首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Analysis of Candida albicans cells using antibodies directed against Gas1p/Ggp1p, Saccharomyces cerevisiae homolog of Phr1p, revealed that Phr1p is a glycoprotein of about 88 kDa whose accumulation increases with the rise of external pH. This polypeptide is present both in the yeast form and during germ tube induction. In the Phr1 cells at pH 8 the solubility of glucans in alkali is greatly affected. In the parental strain the alkali-soluble/-insoluble glucan ratio shows a 50% decrease at pH 8 with respect to pH 4.5, whereas in the null mutant it is unchanged, indicating the lack of a polymer cross-linker activity induced by the rise of pH. The mutant has a sixfold increase in chitin level and is hypersensitive to calcofluor. Consistently with a role of chitin in strengthening the cell wall, Phr1 cells are more sensitive to nikkomycin Z than the parental strain.  相似文献   

3.
We observed that a YCp-type vector having the centromeric DNA (CEN) sequence previously isolated from the genome, but not a YRp-type vector lacking the CEN sequence, induced pseudohyphal growth in a dimorphic fungi, Candida maltosa, which had been shown to be closely related to Candida albicans by phylogenetic analysis. Deletion analysis of the CEN sequence revealed that the intact CEN sequence was not required for the induction, but part of it, having partial centromeric activity, was enough for the induction. By screening the gene library of this yeast for the sequences which induced pseudohyphal growth, we isolated three different DNA fragments which also had part of the centromere-like sequence. Partial centromeric activity of these fragments was confirmed by three criteria: low copy number and high stability of the plasmids carrying these fragments and rearrangement at high frequency of the plasmid DNA with one of these fragments plus the CEN sequence. Furthermore, when the GGTAGCG sequence commonly found in one copy in each of these four sequences was mutated in the CEN sequence by site-directed mutagenesis, both partial centromeric activity and pseudohyphal growth-inducing activity of the CEN sequence were lost. These results indicated that part of CEN region with partial centromeric activity induces pseudohyphal growth in C. maltosa. It is suggested that some cellular components which interact with the sequence containing GGTAGCG required for centromeric activity are involved in the regulation of the transition between yeast forms and pseudohyphal forms of the cells.  相似文献   

4.
Laxman S  Tu BP 《PloS one》2011,6(10):e26081

Background

The budding yeast Saccharomyces cerevisiae undergoes differentiation into filamentous-like forms and invades the growth medium as a foraging response to nutrient and environmental stresses. These developmental responses are under the downstream control of effectors regulated by the cAMP/PKA and MAPK pathways. However, the upstream sensors and signals that induce filamentous growth through these signaling pathways are not fully understood. Herein, through a biochemical purification of the yeast TORC1 (Target of Rapamycin Complex 1), we identify several proteins implicated in yeast filamentous growth that directly associate with the TORC1 and investigate their roles in nitrogen starvation-dependent or independent differentiation in yeast.

Methodology

We isolated the endogenous TORC1 by purifying tagged, endogenous Kog1p, and identified associated proteins by mass spectrometry. We established invasive and pseudohyphal growth conditions in two S. cerevisiae genetic backgrounds (Σ1278b and CEN.PK). Using wild type and mutant strains from these genetic backgrounds, we investigated the roles of TORC1 and associated proteins in nitrogen starvation-dependent diploid pseudohyphal growth as well as nitrogen starvation-independent haploid invasive growth.

Conclusions

We show that several proteins identified as associated with the TORC1 are important for nitrogen starvation-dependent diploid pseudohyphal growth. In contrast, invasive growth due to other nutritional stresses was generally not affected in mutant strains of these TORC1-associated proteins. Our studies suggest a role for TORC1 in yeast differentiation upon nitrogen starvation. Our studies also suggest the CEN.PK strain background of S. cerevisiae may be particularly useful for investigations of nitrogen starvation-induced diploid pseudohyphal growth.  相似文献   

5.
Yeast pseudohyphal filamentation is a stress-responsive growth transition relevant to processes required for virulence in pathogenic fungi. Pseudohyphal growth is controlled through a regulatory network encompassing conserved MAPK (Ste20p, Ste11p, Ste7p, Kss1p, and Fus3p), protein kinase A (Tpk2p), Elm1p, and Snf1p kinase pathways; however, the scope of these pathways is not fully understood. Here, we implemented quantitative phosphoproteomics to identify each of these signaling networks, generating a kinase-dead mutant in filamentous S. cerevisiae and surveying for differential phosphorylation. By this approach, we identified 439 phosphoproteins dependent upon pseudohyphal growth kinases. We report novel phosphorylation sites in 543 peptides, including phosphorylated residues in Ras2p and Flo8p required for wild-type filamentous growth. Phosphoproteins in these kinase signaling networks were enriched for ribonucleoprotein (RNP) granule components, and we observe co-localization of Kss1p, Fus3p, Ste20p, and Tpk2p with the RNP component Igo1p. These kinases localize in puncta with GFP-visualized mRNA, and KSS1 is required for wild-type levels of mRNA localization in RNPs. Kss1p pathway activity is reduced in lsm1Δ/Δ and pat1Δ/Δ strains, and these genes encoding P-body proteins are epistatic to STE7. The P-body protein Dhh1p is also required for hyphal development in Candida albicans. Collectively, this study presents a wealth of data identifying the yeast phosphoproteome in pseudohyphal growth and regulatory interrelationships between pseudohyphal growth kinases and RNPs.  相似文献   

6.
Upon nutrient limitation, budding yeasts like Saccharomyces cerevisiae can be induced to adopt alternate filament-like growth patterns called diploid pseudohyphal or invasive haploid growth. Here, we report a novel constitutive pseudohyphal growth state, sharing some characteristics with classic forms of filamentous growth, but differing in crucial aspects of morphology, growth conditions and genetic regulation. The constitutive pseudohyphal state is observed in fus3 mutants containing various septin assembly defects, which we refer to as sadF growth (septin assembly defect induced filamentation) to distinguish it from classic filamentation pathways. Similar to other filamentous states, sadF cultures comprise aggregated chains of highly elongated cells. Unlike the classic pathways, sadF growth occurs in liquid rich media, requiring neither starvation nor the key pseudohyphal proteins, Flo8p and Flo11p. Moreover sadF growth occurs in haploid strains of S288C genetic background, which normally cannot undergo pseudohyphal growth. The sadF cells undergo highly polarized bud growth during prolonged G2 delays dependent on Swe1p. They contain septin structures distinct from classical pseudo-hyphae and FM4-64 labeling at actively growing tips similar to the Spitzenkörper observed in true hyphal growth. The sadF growth state is induced by synergism between Kss1p-dependent signaling and septin assembly defects; mild disruption of mitotic septins activates Kss1p-dependent gene expression, which exacerbates the septin defects, leading to hyper-activation of Kss1p. Unlike classical pseudo-hyphal growth, sadF signaling requires Ste5, Ste4 and Ste18, the scaffold protein and G-protein β and γ subunits from the pheromone response pathway, respectively. A swe1 mutation largely abolished signaling, breaking the positive feedback that leads to amplification of sadF signaling. Taken together, our findings show that budding yeast can access a stable constitutive pseudohyphal growth state with very few genetic and regulatory changes.  相似文献   

7.
8.
The C-terminal portion of adenovirus E1A suppresses ras-induced metastasis and tumorigenicity in mammalian cells; however, little is known about the mechanisms by which this occurs. In the simple eukaryote Saccharomyces cerevisiae, Ras2p, the homolog of mammalian h-ras, regulates mitogen-activated protein kinase (MAPK) and cyclic AMP-dependent protein kinase A (cAMP/PKA) signaling pathways to control differentiation from the yeast form to the pseudohyphal form. When expressed in yeast, the C-terminal region of E1A induced pseudohyphal differentiation, and this was independent of both the MAPK and cAMP/PKA signaling pathways. Using the yeast two-hybrid system, we identified an interaction between the C-terminal region of E1A and Yak1p, a yeast dual-specificity serine/threonine protein kinase that functions as a negative regulator of growth. E1A also physically interacts with Dyrk1A and Dyrk1B, two mammalian homologs of Yak1p, and stimulates their kinase activity in vitro. We further demonstrate that Yak1p is required in yeast to mediate pseudohyphal differentiation induced by Ras2p-regulated signaling pathways. However, pseudohyphal differentiation induced by the C-terminal region of E1A is largely independent of Yak1p. These data suggest that mammalian Yak1p-related kinases may be targeted by the E1A oncogene to modulate cell growth.  相似文献   

9.
The pseudohyphal growth response is a dramatic morphological transition and presumed foraging mechanism wherein yeast cells form invasive and surface-spread multicellular filaments. Pseudohyphal growth has been studied extensively as a model of conserved signaling pathways controlling stress responses, cell morphogenesis, and fungal virulence in pathogenic fungi. The genetic contribution to pseudohyphal growth is extensive, with at least 500 genes required for filamentation; as such, pseudohyphal growth is a complex trait, and linkage analysis is a classical means to dissect the genetic basis of a complex phenotype. Here, we implemented linkage analysis by crossing each of two filamentous strains of Saccharomyces cerevisiae (Σ1278b and SK1) with an S288C-derived non-filamentous strain. We then assayed meiotic progeny for filamentation and mapped allelic linkage in pooled segregants by whole-genome sequencing. This analysis identified linkage in a cohort of genes, including the negative regulator SFL1, which we find contains a premature stop codon in the invasive SK1 background. The S288C allele of the polarity gene PEA2, encoding Leu409 rather than Met, is linked with non-invasion. In Σ1278b, the pea2-M409L mutation results in decreased invasive filamentation and elongation, diminished activity of a Kss1p MAPK pathway reporter, decreased unipolar budding, and diminished binding of the polarisome protein Spa2p. Variation between SK1 and S288C in the mitochondrial inner membrane protein Mdm32p at residues 182 and 262 impacts invasive growth and mitochondrial network structure. Collectively, this work identifies new determinants of pseudohyphal growth, while highlighting the coevolution of protein complexes and organelle structures within a given genome in specifying complex phenotypes.  相似文献   

10.
11.
A spontaneous mutant of the yeast Candida maltosa SBUG 700 was isolated showing pseudohyphal marphology under all growth conditions tested. The C. maltosa PHM mutant takes up glucose with the kinetics of C. maltosa SBUG 700 and starved cells contain the same cyclic AMP concentration. Addition of glucose to the PHM mutant does not result in an increase of the intracellular cyclic AMP level and in catabolite inactivation of fructose-1,6-bisphosphatase, malate dehydrogenase and phosphoenolpyruvate carboxykinase. However, addition of 2,4-dinitrophenol is followed by a rapid, transient increase of the cyclic AMP level in the mutant cells, but not by catabolite inactivation. These results show that a common mechanism might be responsible for catabolite inactivation and glucose-induced cAMP signaling or that glucose-induced cAMP signaling is required for catabolite inactivation in C. maltosa.  相似文献   

12.
The wall proteome and the secretome of the fungal pathogen Candida albicans help it to thrive in multiple niches of the human body. Mass spectrometry has allowed researchers to study the dynamics of both subproteomes. Here, we discuss some major responses of the secretome to host-related environmental conditions. Three β-1,3-glucan-modifying enzymes, Mp65, Sun41, and Tos1, are consistently found in large amounts in culture supernatants, suggesting that they are needed for construction and expansion of the cell wall β-1,3-glucan layer and thus correlate with growth and might serve as diagnostic biomarkers. The genes ENG1, CHT3, and SCW11, which encode an endoglucanase, the major chitinase, and a β-1,3-glucan-modifying enzyme, respectively, are periodically expressed and peak in M/G1. The corresponding protein abundances in the medium correlate with the degree of cell separation during single-yeast-cell, pseudohyphal, and hyphal growth. We also discuss the observation that cells treated with fluconazole, or other agents causing cell surface stress, form pseudohyphal aggregates. Fluconazole-treated cells secrete abundant amounts of the transglucosylase Phr1, which is involved in the accumulation of β-1,3-glucan in biofilms, raising the question whether this is a general response to cell surface stress. Other abundant secretome proteins also contribute to biofilm formation, emphasizing the important role of secretome proteins in this mode of growth. Finally, we discuss the relevance of these observations to therapeutic intervention. Together, these data illustrate that C. albicans actively adapts its secretome to environmental conditions, thus promoting its survival in widely divergent niches of the human body.  相似文献   

13.
Cryptococcus neoformans is a human-pathogenic basidiomycete that commonly infects HIV/AIDS patients to cause meningoencephalitis (7, 19). C. neoformans grows as a budding yeast during vegetative growth or as hyphae during sexual reproduction. Pseudohyphal growth of C. neoformans has been observed rarely during murine and human infections but frequently during coculture with amoeba; however, the genetics underlying pseudohyphal growth are largely unknown. Our studies found that C. neoformans displays pseudohyphal growth under nitrogen-limiting conditions, especially when a small amount of ammonium is available as a sole nitrogen source. Pseudohyphal growth was observed with Cryptococcus neoformans serotypes A and D and Cryptococcus gattii. C. neoformans pseudohyphae bud to produce yeast cells and normal smooth hemispherical colonies when transferred to complete media, indicating that pseudohyphal growth is a conditional developmental stage. Subsequent analysis revealed that two ammonium permeases encoded by the AMT1 and AMT2 genes are required for pseudohyphal growth. Both amt1 and amt2 mutants are capable of forming pseudohyphae; however, amt1 amt2 double mutants do not form pseudohyphae. Interestingly, C. gattii pseudohypha formation is irreversible and involves a RAM pathway mutation that drives pseudohyphal development. We also found that pseudohyphal growth is related to the invasive growth into the medium. These results demonstrate that pseudohyphal growth is a common reversible growth pattern in C. neoformans but a mutational genetic event in C. gattii and provide new insights into understanding pseudohyphal growth of Cryptococcus.  相似文献   

14.
A centromeric activity was identified in the previously isolated 3.8 kb DNA fragment that carries an autonomously replicating sequence (ARS) from the yeast Candida maltosa. Plasmids bearing duplicated copies of the centromeric DNA (dicentric plasmids) were physically unstable and structural rearrangements of the dicentric plasmids occurred frequently in the transformed cells. The centromeric DNA activity was dissociated from the ARS, which is 0.2 kb in size, and was delimited to a fragment at least 325 by in length. The centromeric DNA region included the consensus sequences of CDEI (centromeric DNA element I) and an AT-rich CDEII-like region of Saccharomyces cerevisiae but had no homology to the functionally critical CDEIII consensus. A plasmid bearing the whole 3.8 kb fragment was present in 1–2 copies per cell and was maintained stably even under non-selective culture conditions, while a plasmid having only the 0.2 kb ARS was unstable and accumulated to high copy numbers. The high-copy-number plasmid allowed us to overexpress a gene to a high level, which had never been attained before, under the control of both constitutive and inducible promoters in C. maltosa.  相似文献   

15.
A novel 1,3-beta-glucanosyltransferase isolated from the cell wall of Aspergillus fumigatus was recently characterized. This enzyme splits internally a 1,3-beta-glucan molecule and transfers the newly generated reducing end to the non-reducing end of another 1, 3-beta-glucan molecule forming a 1,3-beta linkage, resulting in the elongation of 1,3-beta-glucan chains. The GEL1 gene encoding this enzyme was cloned and sequenced. The predicted amino acid sequence of Gel1p was homologous to several yeast protein families encoded by GAS of Saccharomyces cerevisiae, PHR of Candida albicans, and EPD of Candida maltosa. Although the expression of these genes is required for correct morphogenesis in yeast, the biochemical function of the encoded proteins was unknown. The biochemical assays performed on purified recombinant Gas1p, Phr1p, and Phr2p showed that these proteins have a 1,3-beta-glucanosyltransferase activity similar to that of Gel1p. Biochemical data and sequence analysis have shown that Gel1p is attached to the membrane through a glycosylphosphatidylinositol in a similar manner as the yeast homologous proteins. The activity has been also detected in membrane preparations, showing that this 1,3-beta-glucanosyltransferase is indeed active in vivo. Our results show that transglycosidases anchored to the plasma membrane via glycosylphosphatidylinositols can play an active role in fungal cell wall synthesis.  相似文献   

16.

Background

Pichia fermentans DiSAABA 726 is a dimorphic yeast that reversibly shifts from yeast-like to pseudohyphal morphology. This yeast behaves as a promising antagonist of Monilia spp. in the yeast-like form, but becomes a destructive plant pathogen in the pseudohyphal form thus raising the problem of the biological risk associated with the use of dimorphic yeasts as microbial antagonists in the biocontrol of phytopathogenic fungi.

Methods

Pichia fermentans DiSAABA 726 was grown in urea- and methionine-containing media in order to induce and separate yeast-like and pseudohyphal morphologies. Total RNA was extracted from yeast-like cells and pseudohyphae and retro-transcribed into cDNA. A rapid subtraction hybridization approach was utilized to obtain the cDNA sequences putatively over-expressed during growth on methionine-containing medium and involved in pseudohyphal transition.

Results

Five genes that are over-expressed during yeast-like/pseudohyphal dimorphic transition were isolated. One of these, encoding a putative phospholipase C, is involved in P. fermentans filamentation. In fact, while the inhibition of phospholipase C, by means of 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphorylcholine (Et-18), is accompanied by a significant reduction of pseudohyphae formation in P. fermentans, the addition of exogenous cAMP fully restores pseudohyphal growth also in the presence of Et-18.

Conclusion

Phospholipase C is part of a putative “methionine sensing machinery” that activates cAMP-PKA signal transduction pathway and controls P. fermentans yeast-like/pseudohyphal dimorphic transition.

General significance

Phospholipase C is a promising molecular target for further investigations into the link between pseudohyphae formation and pathogenicity in P. fermentans.  相似文献   

17.
Saccharomyces cerevisiae is dimorphic and switches from a yeast form to a pseudohyphal (PH) form when starved for nitrogen. PH cells are elongated, bud in a unipolar manner, and invade the agar substrate. We assessed the requirements for actin in mediating the dramatic morphogenetic events that accompany the transition to PH growth. Twelve “alanine scan” alleles of the single yeast actin gene (ACT1) were tested for effects on filamentation, unipolar budding, agar invasion, and cell elongation. Some act1 mutations affect all phenotypes, whereas others affect only one or two aspects of PH growth. Tests of intragenic complementation among specific act1 mutations support the phenotypic evidence for multiple actin functions in filamentous growth. We present evidence that interaction between actin and the actin-binding protein fimbrin is important for PH growth and suggest that association of different actin-binding proteins with actin mediates the multiple functions of actin in filamentous growth. Furthermore, characterization of cytoskeletal structure in wild type and act1/act1 mutants indicates that PH cell morphogenesis requires the maintenance of a highly polarized actin cytoskeleton. Collectively, this work demonstrates that actin plays a central role in fungal dimorphism.  相似文献   

18.
A centromeric activity was identified in the previously isolated 3.8 kb DNA fragment that carries an autonomously replicating sequence (ARS) from the yeast Candida maltosa. Plasmids bearing duplicated copies of the centromeric DNA (dicentric plasmids) were physically unstable and structural rearrangements of the dicentric plasmids occurred frequently in the transformed cells. The centromeric DNA activity was dissociated from the ARS, which is 0.2 kb in size, and was delimited to a fragment at least 325 by in length. The centromeric DNA region included the consensus sequences of CDEI (centromeric DNA element I) and an AT-rich CDEII-like region of Saccharomyces cerevisiae but had no homology to the functionally critical CDEIII consensus. A plasmid bearing the whole 3.8 kb fragment was present in 1–2 copies per cell and was maintained stably even under non-selective culture conditions, while a plasmid having only the 0.2 kb ARS was unstable and accumulated to high copy numbers. The high-copy-number plasmid allowed us to overexpress a gene to a high level, which had never been attained before, under the control of both constitutive and inducible promoters in C. maltosa.  相似文献   

19.
The usefulness of hybridization by protoplast fusion and mitotic segregation for the genetic analysis of the imperfect fodder yeastCandida maltosa was tested. Mitotically stable fusion hybrids were obtained with frequencies between 10–6 and 10–7. Complementation tests were performed by protoplast fusion. Substances that are known to induce frequent mitotic segregation in other yeast species such as benomyl, p-fluorophenylalanine, and acriflavine were ineffective inC. maltosa. UV irradiation induced mitotic segregation in up to 10%. This agent induced mainly mitotic crossing over inC. maltosa. Our data enabled the construction of the linkage group I with the sequenceCEN-ade-26-pro-1.  相似文献   

20.
Yan Fan  Hong He  Yan Dong  Hengbiao Pan 《Mycopathologia》2013,176(5-6):329-335
Fungal virulence mechanisms include adhesion to epithelia, morphogenesis, production of secretory hydrolytic enzymes, and phenotype switching, all of which contribute to the process of pathogenesis. A striking feature of the biology of Candida albicans is its ability to grow in yeast, pseudohyphal, and hyphal forms. The hyphal form plays an important role in causing disease, by invading epithelial cells and causing tissue damage. In this review, we illustrate some of the main hyphae-specific genes, namely HGC1, UME6, ALS3, HWP1, and ECE1, and their relevant and reversed signal transduction pathways in reactions stimulated by environmental factors, including pH, CO2, and serum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号