling error, random lineage sorting, and introgression.   相似文献   

5.
The phylogenetic relationships among the genera of the tribe Papionini are inferred using a taxonomic congruence approach in which gene trees derived for eight unlinked genetic sequence datasets are compared. Population genetics theory predicts that species relationships will be revealed with greater probability when the topology of gene trees from many unlinked loci are found to be congruent. The theory underlying this approach is described. Monophyly of the mangabeys is not supported by any of the gene trees; instead, they are polyphyletic with Cercocebus found to be the sister taxon to Mandrillus in five gene trees (with no conflicting trees), and Lophocebus found to be closely related to Papio and/or Theropithecus in all trees. Theropithecus and Papio are not strongly supported as sister taxa (present in one or two trees only);Lophocebus and Papio are supported as sister taxa in the majority of trees. A close relationship between Mandrillus and Papio is not supported in any of the trees.The relationships among Papio, Lophocebus, and Theropithecus cannot be resolved by congruence, probably due to the short time interval estimated between their divergences. The mtDNA COII sequences are used to estimate divergence dates within the papionins. The internode between the divergences of these species is estimated to be between 290 ka and 370 ka. Lastly, the evolution of morphological features such as long faces, suborbital facial fossae, and terrestrial skeletal adaptations is discussed.  相似文献   

6.
Mitochondrial DNA phylogeny of the Old-World monkey tribe Papionini.   总被引:6,自引:0,他引:6  
The evolution of the Old World monkey tribe Papionini, composed of macaques, baboons, mandrills, drills, and mangabeys, was examined using mitochondrial DNA (mtDNA) sequence data on the cytochrome oxidase subunit II gene. When analyzed cladistically, these data support a baboon clade of savannah (Papio) plus gelada (Theropithecus) baboons, as well as a clade containing drill (Mandrillus) plus mangabey (Cerocebus) genera. This result stands in opposition to most morphological phylogenies, which break up the baboon clade by placing Papio and Mandrillus as sister taxa and Theropithecus as a more distantly related lineage. Analyses of COII gene sequences also suggest that the papionin ancestral stock divided into two lineages, one leading to macaques and the other to the purely African genera. From a molecular evolutionary perspective, the papionin COII gene sequences reveal a pattern of amino acid replacements concentrated in the regions spanning the mitochondrial membrane.  相似文献   

7.
Recent molecular and morphological surveys suggest that mangabeys do not represent a monophyletic group. Specifically, Cercocebus is the sister taxon of Mandrillus, whereas Lophocebus forms an unresolved trichotomy with Papio and Theropithecus. The Cercocebus-Mandrillus clade is characterized by skeletal and dental adaptations related to acquisition and processing of hard-object foods that resist decomposition for months on the forest floor. Although species of both mangabey genera can be described as frugivorous seed predators with a strong reliance on hard-object foods, a growing body of evidence indicates that Cercocebus (terrestrial) and Lophocebus (arboreal) mangabeys differ in the hardness of the seeds they consume and the manner in which seeds are processed. The taxa are also distinguished on the basis of dental morphology. Given the purported differences in feeding behaviors of the two mangabey genera, we consider whether there are predictable biomechanical consequences of these behaviors that are reflected in mandibular corpus dimensions. In addition, we present metric data summarizing functional aspects of mangabey mandibular corpus morphology. Mangabey genera are generally not distinguished by differences in relative corpus size, either in postcanine or symphyseal regions. Distinct symphyseal scaling patterns characterize the Papio-Lophocebus clade and the Mandrillus-Cercocebus clade, while the postcanine corpus scales similarly between them. The hypothesis that preferential use of the incisors vs. premolars to initially process these foods results in distinct stress environments is weakly supported, given circumstantial evidence that the relative importance of bending vs. torsion may differ between Cercocebus and Lophocebus.  相似文献   

8.
This study conducts a phylogenetic analysis of extant African papionin craniodental morphology, including both quantitative and qualitative characters. We use two different methods to control for allometry: the previously described narrow allometric coding method, and the general allometric coding method, introduced herein. The results of this study strongly suggest that African papionin phylogeny based on molecular systematics, and that based on morphology, are congruent and support a Cercocebus/Mandrillus clade as well as a Papio/Lophocebus/Theropithecus clade. In contrast to previous claims regarding papionin and, more broadly, primate craniodental data, this study finds that such data are a source of valuable phylogenetic information and removes the basis for considering hard tissue anatomy “unreliable” in phylogeny reconstruction. Among highly sexually dimorphic primates such as papionins, male morphologies appear to be particularly good sources of phylogenetic information. In addition, we argue that the male and female morphotypes should be analyzed separately and then added together in a concatenated matrix in future studies of sexually dimorphic taxa. Character transformation analyses identify a series of synapomorphies uniting the various papionin clades that, given a sufficient sample size, should potentially be useful in future morphological analyses, especially those involving fossil taxa.  相似文献   

9.
This study investigates the developmental bases of size and shape variation in papionin primates (Macaca, Cercocebus, Mandrillus, Lophocebus, and Papio). The analysis tests hypotheses predicting that heterochronic changes in ontogeny, particularly in the degree of overall size growth, can account for cranial diversity and "allometric scaling" in this clade. Large developmental samples of extant papionin crania are examined to test heterochronic hypotheses using bivariate allometric methods. Analyses indicate that the crania of larger papionins (Mandrillus and Papio) are generally peramorphic, surpassing size and shape ranges of smaller, and probably less-derived, macaques and mangabeys. At least two heterochronic processes, including acceleration and hypermorphosis, can account for this pattern. Ontogenetic changes include decoupling of growth and development among cranial regions, along with simple shifts in size. Allometric scaling has complex developmental bases. Size change itself is not sufficient to explain all developmental differences among papionins, but these changes are extremely important in comparisons within cranial regions such as the face. Results imply that Papio exhibits strongly derived patterns of brain growth that impact postnatal patterns of size and shape transformation. Consideration of these results in the context of recent socioecological analyses suggests that derived patterns of cranial growth in Papio may be a response to selection during the early periods of ontogeny, resulting in a distinctive life history pattern.  相似文献   

10.
The documentation of enamel thickness variation across primates is important because enamel thickness has both taxonomic and functional relevance. The Old World monkeys commonly referred to as mangabeys have figured prominently in investigations of feeding ecology and enamel thickness. In this article, we report enamel thickness values for four mangabey taxa (Cercocebus atys, Cercocebus torquatus, Lophocebus aterrimus, and Lophocebus albigena), offer revised interpretation of the significance of thick enamel in papionin evolution, and place our new data in a broader comparative framework. Our data indicate that all mangabeys have thick enamel and that the values obtained for Cercocebus and Lophocebus equal or exceed those published for most extant non-human primates. In addition, new field data combined with a current reading of the dietary literature indicate that hard foods make up a portion of the diet of every mangabey species sampled to date. Clarification on the relationship between diet and enamel thickness among mangabeys is important not only because of recognition that mangabeys are not a natural group but also because of recent arguments that explain thick enamel as an evolved response to the seasonal consumption of hard foods.  相似文献   

11.
12.
A series of fossil cercopithecoids has been recovered from the Dawaitoli Formation, in the Middle Awash study area, Ethiopia. The Dawaitoli Fm. has been dated to approximately 600 Ka. This series includes several partial crania of Theropithecus oswaldi leakeyi as well as other cranial and postcranial fragments. This material is some of the most complete to date and adds considerably to what is known of this widespread and abundant taxon. There are also two isolated papionin molars here allocated to Papio cf. hamadryas based largely on size grounds and similarity to contemporary material from other sites in the Afar Depression. Cercopithecoids are rare in the Dawaitoli Fm., and among them only large papionins are known. This is unique among known Pleistocene sites in the Afar region, but is most similar to the Daka Member of the Bouri Formation. It is quite different from the other known Middle Pleistocene sites in the Afar: Asbole and the geologically younger Andalee where cercopithecoids are abundant and colobines predominate.  相似文献   

13.
Recent advances in developmental biology reveal that patterns of morphological development, even during early phases, may be highly susceptible to evolutionary change. Consequently, developmental data may be uninformative with regard to distinguishing homology and homoplasy. The present analysis evaluates postnatal ontogeny in papionin primates to test hypotheses about homology and homoplasy during later periods of development. Specifically, the analysis studies the allometric bases of craniometric resemblances among four papionin genera to test the hypothesis that homoplasy in adult cranial form, particularly of baboons (Papio) and mandrills (Mandrillus), is underwritten by divergent patterns of development. Bivariate and multivariate allometric analyses demonstrate that the developmental patterns in Papio baboons diverge markedly from ontogenetic allometric trajectories in other papionin species. The resemblances between Papio and Mandrillus (assuming that patterns of development in smaller papionins are ancestral) are largely consequences of perinatal increases in relative brain size in juvenile Papio. Postnatal growth to large size and strong negative allometry of neurocranial form results in shape similarities because developmental pathways for large papionin genera intersect. Analyses show that allometric data may not be particularly informative in revealing homoplasy. However, placed into proper phylogenetic context, such data illustrate derived patterns of development that may reflect critically important life-history or ontogenetic adaptations.  相似文献   

14.
Maximum-parsimony and maximum-likelihood analyses of two of the serum albumin gene's intron sequences from 24 catarrhines (17 cercopithecid and 7 hominid) and 3 platyrrhines (an outgroup to the catarrhines) yielded results on catarrhine phylogeny that are congruent with those obtained with noncoding sequences of the gamma(1)-gamma(2) globin gene genomic region, using only those flanking and intergenic gamma sequences that in their history were not involved in gene conversion. A data set that combined in a tandem alignment these two sets of noncoding DNA orthologues from the two unlinked nuclear genomic loci yielded the following confirmatory results both on the course of cladistic branchings (the divisions in a cladistic classification of higher ranking taxa into subordinate taxa) and on the ages of the taxa (each taxon representing a clade). The cercopithecid branch of catarrhines, at approximately 14 Ma (mega annum) divided into Colobini (the leaf-eating Old World monkeys) and Cercopithecini (the cheek-pouched Old World monkeys). At approximately 10-9 Ma, Colobini divided into an African clade, Colobina, and an Asian clade, Presbytina; similarly at this time level, Cercopithecini divided into Cercopithecina (the guenons, patas, and green monkeys) and Papionina. At approximately 7 Ma, Papionina divided into Macaca, Cercocebus, and Papio. At approximately 5 Ma, Cercocebus divided subgenerically into C. (Cercocebus) for terrestrial mangabeys and C. (Mandrillus) for drills and mandrills, while at approximately 4 Ma Papio divided subgenerically into P. (Locophocebus) for arboreal mangabeys, P. (Theropithecus) for gelada baboons, and P. (Papio) for hamadryas baboons. In turn, the hominid branch of catarrhines at approximately 18 Ma divided into Hylobatini (gibbons and siamangs) and Hominini; at approximately 14 Ma, Hominini divided into Pongina (orangutans) and Hominina; at approximately 7 Ma, Hominina divided into Gorilla and Homo; and at approximately 6-5 Ma, Homo divided subgenerically into H. (Homo) for humans and H. (Pan) for common and bonobo chimpanzees. Rates of noncoding DNA evolution were assessed using a data set of noncoding gamma sequence orthologues that represented 18 catarrhines, 16 platyrrhines, 3 non-anthropoid primates (2 tarsiers and 1 strepsirhine), and rabbit (as outgroup to the primates). Results obtained with this data set revealed a faster rate of nucleotide substitutions in the early primate lineage to the anthropoid (platyrrhine/catarrhine) ancestor than from that ancestor to the present. Rates were slower in catarrhines than in platyrrhines, slower in the cheek-pouched than in the leaf-eating cercopithecids, and slower yet in the hominids. On relating these results to data on brain sizes and life spans, it was suggested that life-history strategies that favor intelligence and longer life spans also select for decreases in de novo mutation rates.  相似文献   

15.
Chromosome banding patterns of six Mangabey species or sub-species are studied and compared. By comparison with the other Papiinae previously studied (Papio and Macaca) Lophocebus albigena and L. aterrimus possess very similar karyotypes, differing a most by a pericentric inversion of the Y chromosome. The other four, Cercocebus torquatus torquatus, C. t. fuliginosus, C. galeritus galeritus and C. g. chrysogaster differ by a complex rearrangement of chromosome no. 10 and by acquisition of heterochromatin on chromosome no 12. No difference was detected nor between the two Lophocebus nor between the four Cercocebus. Cytogenetic criteria age thus in agreement with the morphological, immunological and hematological data, separating the two genuses, and placing Lophocebus closer to the Papio and Macaca than to Cercocebus.  相似文献   

16.
现存狒狒类(Papionin)生活于非洲(如Papio和Theropithoan)、亚洲(如Macaca)和北非(M.sylvanas)。在上新世和更新世,Theropithecus经历了从非洲到亚洲的扩散过程,在印度发现了类似化石。这次在云南中甸金沙江附近发现的下更新世狒狒化石(Papio)证明,如同亚洲猕猴和现代人类祖先一样,非洲狒狒类(Papio和Theropithecus)在同一时期从非洲扩散到亚洲。所不同的是它们没有像猕猴和人类一样生存下来。这次化石的发现对于研究以下生物学问题提供了重要依据1)探讨旧大陆猴类在上新—更新世从非洲到亚洲的扩散过程;2)研究不同旧大陆猴类的进化和环境适应性;3)为现代人类祖先在非洲—亚大陆的扩散研究提供证据;4)由于化石产地包括有人类祖先和其他动物的化石,因此,狒狒在亚洲的生态适应研究将为探讨人类在同一时期的生态适应提供证据。  相似文献   

17.
The complete primary structure of the hemoglobin from the Mandrill (Mandrillus sphinx, Primates) is presented. This hemoglobin comprises two components in approximately equal amounts (HB I and Hb II). The alpha-chains differ in positions 5 (A3) and 9 (A7) having Ala and Asn in the alpha I-chains and Asp and His in the alpha II-chains. The beta-chains are identical. The components could be separated by DEAE-Sephacel chromatography. The globin chains were obtained by carboxymethylcellulose chromatography or high-performance liquid chromatography. The sequences were established by automatic liquid or gas phase Edman degradation of the chains and their tryptic peptides. The alpha-chains show 9 and 11 and the beta-chains 8 exchanges compared with the corresponding human chains, respectively. In the beta-chains one alpha 1/beta 1- and one alpha 1/beta 2-contact is substituted. A comparison of the primary structures of the Mandrill hemoglobin chains with those of other species of the Cercopithecidae family shows that Mandrillus sphinx should be placed between Cercopithecus and Macaca on one side and Papio, Theropithecus and Cercocebus on the other.  相似文献   

18.
Morotopithecus bishopi and Afropithecus turkanensis are two large-bodied hominoid primates from early Miocene deposits of eastern Africa. Researchers have used both cranial and postcranial characters to distinguish these two species. Unfortunately, of the fossil material attributed to each, only the face, palate, and upper dentition are preserved well enough in both species for direct comparisons. There are currently no known directly comparable postcranial elements. In this study, we reevaluated dental characters argued to distinguish the type specimens of Morotopithecus from Afropithecus: relative size of the upper premolars and M3. Exact randomization methods were used to address two questions. First, is it possible to find the degree of dental-size difference observed between Morotopithecus (UMP 62-11) and Afropithecus (KNM-WK 16999) within extant African hominoids? Second, what is the probability of observing the levels of difference found between the fossils among pairs of extant individuals? Metric differences in relative premolar and M3 size were calculated between all possible pairs within the extant sample and the observed difference of the fossil pair was then compared to the resulting distribution of extant pairs. The observed size differences for all comparisons in the fossil teeth were well within the variation observed in the extant African hominoid samples (p>0.05). In light of these results and other currently available cranial evidence, we suggest that the type specimens of Morotopithecus and Afropithecus are not different enough to support taxonomic distinction.  相似文献   

19.
The middle Miocene hominoid Otavipithecus namibiensis is the first and most complete fossil ape from sub-equatorial Africa and represents a significant addition to the taxonomically sparse African middle Miocene hominoid fossil record. The Otavipithecus hypodigm comprises the holotype mandible, which presents a unique mosaic of dental and gnathic characters, and several attributed cranial and postcranial elements which resemble the stem hominoid Proconsul. Contrary to initial hopes that this discovery would provide new insights into hominoid morphological diversity and phylogenetic relationships, a variety of conflicting phylogenetic hypotheses have been advanced suggesting ties to virtually every major large-bodied hominoid group (Conroy et al., 1992; Andrews, 1992 a; Conroy, 1994; Pickford et al., 1994; Begun, 1994 a). Cladistic analysis of a matrix of 22 qualitative and ten quantitative characters of the mandible and mandibular dentition found no support for a close phylogenetic relationship between Otavipithecus and either the African ape or great ape clades, or with any of the Eurasian fossil hominoids with which it has previously been compared. A close relationship between Otavipithecus and Kenyapithecus cannot be ruled out, but is deemed unlikely on the basis both of morphological comparisons and the absence of support within a cladistic framework. The present analysis indicates that Otavipithecus is most closely related to Afropithecus, as previously suggested by Andrews (1992 a) among others. Due to lack of statistical support for this result, a conservative interpretation, that these taxa represented related but divergent lineages of a late early Miocene hominoid radiation, is currently favored. Findings are consistent with the allocation of Otavipithecus to Andrews' (1992 a) tribe Afropithecini which represents the sister group to Kenyapithecus and the extant ape clade.  相似文献   

20.
Papionin monkeys are widespread, relatively common members of Plio‐Pleistocene faunal assemblages across Africa. For these reasons, papionin taxa have been used as biochronological indicators by which to infer the ages of the South African karst cave deposits. A recent morphometric study of South African fossil papionin muzzle shape concluded that its variation attests to a substantial and greater time depth for these sites than is generally estimated. This inference is significant, because accurate dating of the South African cave sites is critical to our knowledge of hominin evolution and mammalian biogeographic history. We here report the results of a comparative analysis of extant papionin monkeys by which variability of the South African fossil papionins may be assessed. The muzzles of 106 specimens representing six extant papionin genera were digitized and interlandmark distances were calculated. Results demonstrate that the overall amount of morphological variation present within the fossil assemblage fits comfortably within the range exhibited by the extant sample. We also performed a statistical experiment to assess the limitations imposed by small sample sizes, such as typically encountered in the fossil record. Results suggest that 15 specimens are sufficient to accurately represent the population mean for a given phenotype, but small sample sizes are insufficient to permit the accurate estimation of the population standard deviation, variance, and range. The suggestion that the muzzle morphology of fossil papionins attests to a considerable and previously unrecognized temporal depth of the South African karst cave sites is unwarranted. Am J Phys Anthropol 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号