共查询到20条相似文献,搜索用时 15 毫秒
1.
Polycystin-L (PCL), homologous to polycystin-2 (71% similarity in protein sequence), is the third member of the polycystin family of proteins. Polycystin-1 and -2 are mutated in autosomal dominant polycystic kidney disease, but the physiological role of PCL has not been determined. PCL acts as a Ca-regulated non-selective cation channel permeable to mono- and divalent cations. To further understand the biophysical and pharmacological properties of PCL, we examined a series of organic cations for permeation and inhibition, using single-channel patch clamp and whole-cell two-microelectrode voltage clamp techniques in conjunction with Xenopus oocyte expression. We found that PCL is permeable to organic amines, methlyamine (MA, 3.8 A), dimethylamine (DMA, 4.6 A) and triethylamine (TriEA, 6 A), and to tetra-alkylammonium cation (TAA) tetra-methylammonium (TMA, 5.5-6.4 A). TAA compounds tetra-ethylammonium (TEA, 6.1-8.2 A) and tetra-propylammonium (TPA, 9.8 A) were impermeable through PCL and exhibited weak inhibition on PCL (IC50 values>13 mM). Larger TAA cations tetra-butylammonium (TBA, 11.6 A) and tetra-pentylammonium (TPeA, 13.2 A) were impermeable through PCL as well and showed strong inhibition (IC50 values of 2.7 mM and 1.3 microM, respectively). Inhibition by TBA was on decreasing the single-channel current amplitude and exhibited no effect on open probability (NPo) or mean open time (MOT), suggesting that it blocks the PCL permeation pathway. In contract, TEA, TPA and TPeA reduced NPo and MOT values but had no effect on the amplitude, suggesting their binding to a different site in PCL, which affects the channel gating. Taken together, our studies revealed that PCL is permeable to organic amines and TAA cation TMA, and that inhibition of PCL by large TAA cations exhibits two different mechanisms, presumably through binding either to the pore pathway to reduce permeant flux or to another site to regulate the channel gating. These data allow to estimate a channel pore size of approximately 7 A for PCL. 相似文献
2.
TRPM5 is a voltage-modulated and Ca(2+)-activated monovalent selective cation channel 总被引:8,自引:0,他引:8
The TRPM subfamily of mammalian TRP channels displays unusually diverse activation mechanisms and selectivities. One member of this subfamily, TRPM5, functions in taste receptor cells and has been reported to be activated through G protein-coupled receptors linked to phospholipase C. However, the specific mechanisms regulating TRPM5 have not been described. Here, we demonstrate that TRPM5 is a monovalent-specific cation channel with a 23 pS unitary conductance. TRPM5 does not display constitutive activity. Rather, it is activated by stimulation of a receptor pathway coupled to phospholipase C and by IP(3)-mediated Ca(2+) release. Gating of TRPM5 was dependent on a rise in Ca(2+) because it was fully activated by Ca(2+). Unlike any previously described mammalian TRP channel, TRPM5 displayed voltage modulation and rapid activation and deactivation kinetics upon receptor stimulation. The most closely related protein, the Ca(2+)-activated monovalent-selective cation channel TRPM4b, also showed voltage modulation, although with slower relaxation kinetics than TRPM5. Taken together, the data demonstrate that TRPM5 and TRPM4b represent the first examples of voltage-modulated, Ca(2+)-activated, monovalent cation channels (VCAMs). The voltage modulation and rapid kinetics provide TRPM5 with an excellent set of properties for participating in signaling in taste receptors and other excitable cells. 相似文献
3.
Vennekens R Hoenderop JG Prenen J Stuiver M Willems PH Droogmans G Nilius B Bindels RJ 《The Journal of biological chemistry》2000,275(6):3963-3969
The recently cloned epithelial Ca(2+) channel (ECaC) constitutes the Ca(2+) influx pathway in 1,25-dihydroxyvitamin D(3)-responsive epithelia. We have combined patch-clamp analysis and fura-2 fluorescence microscopy to functionally characterize ECaC heterologously expressed in HEK293 cells. The intracellular Ca(2+) concentration in ECaC-expressing cells was closely correlated with the applied electrochemical Ca(2+) gradient, demonstrating the distinctive Ca(2+) permeability and constitutive activation of ECaC. Cells dialyzed with 10 mM 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid displayed large inward currents through ECaC in response to voltage ramps. The corresponding current-voltage relationship showed pronounced inward rectification. Currents evoked by voltage steps to potentials below -40 mV partially inactivated with a biexponential time course. This inactivation was less pronounced if Ba(2+) or Sr(2+) replaced Ca(2+) and was absent in Ca(2+)-free solutions. ECaC showed an anomalous mole fraction behavior. The permeability ratio P(Ca):P(Na) calculated from the reversal potential at 30 mM [Ca(2+)](o) was larger than 100. The divalent cation selectivity profile is Ca(2+) > Mn(2+) > Ba(2+) approximately Sr(2+). Repetitive stimulation of ECaC-expressing cells induced a decay of the current response, which was greatly reduced if Ca(2+) was replaced by Ba(2+) and was virtually abolished if [Ca(2+)](o) was lowered to 1 nM. In conclusion, ECaC is a Ca(2+) selective channel, exhibiting Ca(2+)-dependent autoregulatory mechanisms, including fast inactivation and slow down-regulation. 相似文献
4.
Permeation of Ca2+ and monovalent cations through an outwardly rectifying channel in maize root stelar cells 总被引:2,自引:0,他引:2
A depolarization-activated outwardly-rectifying channel (OR),most likely involved in the passive release of K+ from the rootsymplasm into the stelar apoplast (for subsequent transportto the shoot via the xylem vessels), has been characterizedin the plasma membrane of maize root stelar cells (Roberts andTester, 1995). In the present study, the selectivity of thischannel was further characterized using single channel current-voltagecurves generated using a voltage ramp protocol. This protocolpermitted the accurate and unambiguous measurement of the reversalpotentials of currents resulting from single channel openings.Using the voltage ramp protocol, it was shown that the OR allowsboth K+ efflux and Ca2+ influx at potentials positive of EKand negative of ECa. The OR had a PCa/PK of 1.720.21decreasing as extracellular Ca2+ was increased. The permeabilityof the OR for monovalent cations other than K+ was also investigated.In biionic conditions, a relative permeability sequence of was determined (i.e. Eisenman sequenceIV). The physiological implications of the selectivity of theOR are discussed. Key words: Maize roots, K+ channel selectivity, Ca2+ permeation 相似文献
5.
《The Journal of general physiology》1993,101(1):85-102
This study deals with the effect of mucosal UO2(2+) on the Ca(2+)- blockable, poorly selective cation channels in the apical membrane of frog skin and toad urinary bladder. Our data show that UO2(2+) inhibits the Na+ currents through the amiloride-insensitive cation pathway and confirm a previously described stimulatory effect on the amiloride- blockade Na+ transport. Noise analysis of the Ca(2+)-blockable current demonstrates that the divalent also depresses the low-frequency Lorentzian (fc = 11.7 Hz) in the power density spectrum (PDS) and reveals the presence of high-frequency relaxation noise (fc = 58.5 Hz). The action of UO2(2+) is not reversed upon washout and is not accompanied by noise, typically induced by reversible blockers. The divalent merely depresses the plateau of the low-frequency Lorentzian, demonstrating a decrease in the number of conductive cation channels. Similarly, with mucosal K+ and Rb+, UO2(2+) also unmasks the high- frequency Lorentzian by depressing the noise from the slowly fluctuating cation channels (type S). In all experiments with mucosal Cs+, the PDS contains high-frequency relaxation noise (fc = 75.1 Hz in Rana temporaria, and 65.4 Hz in Rana ridibunda). An effect of UO2(2+) on the Cs+ currents and Lorentzian plateaus could not be demonstrated, suggesting that this monovalent cation does not pass through type S channels. Experiments with the urinary bladder revealed only a UO2(2+)- insensitive pathway permeable for Na+, K+, Rb+, and Cs+. We submit that in frog skin two cation-selective channels occur, distinguished by their spontaneous gating kinetics, their sensitivity to UO2(2+), and their permeability for Cs+. In toad urinary bladder, only one kind of cation-selective channel is observed, which resembles the UO2(2+)- insensitive channel in frog skin, with fast open-closed kinetics (type F). 相似文献
6.
7.
We measured the ion selectivity of cGMP-dependent currents in detached membrane patches from the outer segment of cone photoreceptors isolated from the retina of striped bass. In inside-out patches excised from either single or twin cones the amplitude of these currents, under symmetric ionic solutions, changed with the concentration of cGMP with a dependence described by a Hill equation with average values, at +80 mV, of Km = 42.6 microM and n = 2.49. In the absence of divalent cations, and under symmetric ionic solutions, the I-V curves of the currents were linear over the range of -80 to +80 mV. The addition of Ca altered the form of the I-V curve to a new function well described by an empirical equation that also describes the I-V curve of the photocurrent measured in intact photoreceptors. The monovalent cation permeability sequence of the cGMP-gated channels in the absence of divalent ions was PK > PNa = PLi = PRb > PCs (1.11 > 1.0 = 0.99 = 0.96 > 0.82). The conductance selectivity sequence at +80 mV was GNa = GK > GRb > GCs > GLi (1.0 = 0.99 > 0.88 > 0.74 > 0.60). The organic cations tetramethylammonium (TMA) and arginine partially blocked the current, but the larger ion, arginine, was permeant, whereas the smaller ion, TMA, was not. The amplitude of the outward current through the channels increased with the concentration of monovalent cations on the cytoplasmic membrane surface, up to a saturating value. The increase was well described by the adsorption isotherm of a single ion binding site within the channel with average binding constants, at +80 mV, of 104 mM for Na and 37.6 mM for Li. By assuming that the ion channel contains a single ion binding site in an energy trough separated from each membrane surface by an energy barrier, and using Eyring rate theory, we simulated I-V curves that fit the experimental data measured under ionic concentration gradients. From this fit we conclude that the binding site interacts with one ion at a time and that the energy barriers are asymmetrically located within the membrane thickness. Comparison of the quantitative features of ion permeation and interaction between the cGMP-gated channels of rod and cone photoreceptors reveals that the ion binding sites are profoundly different in the two types of channels. This molecular difference may be particularly important in explaining the differences in the transduction signal of each receptor type. 相似文献
8.
Naseem R Holland IB Jacq A Wann KT Campbell AK 《Biochimica et biophysica acta》2008,1778(6):1415-1422
The results here show for the first time that pH and monovalent cations can regulate cytosolic free Ca(2+) in E. coli through Ca(2+) influx and efflux, monitored using aequorin. At pH 7.5 the resting cytosolic free Ca(2+) was 0.2-0.5 microM. In the presence of external Ca(2+) (1 mM) at alkaline pH this rose to 4 microM, being reduced to 0.9 microM at acid pH. Removal of external Ca(2+) caused an immediate decrease in cytosolic free Ca(2+) at 50-100 nM s(-1). Efflux rates were the same at pH 5.5, 7.5 and 9.5. Thus, ChaA, a putative Ca(2+)/H(+)exchanger, appeared not to be a major Ca(2+)-efflux pathway. In the absence of added Na(+), but with 1 mM external Ca(2+), cytosolic free Ca(2+) rose to approximately 10 microM. The addition of Na(+)(half maximum 60 mM) largely blocked this increase and immediately stimulated Ca(2+) efflux. However, this effect was not specific, since K(+) also stimulated efflux. In contrast, an increase in osmotic pressure by addition of sucrose did not significantly stimulate Ca(2+) efflux. The results were consistent with H(+) and monovalent cations competing with Ca(2+) for a non-selective ion influx channel. Ca(2+) entry and efflux in chaA and yrbG knockouts were not significantly different from wild type, confirming that neither ChaA nor YrbG appear to play a major role in regulating cytosolic Ca(2+) in Escherichia coli. The number of Ca(2+) ions calculated to move per cell per second ranged from <1 to 100, depending on conditions. Yet a single eukaryote Ca(2+) channel, conductance 100 pS, should conduct >6 million ions per second. This raises fundamental questions about the nature and regulation of Ca(2+) transport in bacteria, and other small living systems such as mitochondria, requiring a new mathematical approach to describe such ion movements. The results have important significance in the adaptation of E. coli to different ionic environments such as the gut, fresh water and in sea water near sewage effluents. 相似文献
9.
Lysophosphatidic acid (LPA) plays various roles in the regulation of cell growth as a lipid mediator. We studied the effect of LPA on intracellular Ca(2+) concentration ([Ca2+]i) with Fura-2 in the neural retina of chick embryo during neurogenesis. Bath application of LPA (1-100 microM) to the embryonic day 3 (E3) chick retina caused an increase in [Ca2+](i) in a dose-dependent manner, with an EC(50) value of 9.2 microM. The Ca(2+) rise was also evoked in a Ca(2+)-free medium, suggesting that release of Ca(2+) from intracellular Ca(2+) stores (Ca(2+) mobilization) was induced by LPA. U-73122, a blocker of phospholipase C (PLC), inhibited the Ca(2+) rise to LPA. Pertussis toxin partially inhibited the Ca(2+) rise to LPA, indicating that G(i)/G(o) protein was at least partially involved in the LPA response. The developmental profile of the LPA response was studied from E3 to E13. The Ca(2+) rise to LPA declined drastically from E3 to E7, in parallel with decrease in mitotic activity of retinal progenitor cells. The signal transduction pathway and developmental profile of the Ca(2+) response to LPA were the same as those of the Ca(2+) response to adenosine triphosphate (ATP), which enhances the proliferation of retinal progenitor cells. The coapplication of LPA with ATP resulted in enhancement of Ca(2+) rise in the E3 chick retina. Our results show that LPA induces Ca(2+) mobilization in the embryonic chick retina during neurogenesis. 相似文献
10.
In a manner similar to voltage-gated Ca(2+) channels and Ca(2+) release-activated Ca(2+) (CRAC) channels, the recently identified arachidonate-regulated Ca(2+) (ARC) channels display a large monovalent conductance upon removal of external divalent cations. Using whole-cell patch-clamp recording, we have characterized the properties of these monovalent currents in HEK293 cells stably transfected with the m3 muscarinic receptor and compared them with the corresponding currents through the endogenous store-operated Ca(2+) (SOC) channels in the same cells. Although the monovalent currents seen through these two channels displayed certain similarities, several marked differences were also apparent, including the magnitude of the monovalent current/Ca(2+) current ratio, the rate and nature of the spontaneous decline in the currents, and the effects of external monovalent cation substitutions and removal of internal Mg(2+). Moreover, monovalent ARC currents could be activated after the complete spontaneous inactivation of the corresponding SOC current in the same cell. We conclude that the non-capacitative ARC channels share, with voltage-gated Ca(2+) channels and store-operated Ca(2+) channels (e.g. SOC and CRAC the general property of monovalent ion permeation in the nominal absence of extracellular divalent ions. However, the clear differences between the properties of these currents through ARC and SOC channels in the same cell confirm that these represent distinct conductances. 相似文献
11.
Xiao-Qing Dai 《生物化学与生物物理学报:生物膜》2006,1758(2):197-205
Polycystin-L (PCL), homologous to polycystin-2 (71% similarity in protein sequence), is the third member of the polycystin family of proteins. Polycystin-1 and -2 are mutated in autosomal dominant polycystic kidney disease, but the physiological role of PCL has not been determined. PCL acts as a Ca-regulated non-selective cation channel permeable to mono- and divalent cations. To further understand the biophysical and pharmacological properties of PCL, we examined a series of organic cations for permeation and inhibition, using single-channel patch clamp and whole-cell two-microelectrode voltage clamp techniques in conjunction with Xenopus oocyte expression. We found that PCL is permeable to organic amines, methlyamine (MA, 3.8 Å), dimethylamine (DMA, 4.6 Å) and triethylamine (TriEA, 6 Å), and to tetra-alkylammonium cation (TAA) tetra-methylammonium (TMA, 5.5-6.4 Å). TAA compounds tetra-ethylammonium (TEA, 6.1-8.2 Å) and tetra-propylammonium (TPA, 9.8 Å) were impermeable through PCL and exhibited weak inhibition on PCL (IC50 values>13 mM). Larger TAA cations tetra-butylammonium (TBA, 11.6 Å) and tetra-pentylammonium (TPeA, 13.2 Å) were impermeable through PCL as well and showed strong inhibition (IC50 values of 2.7 mM and 1.3 μM, respectively). Inhibition by TBA was on decreasing the single-channel current amplitude and exhibited no effect on open probability (NPo) or mean open time (MOT), suggesting that it blocks the PCL permeation pathway. In contract, TEA, TPA and TPeA reduced NPo and MOT values but had no effect on the amplitude, suggesting their binding to a different site in PCL, which affects the channel gating. Taken together, our studies revealed that PCL is permeable to organic amines and TAA cation TMA, and that inhibition of PCL by large TAA cations exhibits two different mechanisms, presumably through binding either to the pore pathway to reduce permeant flux or to another site to regulate the channel gating. These data allow to estimate a channel pore size of ∼7 Å for PCL. 相似文献
12.
Selective permeability in voltage-gated Ca(2+) channels is dependent upon a quartet of pore-localized glutamate residues (EEEE locus). The EEEE locus is widely believed to comprise the sole high-affinity Ca(2+) binding site in the pore, which represents an overturning of earlier models that had postulated two high-affinity Ca(2+) binding sites. The current view is based on site-directed mutagenesis work in which Ca(2+) binding affinity was attenuated by single and double substitutions in the EEEE locus, and eliminated by quadruple alanine (AAAA), glutamine (QQQQ), or aspartate (DDDD) substitutions. However, interpretation of the mutagenesis work can be criticized on the grounds that EEEE locus mutations may have additionally disrupted the integrity of a second, non-EEEE locus high-affinity site, and that such a second site may have remained undetected because the mutated pore was probed only from the extracellular pore entrance. Here, we describe the results of experiments designed to test the strength of these criticisms of the single high-affinity locus model of selective permeability in Ca(2+) channels. First, substituted-cysteine accessibility experiments indicate that pore structure in the vicinity of the EEEE locus is not extensively disrupted as a consequence of the quadruple AAAA mutations, suggesting in turn that the quadruple mutations do not distort pore structure to such an extent that a second high affinity site would likely be destroyed. Second, the postulated second high-affinity site was not detected by probing from the intracellularly oriented pore entrance of AAAA and QQQQ mutants. Using inside-out patches, we found that, whereas micromolar Ca(2+) produced substantial block of outward Li(+) current in wild-type channels, internal Ca(2+) concentrations up to 1 mM did not produce detectable block of outward Li(+) current in the AAAA or QQQQ mutants. These results indicate that the EEEE locus is indeed the sole high-affinity Ca(2+) binding locus in the pore of voltage-gated Ca(2+) channels. 相似文献
13.
Oxana R. Dobrovinskaya Jesus Muñiz Igor I. Pottosin 《European biophysics journal : EBJ》1999,28(7):552-563
In this work we have analysed the voltage-dependent block of the slow activating channel from red beet vacuoles by Tris,
quaternary ammonium ions and the natural polyamines putrescine, spermidine and spermine. All these organic cations when applied
from the cytosolic side blocked the channel by binding apparently deep (zδ values in the range of 0.65–1.35) within the pore. Tetraethylammonium ion did not pass the selectivity filter, whereas the
cations with a smaller cross-section and Tris could pass across the entire pore, as evidenced by a relief of block at high
positive voltages. Voltage dependence of the establishment of block from cytosolic side and of its relief was anomalously
strong in the sense that the total charge moved across the pore for all blockers tested, with a notable exception of spermine,
was in excess of their actual valence. This behaviour is consistent with the existence of multiple binding sites within a
long pore, their simultaneous occupancy and interaction between different ions. In contrast, binding of blockers from the
vacuolar (lumenal) side appears to follow a single-ion handling rule, with a common binding site for all amines located at
approximately 30% of the electrical distance from the lumenal side.
Received: 22 February 1999 / Revised version: 6 July 1999 / Accepted: 8 July 1999 相似文献
14.
15.
The interactions of monovalent cations and of the K+-specific ionophore, valinomycin, with the Ca2+-ATPase of skeletal muscle of sarcoplasmic reticulum have been studied in the absence of cation gradients by their effects on enzyme turnover and on the ATP plus Ca2+-dependent enhanced fluorescence of the ATP analogue, 2',3'-O-(2,4,6-trinitrocyclohexyldienylidine)-adenosine 5'-triphosphate (TNP-ATP) (Watanabe, T., and Inesi, G. (1982) J. Biol. Chem. 257, 11510-11516). Monovalent cations decreased turnover-dependent TNP-ATP fluorescence in the series K+ greater than Rb+ approximately equal to Cs+ greater than Na+ greater than Li+ (K0.5 = 49, 73, 75, 94, and 246 mM, respectively), consistent with the known specificity of the monovalent cation binding site that stimulates turnover and E-P hydrolysis. Valinomycin (200 nmol/mg), in the absence of monovalent cations, decreased ATPase activity by 30% and abolished the stimulatory effects of 150 mM KCl or NaCl on turnover. The ionophore alone enhanced TNP-ATP fluorescence by 20% and altered the specificity and affinity of the site that inhibited TNP-ATP fluorescence to Cs+ greater than Rb+ greater than K+ approximately equal to Na+ greater than Li+ (K0.5 = 79, 111, 134, 136, and 270 mM, respectively), which follows the Hofmeister series for effectiveness of monovalent lyotropic cations. TNP-ATP binding was not affected by either monovalent cations or valinomycin. Inhibition of turnover-dependent TNP-ATP fluorescence appears to be a useful parameter for monitoring monovalent cation binding to the Ca2+-ATPase. It is concluded that the ionophore interacts directly with the Ca2+-ATPase, independent of its K+ conductance effects on the lipid bilayer, and modifies the affinity and specificity of the monovalent cation site, either by direct interaction or by the formation of a valinomycin-monovalent cation-enzyme complex. 相似文献
16.
Ion effects on gating of the Ca(2+)-activated K+ channel correlate with occupancy of the pore. 下载免费PDF全文
We studied the effects of permeant ions on the gating of the large conductance Ca(2+)-activated K+ channel from rat skeletal muscle. Rb+ blockade of inward K+ current caused an increase in the open probability as though Rb+ occupancy of the pore interferes with channel closing. In support of this hypothesis, we directly measured the occupancy of the pore by the impermeant ion Cs+ and found that it strongly correlates with its effect on gating. This is consistent with the "foot-in-the-door" model of gating, which states that channels cannot close with an ion in the pore. However, because Rb+ and Cs+ not only slow the closing rate (as predicted by the model), but also speed the opening rate, our results are more consistent with a modified version of the model in which the channel can indeed close while occupied, but the occupancy destabilizes the closed state. Increasing the occupancy of the pore by the addition of other permeant (K+ and Tl+) and impermeant (tetraethylammonium) ions did not affect the open probability. To account for this disparity, we used a two-site permeation model in which only one of the sites influenced gating. Occupancy of this "gating site" interferes with channel closing and hastens opening. Ions that directly or indirectly increase the occupancy of this site will increase the open probability. 相似文献
17.
Permeation of internal and external monovalent cations through the catfish cone photoreceptor cGMP-gated channel 总被引:2,自引:0,他引:2 下载免费PDF全文
《The Journal of general physiology》1995,106(3):485-505
The permeation of monovalent cations through the cGMP-gated channel of catfish cone outer segments was examined by measuring permeability and conductance ratios under biionic conditions. For monovalent cations presented on the cytoplasmic side of the channel, the permeability ratios with respect to extracellular Na followed the sequence NH4 > K > Li > Rb = Na > Cs while the conductance ratios at +50 mV followed the sequence Na approximately NH4 > K > Rb > Li = Cs. These patterns are broadly similar to the amphibian rod channel. The symmetry of the channel was tested by presenting the test ion on the extracellular side and using Na as the common reference ion on the cytoplasmic side. Under these biionic conditions, the permeability ratios with respect to Na at the intracellular side followed the sequence NH4 > Li > K > Na > Rb > Cs while the conductance ratios at +50 mV followed the sequence NH4 > K approximately Na > Rb > Li > Cs. Thus, the channel is asymmetric with respect to external and internal cations. Under symmetrical 120 mM ionic conditions, the single-channel conductance at +50 mV ranged from 58 pS in NH4 to 15 pS for Cs and was in the order NH4 > Na > K > Rb > Cs. Unexpectedly, the single-channel current-voltage relation showed sufficient outward rectification to account for the rectification observed in multichannel patches without invoking voltage dependence in gating. The concentration dependence of the reversal potential for K showed that chloride was impermeant. Anomalous mole fraction behavior was not observed, nor, over a limited concentration range, were multiple dissociation constants. An Eyring rate theory model with a single binding site was sufficient to explain these observations. 相似文献
18.
Ca2+ modulation of Ca2+ release-activated Ca2+ channels is responsible for the inactivation of its monovalent cation current 下载免费PDF全文
The Ca(2+) release-activated Ca(2+) (CRAC) channel is the most well documented of the store-operated ion channels that are widely expressed and are involved in many important biological processes. However, the regulation of the CRAC channel by intracellular or extracellular messengers as well as its molecular identity is largely unknown. Specifically, in the absence of extracellular divalent cations it becomes permeable to monovalent cations with a larger conductance, however this monovalent cation current inactivates rapidly by an unknown mechanism. Here we found that Ca(2+) dissociation from a site on the extracellular side of the CRAC channel is responsible for the inactivation of its Na(+) current, and Ca(2+) occupancy of this site otherwise potentiates its Ca(2+) as well as Na(+) currents. This Ca(2+)-dependent potentiation is required for the normal functioning of CRAC channels. 相似文献
19.
《The Journal of general physiology》1993,101(1):103-116
We examined the effect of the local anesthetic tetracaine on the Ca(2+)- blockable, poorly selective cation channels in the isolated skin of Rana temporaria and the urinary bladder of Bufo marinus using noise analysis and microelectrode impalements. Experiments with frog skin demonstrated that mucosal concentrations of the compound up to 100 microM did not affect the Na+ current through type S channels (slowly fluctuating, UO2(2+)-blockable channels) and the associated noise. On the other hand, 20 microM mucosal tetracaine already suffices to inhibit approximately 50% of the current carried by Cs+ and Na+ through channel type F (fast fluctuating, UO2(2+)-insensitive channel) and So of the associated Lorentzian component. With 100 microM of the inhibitor the current and So values were reduced by at least 70-80%. The time course of the response to serosal tetracaine was markedly slower and the effects on the current and So were smaller. Possible effects on the basolateral K+ conductance were excluded on the basis of the lack of response of transepithelial K+ movements to 100 microM tetracaine. UO2(2+) and tetracaine together blocked the poorly selective cation pathways almost completely. Moreover, both agents retain their inhibitory effect in the presence of the other. In toad urinary bladder, the Ca(2+)-blockable channel is also tetracaine blockable. The concentration required for half-maximal inhibition is approximately 100 microM in SO4(2-) and approximately 20 microM in Cl-. The data with tetracaine complement those obtained with UO2(2+) and support the idea that the Ca(2+)-blockable current proceeds through two distinct classes of cation channels. Using tetracaine and UO2(2+) as channel-specific compounds, we demonstrated with microelectrode measurements that both channel types are located in the granulosum cells. 相似文献
20.
《Comparative biochemistry and physiology. A, Comparative physiology》1993,104(2):309-312
- 1.1. The objective of the present study was to determine the effect of age and taurine on chick B cell calcium uptake and membrane (Ca2+ + Mg2+)-ATPase activity in 1–4-week-old chicks.
- 2.2. The calcium uptake rate decreased with age (P < 0.05) and was further decreased by taurine (P < 0.05).
- 3.3. (Ca2+ + Mg2+)-ATPase activity increased with age (P < 0.05) and was stimulated by taurine (P < 0.05).
- 4.4. The data demonstrate that the flux of calcium across the B-cell membrane changes during early post-hatch development, and that taurine regulates both the influx and efflux of calcium in chick B-cells.