首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Ca(2+) release-activated Ca(2+) (CRAC) channel is the most well documented of the store-operated ion channels that are widely expressed and are involved in many important biological processes. However, the regulation of the CRAC channel by intracellular or extracellular messengers as well as its molecular identity is largely unknown. Specifically, in the absence of extracellular divalent cations it becomes permeable to monovalent cations with a larger conductance, however this monovalent cation current inactivates rapidly by an unknown mechanism. Here we found that Ca(2+) dissociation from a site on the extracellular side of the CRAC channel is responsible for the inactivation of its Na(+) current, and Ca(2+) occupancy of this site otherwise potentiates its Ca(2+) as well as Na(+) currents. This Ca(2+)-dependent potentiation is required for the normal functioning of CRAC channels.  相似文献   

2.
Four glutamate residues residing at corresponding positions within the four conserved membrane-spanning repeats of L-type Ca(2+) channels are important structural determinants for the passage of Ca(2+) across the selectivity filter. Mutation of the critical glutamate in Repeat III in the a 1S subunit of the skeletal L-type channel (Ca(v)1.1) to lysine virtually eliminates passage of Ca(2+) during step depolarizations. In this study, we examined the ability of this mutant Ca(v)1.1 channel (SkEIIIK) to conduct inward Na(+) current. When 150 mM Na(+) was present as the sole monovalent cation in the bath solution, dysgenic (Ca(v)1.1 null) myotubes expressing SkEIIIK displayed slowly-activating, non-inactivating, nifedipine-sensitive inward currents with a reversal potential (45.6 ± 2.5 mV) near that expected for Na(+). Ca(2+) block of SkEIIIK-mediated Na(+) current was revealed by the substantial enhancement of Na(+) current amplitude after reduction of Ca(2+) in the external recording solution from 10 mM to near physiological 1 mM. Inward SkEIIIK-mediated currents were potentiated by either ±Bay K 8644 (10 mM) or 200-ms depolarizing prepulses to +90 mV. In contrast, outward monovalent currents were reduced by ±Bay K 8644 and were unaffected by strong depolarization, indicating a preferential potentiation of inward Na(+) currents through the mutant Ca(v)1.1 channel. Taken together, our results show that SkEIIIK functions as a non-inactivating, junctionally-targeted Na(+) channel when Na(+) is the sole monvalent cation present and urge caution when interpreting the impact of mutations designed to ablate Ca(2+) permeability mediated by Ca(v) channels on physiological processes that extend beyond channel gating and permeability.  相似文献   

3.
TRPV6 (CaT1/ECaC2), a highly Ca(2+)-selective member of the TRP superfamily of cation channels, becomes permeable to monovalent cations in the absence of extracellular divalent cations. The monovalent currents display characteristic voltage-dependent gating and almost absolute inward rectification. Here, we show that these two features are dependent on the voltage-dependent block/unblock of the channel by intracellular Mg(2+). Mg(2+) blocks the channel by binding to a site within the transmembrane electrical field where it interacts with permeant cations. The block is relieved at positive potentials, indicating that under these conditions Mg(2+) is able to permeate the selectivity filter of the channel. Although sizeable outward monovalent currents were recorded in the absence of intracellular Mg(2+), outward conductance is still approximately 10 times lower than inward conductance under symmetric, divalent-free ionic conditions. This Mg(2+)-independent rectification was preserved in inside-out patches and not altered by high intracellular concentrations of spermine, indicating that TRPV6 displays intrinsic rectification. Neutralization of a single aspartate residue within the putative pore loop abolished the Mg(2+) sensitivity of the channel, yielding voltage-independent, moderately inwardly rectifying monovalent currents in the presence of intracellular Mg(2+). The effects of intracellular Mg(2+) on TRPV6 are partially reminiscent of the gating mechanism of inwardly rectifying K(+) channels and may represent a novel regulatory mechanism for TRPV6 function in vivo.  相似文献   

4.
Microfluorimetry and patch-clamp experiments were performed on TRPV6-expressing HEK cells to determine whether this Ca(2+)-sensing Ca(2+) channel is constitutively active. Intact cells loaded with fura-2 had an elevated intracellular free Ca(2+) concentration ([Ca(2+)](i)), which decreased to the same level such as in non-transfected cells if external Ca(2+) was chelated by EGTA. Whole cell recordings from non-transfected HEK cells and cells expressing human TRPV6 revealed the presence of a basal inward current in both types of cells when the internal solution contained 0.1 mm EGTA and 100 nm [Ca(2+)](i) or if the cytosolic Ca(2+) buffering remained undisturbed in perforated patch-clamp experiments. If recombinantly expressed TRPV6 forms open channels, one would expect Ca(2+)-induced current inhibition, because TRPV6 is negatively regulated by internal Ca(2+). However, dialyzing solutions with high [Ca(2+)] such as 1 microm into TRPV6-expressing cells did not block the basal inward current, which was not different from the recordings from non-transfected cells. In contrast, dialyzing 0.5 mm EGTA into TRPV6-expressing cells readily activated Ca(2+) inward currents, which were undetectable in non-transfected cells. Interestingly, monovalent cations permeated the TRPV6 channels under conditions where no Ca(2+) permeation was detectable, indicating that divalent cations block TRPV6 channels from the extracellular side. Like human TRPV6, the truncated human TRPV6(Delta695-725), which lacks the C-terminal domain required for Ca(2+)-calmodulin binding, does not form constitutive active channels, whereas the human TRPV6(D542A), carrying a point mutation in the presumed pore region, does not function as a channel. In summary, no constitutive open TRPV6 channels were detected in patch-clamp experiments from transfected HEK cells. However, channel activity is highly regulated by intracellular and extracellular divalent cations.  相似文献   

5.
We studied monovalent permeability of Ca2+ release-activated Ca2+ channels (ICRAC) in Jurkat T lymphocytes following depletion of calcium stores. When external free Ca2+ ([Ca2+]o) was reduced to micromolar levels in the absence of Mg2+, the inward current transiently decreased and then increased approximately sixfold, accompanied by visibly enhanced current noise. The monovalent currents showed a characteristically slow deactivation (tau = 3.8 and 21.6 s). The extent of Na+ current deactivation correlated with the instantaneous Ca2+ current upon readdition of [Ca2+]o. No conductance increase was seen when [Ca2+]o was reduced before activation of ICRAC. With Na+ outside and Cs+ inside, the current rectified inwardly without apparent reversal below 40 mV. The sequence of conductance determined from the inward current at -80 mV was Na+ > Li+ = K+ > Rb+ >> Cs+. Unitary inward conductance of the Na+ current was 2.6 pS, estimated from the ratios delta sigma2/delta Imean at different voltages. External Ca2+ blocked the Na+ current reversibly with an IC50 value of 4 microM. Na+ currents were also blocked by 3 mM Mg2+ or 10 microM La3+. We conclude that ICRAC channels become permeable to monovalent cations at low levels of external divalent ions. In contrast to voltage-activated Ca2+ channels, the monovalent conductance is highly selective for Na+ over Cs+. Na+ currents through ICRAC channels provide a means to study channel characteristics in an amplified current model.  相似文献   

6.
Orai1, the pore subunit of Ca(2+) release-activated Ca(2+) channels, has four transmembrane segments (TMs). The first segment, TMI, lines the pore and plays an important role in channel activation and ion permeation. TMIII, on the other hand, does not line the pore but still regulates channel gating and permeation properties. To understand the role of TMIII, we have mutated and characterized several residues in this domain. Mutation of Trp-176 to Cys (W176C) and Gly-183 to Ala (G183A) had dramatic effects. Unlike wild-type channels, which exhibit little outward current and are activated by STIM1, W176C mutant channels exhibited a large outward current at positive potentials and were constitutively active in the absence of STIM1. G183A mutant channels also exhibited substantial outward currents but were active only in the presence of 2-aminoethoxydiphenyl borate (2-APB), irrespective of STIM1. With W176C mutant channels inward, monovalent currents were blocked by Ca(2+) with a high affinity similar to the wild type, but the Ca(2+)-dependent blocking of outward currents differed in the two cases. Although a 50% block of the WT outward current required 250 μm Ca(2+), more than 6 mm was necessary to have the same effect on W176C mutant channels. In the presence of extracellular Ca(2+), W176C and G183A outward currents developed slowly in a voltage-dependent manner, whereas they developed almost instantaneously in the absence of Ca(2+). These changes in permeation and gating properties mimic the changes induced by mutations of Glu-190 in TMIII and Asp-110/Asp-112 in the TMI/TMII loop. On the basis of these data, we propose that TMIII maintains negatively charged residues at or near the selectivity filter in a conformation that facilitates Ca(2+) inward currents and prevents outward currents of monovalent cations. In addition, to controlling selectivity, TMIII may also stabilize channel gating in a closed state in the absence of STIM1 in a Trp-176-dependent manner.  相似文献   

7.
We have investigated the permeability of the Cav3.1 channel for Ca2+ and different monovalent cations and the block of the currents by Mg2+ ions. In the absence of extracellular divalent cations, the Cav3.1 channel was more permeable for Na+ than for Cs+ and impermeable for NMDG+. Monovalent currents were inhibited by Mg2+ of near physiological concentration by three orders of magnitude more effectively than the Ca2+ current. Inhibition of outward, but not inward current by Mg2+ was voltage-dependent. Furthermore, magnesium slowed down channel deactivation presumably by interacting with an open channel state.  相似文献   

8.
Since Ca2+ is a major competitor of protons for the modulation of high voltage-activated Ca2+ channels, we have studied the modulation by extracellular Ca2+ of the effects of proton on the T-type Ca2+ channel alpha1G (CaV3.1) expressed in HEK293 cells. At 2 mM extracellular Ca2+ concentration, extracellular acidification in the pH range from 9.1 to 6.2 induced a positive shift of the activation curve and increased its slope factor. Both effects were significantly reduced if the concentration was increased to 20 mM or enhanced in the absence of Ca2+. Extracellular protons shifted the voltage dependence of the time constant of activation and decreased its voltage sensitivity, which excludes a voltage-dependent open pore block by protons as the mechanism modifying the activation curve. Changes in the extracellular pH altered the voltage dependence of steady-state inactivation and deactivation kinetics in a Ca2+-dependent manner, but these effects were not strictly correlated with those on activation. Model simulations suggest that protons interact with intermediate closed states in the activation pathway, decreasing the gating charge and shifting the equilibrium between these states to less negative potentials, with these effects being inhibited by extracellular Ca2+. Extracellular acidification also induced an open pore block and a shift in selectivity toward monovalent cations, which were both modulated by extracellular Ca2+ and Na+. Mutation of the EEDD pore locus altered the Ca2+-dependent proton effects on channel selectivity and permeation. We conclude that Ca2+ modulates T-type channel function by competing with protons for binding to surface charges, by counteracting a proton-induced modification of channel activation and by competing with protons for binding to the selectivity filter of the channel.  相似文献   

9.
The presence and function of voltage-gated Ca(2+) channels were examined in individual muscle fibers freshly dispersed from the triclad turbellarian Dugesia tigrina. Individual muscle fibers contracted in response to elevated extracellular K(+) in a concentration-dependent fashion. These depolarization-induced contractions were blocked by extracellular Co(2+) (2.5 mM), suggesting that they were dependent on depolarization-induced Ca(2+) influx across the sarcolemma. A voltage-gated inward current was apparent in whole cell recordings when the outward K(+) current was abolished by replacement of intracellular K(+) by Cs(+). This inward current was amplified with increasing concentration (相似文献   

10.
We examined the effect of the local anesthetic tetracaine on the Ca(2+)- blockable, poorly selective cation channels in the isolated skin of Rana temporaria and the urinary bladder of Bufo marinus using noise analysis and microelectrode impalements. Experiments with frog skin demonstrated that mucosal concentrations of the compound up to 100 microM did not affect the Na+ current through type S channels (slowly fluctuating, UO2(2+)-blockable channels) and the associated noise. On the other hand, 20 microM mucosal tetracaine already suffices to inhibit approximately 50% of the current carried by Cs+ and Na+ through channel type F (fast fluctuating, UO2(2+)-insensitive channel) and So of the associated Lorentzian component. With 100 microM of the inhibitor the current and So values were reduced by at least 70-80%. The time course of the response to serosal tetracaine was markedly slower and the effects on the current and So were smaller. Possible effects on the basolateral K+ conductance were excluded on the basis of the lack of response of transepithelial K+ movements to 100 microM tetracaine. UO2(2+) and tetracaine together blocked the poorly selective cation pathways almost completely. Moreover, both agents retain their inhibitory effect in the presence of the other. In toad urinary bladder, the Ca(2+)-blockable channel is also tetracaine blockable. The concentration required for half-maximal inhibition is approximately 100 microM in SO4(2-) and approximately 20 microM in Cl-. The data with tetracaine complement those obtained with UO2(2+) and support the idea that the Ca(2+)-blockable current proceeds through two distinct classes of cation channels. Using tetracaine and UO2(2+) as channel-specific compounds, we demonstrated with microelectrode measurements that both channel types are located in the granulosum cells.  相似文献   

11.
In reconstituted human red blood cells a difference was found in (Ca2+ + Mg2+)-ATPase activity and in Ca2+ efflux at 37 degrees C, depending on the side of the membrane at which the monovalent cations K+ and Na+ were placed. Under the conditions used, (Ca2+ + Mg2+)-ATPase activity and Ca2+ efflux was highest when K+ (35 +/- 0.5 mM (+/- S.E.), mean of four experiments) was at the inside and Na+ (130 mM) at the outside of the ghost membrane.  相似文献   

12.
Potentiation of TRPM7 inward currents by protons   总被引:1,自引:0,他引:1       下载免费PDF全文
TRPM7 is unique in being both an ion channel and a protein kinase. It conducts a large outward current at +100 mV but a small inward current at voltages ranging from -100 to -40 mV under physiological ionic conditions. Here we show that the small inward current of TRPM7 was dramatically enhanced by a decrease in extracellular pH, with an approximately 10-fold increase at pH 4.0 and 1-2-fold increase at pH 6.0. Several lines of evidence suggest that protons enhance TRPM7 inward currents by competing with Ca(2+) and Mg(2+) for binding sites, thereby releasing blockade of divalent cations on inward monovalent currents. First, extracellular protons significantly increased monovalent cation permeability. Second, higher proton concentrations were required to induce 50% of maximal increase in TRPM7 currents when the external Ca(2+) and Mg(2+) concentrations were increased. Third, the apparent affinity for Ca(2+) and Mg(2+) was significantly diminished at elevated external H(+) concentrations. Fourth, the anomalous-mole fraction behavior of H(+) permeation further suggests that protons compete with divalent cations for binding sites in the TRPM7 pore. Taken together, it appears that at physiological pH (7.4), Ca(2+) and Mg(2+) bind to TRPM7 and inhibit the monovalent cationic currents; whereas at high H(+) concentrations, the affinity of TRPM7 for Ca(2+) and Mg(2+) is decreased, thereby allowing monovalent cations to pass through TRPM7. Furthermore, we showed that the endogenous TRPM7-like current, which is known as Mg(2+)-inhibitable cation current (MIC) or Mg nucleotide-regulated metal ion current (MagNuM) in rat basophilic leukemia (RBL) cells was also significantly potentiated by acidic pH, suggesting that MIC/MagNuM is encoded by TRPM7. The pH sensitivity represents a novel feature of TRPM7 and implies that TRPM7 may play a role under acidic pathological conditions.  相似文献   

13.
We investigated whether transient step reductions in divalent cations would produce detectable changes in neuronal excitability similar to those reported in the total absence of divalent cations. Using cultured chick dorsal root ganglion cells as a model system, our results indicate that a step reduction in divalent cations induces a transient inward current. This response is mediated by a tetrodotoxin-resistant, Na+-permeable, cation channel that is blocked by cadmium. This, and our observation that the response is abolished by verapamil, suggests that the current passes through calcium channels. This transient inward current was estimated to be activated by decreases in extracellular calcium ([Ca2+]o) as small as 0.5-0.8 mM and thus represents a different response from the one previously observed when steady-state [Ca2+]o levels were reduced to micromolar levels.  相似文献   

14.
The kinetics of Na(+)-Ca2+ exchange current after a cytoplasmic Ca2+ concentration jump (achieved by photolysis of DM-nitrophen) was measured in excised giant membrane patches from guinea pig or rat heart. Increasing the cytoplasmic Ca2+ concentration from 0.5 microM in the presence of 100 mM extracellular Na+ elicits an inward current that rises with a time constant tau 1 < 50 microseconds and decays to a plateau with a time constant tau 2 = 0.65 +/- 0.18 ms (n = 101) at 21 degrees C. These current signals are suppressed by Ni2+ and dichlorobenzamil. No stationary current, but a transient inward current that rises with tau 1 < 50 microseconds and decays with tau 2 = 0.28 +/- 0.06 ms (n = 53, T = 21 degrees C) is observed if the Ca2+ concentration jump is performed under conditions that promote Ca(2+)-Ca2+ exchange (i.e., no extracellular Na+, 5 mM extracellular Ca2+). The transient and stationary inward current is not observed in the absence of extracellular Ca2+ and Na+. The application of alpha-chymotrypsin reveals the influence of the cytoplasmic regulatory Ca2+ binding site on Ca(2+)-Ca2+ and forward Na(+)-Ca2+ exchange and shows that this site regulates both the transient and stationary current. The temperature dependence of the stationary current exhibits an activation energy of 70 kj/mol for temperatures between 21 degrees C and 38 degrees C, and 138 kj/mol between 10 degrees C and 21 degrees C. For the decay time constant an activation energy of 70 kj/mol is observed in the Na(+)-Ca2+ and the Ca(2+)-Ca2+ exchange mode between 13 degrees C and 35 degrees C. The data indicate that partial reactions of the Na(+)-Ca2+ exchanger associated with Ca2+ binding and translocation are very fast at 35 degrees C, with relaxation time constants of about 6700 s-1 in the forward Na(+)-Ca2+ exchange and about 12,500 s-1 in the Ca(2+)-Ca2+ exchange mode and that net negative charge is moved during Ca2+ translocation. According to model calculations, the turnover number, however, has to be at least 2-4 times smaller than the decay rate of the transient current, and Na+ inward translocation appears to be slower than Ca2+ outward movement.  相似文献   

15.
Hyponatremia is a predictor of poor cardiovascular outcomes during acute myocardial infarction and in the setting of preexisting heart failure [1]. There are no definitive mechanisms as to how hyponatremia suppresses cardiac function. In this report we provide evidence for direct down-regulation of Ca(2+) channel current in response to low serum Na(+). In voltage-clamped rat ventricular myocytes or HEK 293 cells expressing the L-type Ca(2+) channel, a 15mM drop in extracellular Na(+) suppressed the Ca(2+) current by ~15%; with maximal suppression of ~30% when Na(+) levels were reduced to 100mM or less. The suppressive effects of low Na(+) on I(Ca), in part, depended on the substituting monovalent species (Li(+), Cs(+), TEA(+)), but were independent of phosphorylation state of the channel and possible influx of Ca(2+) on Na(+)/Ca(2+) exchanger. Acidification sensitized the Ca(2+) channel current to Na(+) withdrawal. Collectively our data suggest that Na(+) and H(+) may interact with regulatory site(s) at the outer recesses of the Ca(2+) channel pore thereby directly modulating the electro-diffusion of the permeating divalents (Ca(2+), Ba(2+)).  相似文献   

16.
We have studied the modulation by intracellular Ca2+ of the epithelial Ca2+ channel, ECaC, heterologously expressed in HEK 293 cells. Whole-cell and inside-out patch clamp current recordings were combined with FuraII-Ca2+ measurements:1. Currents through ECaC were dramatically inhibited if Ca2+ was the charge carrier. This inhibition was dependent on the extracellular Ca2+ concentration and occurred also in cells buffered intracellularly with 10 mM BAPTA.2. Application of 30 mM [Ca(2)]e induced in non-Ca2+] buffered HEK 293 cells at -80 m V an increase in intracellular Ca2+([Ca2]i) with a maximum rate of rise of 241 +/-15nM/s (n= 18 cells) and a peak value of 891 +/- 106 nM. The peak of the concomitant current with a density of 12.3 +/- 2.6 pA/pF was closely correlated with the peak of the first-time derivative of the Ca2+ transient, as expected if the Ca2+ transient is due to influx of Ca2+. Consequently, no Ca2+] signal was observed in cells transfected with the Ca2+ impermeable ECaC mutant, D542A, in which an aspartate in the pore region was neutralized.3. Increasing [Ca2+]i by dialyzing the cell with pipette solutions containing various Ca2+] concentrations, all buffered with 10 mM BAPTA, inhibited currents through ECaC carried by either Na+ or Ca2+] ions. Half maximal inhibition of Ca(2+)currents in the absence of monovalent cations occurred at 67 nM (n between 6 and 8), whereas Na+ currents in the absence of Ca2+] and Mg2+ were inhibited with an IC50 of 89 nM (n between 6 and 10). Currents through ECaC in the presence of 1 mM Ca2+ and Na+, which are mainly carried by Ca2+, are inhibited by [Ca2]i with an IC50of 82 nM (n between 6 and 8). Monovalent cation currents through the Ca2+impermeable D542A ECaC mutant were also inhibited by an elevation of [Ca2]i (IC50 = 123 nM, n between 7 and 18). 4. The sensitivity of ECaC currents in inside-out patches for [Ca2]i was slightly shifted to higher concentrations as compared with whole cell measurements. Half-maximal inhibition occurred at 169 nM if Na+ was the charge carrier (n between 4 and 11) and 228 nM at 1 mM [Ca2]e (n between 4 and 8).5. Recovery from inhibition upon washout of extracellular Ca2+ (whole-cell configuration) or removal of Ca2+ from the inner side of the channel (inside-out patches) was slow in both conditions. Half-maximal recovery was reached after 96 +/- 34 s (n= 15) in whole-cell mode and after 135 +/- 23 s (n = 17) in inside-out patches.6. We conclude that influx of Ca2+ through ECaC and [Ca2]i induce feedback inhibition of ECaC currents, which is controlled by the concentration of Ca2+ in a micro domain near the inner mouth of the channel. Slow recovery seems to depend on dissociation of Ca( 2+ from an internal Ca2+ binding site at ECaC.  相似文献   

17.
Cheek TR  Thorn P 《Cell calcium》2006,40(3):309-318
We have combined fluorimetric measurements of the intracellular free Ca(2+) concentration ([Ca(2+)](i)) with the patch clamp technique, to investigate resting Ca(2+) entry in bovine adrenal chromaffin cells. Perfusion with nominally Ca(2+)-free medium resulted in a rapid, reversible decrease in [Ca(2+)](i), indicating a resting Ca(2+) permeability across the plasma membrane. Simultaneous whole-cell voltage-clamp showed a resting inward current that increased when extracellular Ca(2+) (Ca(2+)(o)) was lowered. This current had a reversal potential of around 0 mV and was carried by monovalent or divalent cations. In Na(+)-free extracellular medium there was a reduction in current amplitude upon removal of Ca(2+)(o), indicating the current can carry Ca(2+). The current was constitutively active and not enhanced by agents that promote Ca(2+)-store depletion such as thapsigargin. Extracellular La(3+) abolished the resting current, reduced resting [Ca(2+)](i) and inhibited basal secretion. Abolishment of resting Ca(2+) influx depleted the inositol 1,4,5-trisphosphate-sensitive Ca(2+) store without affecting the caffeine-sensitive Ca(2+) store. The results indicate the presence of a constitutively active nonselective cation conductance, permeable to both monovalent and divalent cations, that can regulate [Ca(2+)](i), the repletion state of the intracellular Ca(2+) store and the secretory response in resting cells.  相似文献   

18.
Magnesium (Mg2+) increases binding of follicle-stimulating hormone (FSH) to membrane-bound receptors and increases adenylyl cyclase activity. We examined the effects of divalent and monovalent cations on FSH binding to receptors in granulosa cells from immature porcine follicles. Divalent and monovalent cations increased binding of [125I]iodo-porcine FSH (125I-pFSH). The divalent cations Mg2+, calcium (Ca2+) and manganese, (Mn2+) increased specific binding a maximum of 4- to 5-fold at added concentrations of 10 mM. Mg2+ caused a half-maximal enhancement of binding at 0.6 mM, whereas Ca2+ and Mn2+ had half-maximal effects at 0.7 mM and 0.8 mM, respectively. The monovalent cation potassium (K+) increased binding a maximum of 1.5-fold at an added concentration of 50 mM, whereas the monovalent cation (Na+) did not increase binding at any concentration tested. The difference between K+ and Na+ suggested that either enhancement of binding was not a simple ionic effect or Na+ has a negative effect that suppresses its positive effect. Ethylenediamine tetraacetic acid, a chelator of Mg2+, prevented binding of 125I-pFSH only in the presence of Mg2+, whereas pregnant mare's serum gonadotropin, a competitor with FSH for the receptor, prevented binding in both the absence and the presence of Mg2+. Guanyl-5-ylimidodiphosphate (Gpp[NH]p) inhibited binding of 125I-pFSH in the absence or presence of Mg2+, but only at Gpp(NH)p concentrations greater than 1 mM. We used Mg2+ to determine if divalent cations enhanced FSH binding by increasing receptor affinity or by increasing the apparent number of binding sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The ability of the divalent cations calcium, magnesium, and barium to permeate through the cGMP-gated channel of catfish cone outer segments was examined by measuring permeability and conductance ratios under biionic conditions and by measuring their ability to block current carried by sodium when presented on the cytoplasmic or extracellular side of the channel. Current carried by divalent cations in the absence of monovalent cations showed the typical rectification pattern observed from these channels under physiological conditions (an exponential increase in current at both positive and negative voltages). With calcium as the reference ion, the relative permeabilities were Ca > Ba > Mg, and the chord conductance ratios at +50 mV were in the order of Ca approximately Mg > Ba. With external sodium as the reference ion, the relative permeabilities were Ca > Mg > Ba > Na with chord conductance ratios at +30 mV in the order of Na >> Ca = Mg > Ba. The ability of divalent cations presented on the intracellular side to block the sodium current was in the order Ca > Mg > Ba at +30 mV and Ca > Ba > Mg at -30 mV. Block by external divalent cations was also investigated. The current-voltage relations showed block by internal divalent cations reveal no anomalous mole fraction behavior, suggesting little ion-ion interaction within the pore. An Eyring rate theory model with two barriers and a single binding site is sufficient to explain both these observations and those for monovalent cations, predicting a single-channel conductance under physiological conditions of 2 pS and an inward current at -30 mV carried by 82% Na, 5% Mg, and 13% Ca.  相似文献   

20.
The epithelial Ca(2+) channel (ECaC), which was recently cloned from rabbit kidney, exhibits distinctive properties that support a facilitating role in transcellular Ca(2+) (re)absorption. ECaC is structurally related to the family of six transmembrane-spanning ion channels with a pore-forming region between S5 and S6. Using point mutants of the conserved negatively charged amino acids present in the putative pore, we have identified a single aspartate residue that determines Ca(2+) permeation of ECaC and modulation by extracellular Mg(2+). Mutation of the aspartate residue, D542A, abolishes Ca(2+) permeation and Ca(2+)-dependent current decay as well as block by extracellular Mg(2+), whereas monovalent cations still permeate the mutant channel. Variation of the side chain length in mutations D542N, D542E, and D542M attenuated Ca(2+) permeability and Ca(2+)-dependent current decay. Block of monovalent currents through ECaC by Mg(2+) was decreased. Exchanging the aspartate residue for a positively charged amino acid, D542K, resulted in a nonfunctional channel. Mutations of two neighboring negatively charged residues, i.e. Glu(535) and Asp(550), had only minor effects on Ca(2+) permeation properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号