首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We have shown previously that introduction of the human papillomavirus type 16 (HPV16) or HPV18 genome into human mammary epithelial cells induces their immortalization. These immortalized cells have reduced growth factor requirements. We report here that transfection with a single HPV16 gene E6 is sufficient to immortalize these cells and reduce their growth factor requirements. The RB protein is normal in these cells, but the p53 protein is sharply reduced, as shown by immunoprecipitation with anti-p53 antibody (pAB 421). We infer that the E6 protein reduces the p53 protein perhaps by signalling its destruction by the ubiquitin system. The HPV-transforming gene E7 was unable to immortalize human mammary epithelial cells. Thus, cell-specific factors may determine which viral oncogene plays a major role in oncogenesis.  相似文献   

3.
High-risk strains of human papillomavirus, such as types 16 and 18, have been etiologically linked to cervical cancer. Most cervical cancer tissues are positive for both the E6 and E7 oncoproteins, since it is their cooperation that results in successful transformation and immortalization of infected cells. We have reported that E6 binds to tumor necrosis factor receptor 1 and to Fas-associated death domain (FADD) and, in doing so, prevents E6-expressing cells from responding to apoptotic stimuli. The binding site of E6 to FADD localizes to the first 23 amino acids of FADD and has now been further characterized by the use of deletion and site-directed mutants of FADD in pull-down and functional assays. The results from these experiments revealed that mutations of serine 16, serine 18, and leucine 20 obstruct FADD binding to E6, suggesting that these residues are part of the E6 binding domain on FADD. Because FADD does not contain the two previously identified E6 binding motifs, the LxxLsh motif, and the PDZ motif, a novel binding domain for E6 has been identified on FADD. Furthermore, peptides that correspond to this region can block E6/FADD binding in vitro and can resensitize E6-expressing cells to apoptotic stimuli in vivo. These results demonstrate the existence of a novel E6 binding domain.  相似文献   

4.
R Herber  A Liem  H Pitot    P F Lambert 《Journal of virology》1996,70(3):1873-1881
The human papillomavirus type 16 (HPV-16) genome is commonly present in human cervical carcinoma, in which a subset of the viral genes, E6 and E7, are expressed. The HPV-16 E6 and E7 gene products can associated with and inactivate the tumor suppressor proteins p53 and Rb (the retinoblastoma susceptibility gene product), and in tissue culture cells, these viral genes display oncogenic properties. These findings have led to the hypothesis that E6 and E7 contribute to cervical carcinogenesis. This hypothesis has recently been tested by using transgenic mice as an animal model. HPV-16 E6 and E7 together were found to induce cancers in multiple tissues in which they were expressed, including squamous cell carcinoma, the cancer type most commonly associated with HPV-16 in the human cervix. We have extended these studies to investigate the in vivo activities of HPV-16 E7 when expressed in squamous epithelia of transgenic mice. Grossly, E7 transgenic mice had multiple phenotypes, including wrinkled skin that was apparent prior to the appearance of hair on neonates, thickened ears, and loss of hair in adults. In lines of mice expressing higher levels of E7, we observed stunted growth and mortality at an early age, potentially caused by an incapacity to feed. Histological analysis demonstrated that E7 causes epidermal hyperplasia in multiple transgenic lineages with high penetrance. This epithelial hyperplasia was characterized by an expansion of the proliferating compartment and an expansion of the keratin 10-positive layer of cells and was associated with hyperkeratosis. Hyperplasia was found at multiple sites in the animals in addition to the skin, including the mouth palate, esophagus, forestomach, and exocervix. In multiple transgenic lineages, adult animals developed skin tumors late in life with low penetrance. These tumors arose from the squamous epithelia and from sebaceous glands and were characterized histologically to be highly differentiated, locally invasive, and aggressive in their growth properties. On the basis of these phenotypes, we conclude that HPV-16 E7 can alter epithelial cell growth parameters sufficiently to potentiate tumorigenesis in mice.  相似文献   

5.
The contribution of the E6 and E7 open reading frames of human papillomavirus type 6b (HPV6b) and HPV16 to immortalization of human keratinocytes was evaluated by using amphotropic recombinant retroviruses. The HPV16 E7 gene could immortalize primary human keratinocytes without the cooperation of the viral E6 gene; however, E6 was able to contribute significantly to the efficiency of the E7 immortalizing function. Infection of HFE cells with retroviruses carrying the 16E6, 6bE6, or 6bE6E7 open reading frame did not result in immortalization.  相似文献   

6.
Previous studies have shown that the PDZ-binding motif of the E6 oncoprotein from the mucosal high-risk (HR) human papillomavirus (HPV) types plays a key role in HPV-mediated cellular transformation in in vitro and in vivo experimental models. HR HPV E6 oncoproteins have the ability to efficiently degrade members of the PDZ motif-containing membrane-associated guanylate kinase (MAGUK) family; however, it is possible that other PDZ proteins are also targeted by E6. Here, we describe a novel interaction of HPV type 16 (HPV16) E6 with a PDZ protein, Na(+)/H(+) exchange regulatory factor 1 (NHERF-1), which is involved in a number of cellular processes, including signaling and transformation. HPV16 E6 associates with and promotes the degradation of NHERF-1, and this property is dependent on the C-terminal PDZ-binding motif of E6. Interestingly, HPV16 E7, via the activation of the cyclin-dependent kinase complexes, promoted the accumulation of a phosphorylated form of NHERF-1, which is preferentially targeted by E6. Thus, both oncoproteins appear to cooperate in targeting NHERF-1. Notably, HPV18 E6 is not able to induce NHERF-1 degradation, indicating that this property is not shared with E6 from all HR HPV types. Downregulation of NHERF-1 protein levels was also observed in HPV16-positive cervical cancer-derived cell lines, such as SiHa and CaSki, as well as HPV16-positive cervical intraepithelial neoplasia (CIN). Finally, our data show that HPV16-mediated NHERF-1 degradation correlates with the activation of the phosphatidylinositol-3'-OH kinase (PI3K)/AKT signaling pathway, which is known to play a key role in carcinogenesis.  相似文献   

7.
The production of the human papillomavirus type 16 (HPV-16) is intimately tied to the differentiation of the host epithelium that it infects. Infection occurs in the basal layer of the epithelium at a site of wounding, where the virus utilizes the host DNA replication machinery to establish itself as a low-copy-number episome. The productive stage of the HPV-16 life cycle occurs in the postmitotic suprabasal layers of the epithelium, where the virus amplifies its DNA to high copy number, synthesizes the capsid proteins (L1 and L2), encapsidates the HPV-16 genome, and releases virion particles as the upper layer of the epithelium is shed. Papillomaviruses are hypothesized to possess a mechanism to overcome the block in DNA synthesis that occurs in the differentiated epithelial cells, and the HPV-16 E7 oncoprotein has been suggested to play a role in this process. To determine whether E7 plays a role in the HPV-16 life cycle, an E7-deficient HPV-16 genome was created by inserting a translational termination linker (TTL) in the E7 gene of the full HPV-16 genome. This DNA was transfected into an immortalized human foreskin keratinocyte cell line shown previously to support the HPV-16 life cycle, and stable cell lines were obtained that harbored the E7-deficient HPV-16 genome episomally, the state of the genome found in normal infections. By culturing these cells under conditions which promote the differentiation of epithelial cells, we found E7 to be necessary for the productive stage of the HPV-16 life cycle. HPV-16 lacking E7 failed to amplify its DNA and expressed reduced amounts of the capsid protein L1, which is required for virus production. E7 appears to create a favorable environment for HPV-16 DNA synthesis by perturbing the keratinocyte differentiation program and inducing the host DNA replication machinery. These data demonstrate that E7 plays an essential role in the papillomavirus life cycle.  相似文献   

8.
Cytochrome (cyt) c forms complexes, undergoes a conformational change and becomes partly reduced at interaction with membrane anchored alkaline phosphatase (AP), a glycoprotein which is released into the body fluid in forms differing in hydrophobicity. The proportion of products formed in the mixtures depends on pH, ionic strength, temperature and the buffer composition. The reaction terminates in an equilibrium between cyt c(FeII) and other cyt c conformers. Optimal conditions for the rate of the reaction are 100 mM glycine/NaOH, pH 9.7-9.9, at which 68-74% of cyt c is found in the reduced state. The interaction affects compactness of the haem cleft as shown by changes induced in CD spectra of the Soret region and changes in optical characteristics of phenylalanine, tyrosine and tryptophan residues. Differential scanning calorimetry of AP+cyt c mixtures revealed a creation of at least two types of complexes. A complex formed by non-coulombic binding prevails at substoichiometric AP/cyt c ratios, at higher ratios more electrostatic attraction is involved and at 1:1 molar ratio an apparent complexity of binding forces occurs. The rapid phase of the cyt c(FeII) formation depends on the presence of the hydrophobic alkylacylphosphoinositol (glycosylphosphatidylinositol) moiety, the protein part of the enzyme participates in an electrostatic and much slower phase of cyt c(FeII) creation. The results show that non-coulombic interaction may participate at interaction of cyt c with cellular proteins.  相似文献   

9.
The E7 protein of human papillomavirus type 16 (HPV16) transforms cultured cells and cooperates with the ras or fos oncogenes in the transformation of primary cells. In this study we have investigated the phosphorylation of E7. When we immunoprecipitated E7 from CaSki cells with a rabbit polyclonal antiserum to a bacterial fusion protein (trpE-E7), we found that E7 was phosphorylated at serine residues contained in five characteristic thermolysin peptides. Immunoprecipitated E7, and fusion proteins harboring the E7 protein from various HPV types, could all be specifically phosphorylated in vitro by the ubiquitous, growth factor-activated casein kinase II (CKII). Comparative peptide mapping showed that the sites of in vivo and in vitro phosphorylation are the same. CKII was shown previously to specifically phosphorylate serine or threonine residues within a cluster of acidic amino acids. The E7 protein contains such a sequence between amino acids 30 and 37. When a synthetic peptide corresponding to this region of E7 was phosphorylated by CKII in vitro, its thermolysin digestion products were the same as those in the phosphorylated E7 protein. We conclude that E7 is phosphorylated in vivo only at serines within the predicted CKII site and that CKII, or a CKII-like enzyme, participates in the reaction. Both the E1A and SV40 large T proteins contain similar CKII consensus sites proximal to the regions required for their associations with the retinoblastoma gene product (p105Rb). Thus it is conceivable that CKII phosphorylation can modulate the interaction between the transforming proteins and the retinoblastoma gene product.  相似文献   

10.
Papillomavirus genomes are thought to be amplified to about 100 copies per cell soon after infection, maintained constant at this level in basal cells, and amplified for viral production upon keratinocyte differentiation. To determine the requirement for E1 in viral DNA replication at different stages, an E1-defective mutant of the human papillomavirus 16 (HPV16) genome featuring a translation termination mutation in the E1 gene was used. The ability of the mutant HPV16 genome to replicate as nuclear episomes was monitored with or without exogenous expression of E1. Unlike the wild-type genome, the E1-defective HPV16 genome became established in human keratinocytes only as episomes in the presence of exogenous E1 expression. Once established, it could replicate with the same efficiency as the wild-type genome, even after the exogenous E1 was removed. However, upon calcium-induced keratinocyte differentiation, once again amplification was dependent on exogenous E1. These results demonstrate that the E1 protein is dispensable for maintenance replication but not for initial and productive replication of HPV16.  相似文献   

11.
12.
Binding of the retinoblastoma gene product (pRB) by viral oncoproteins, including the E7 of human papillomavirus type 16 (HPV 16), is thought to be important in transformation of cells. One of the steps in transformation is the immortalization process. Here we show that mutations in E7 within the full-length genome which inhibit binding of pRB do not abrogate the ability of the HPV 16 DNA to immortalize primary human epithelial (keratinocyte) cells. A mutation in one of the cysteines of a Cys-X-X-Cys motif which is contained in the carboxy half of the E7 and is part of a zinc finger arrangement completely eliminates the ability of HPV 16 DNA to immortalize cells. The results indicate the importance of E7 in the immortalization of primary keratinocytes but suggest that the binding of pRB is not essential.  相似文献   

13.
14.
High risk strains of human papillomavirus (HPV), such as HPV 16, cause human cervical carcinoma. The E6 protein of HPV 16 mediates the rapid degradation of the tumor suppressor p53, although this is not the only function of E6 and cannot completely explain its transforming potential. Previous work in our laboratory has demonstrated that E6 can protect cells from tumor necrosis factor-induced apoptosis by binding to the C-terminal end of tumor necrosis factor R1, thus blocking apoptotic signal transduction. In this study, E6 was shown to also protect cells from apoptosis induced via the Fas pathway. Furthermore, use of an inducible E6 expression system demonstrated that this protection is dose-dependent, with higher levels of E6 leading to greater protection. Although E6 suppresses activation of both caspase 3 and caspase 8, it does not affect apoptotic signaling through the mitochondrial pathway. Mammalian two-hybrid and in vitro pull-down assays were then used to demonstrate that E6 binds directly to the death effector domain of Fas-associated death domain (FADD), with deletion and site-directed mutants enabling the localization of the E6-binding site to the N-terminal end of the FADD death effector domain. E6 is produced in two forms as follows: a full-length version of approximately 16 kDa and a smaller version of about half that size corresponding to the N-terminal half of the full-length protein. Pull-down and functional assays demonstrated that the full-length version, but not the small version of E6, was able to bind to FADD and to protect cells from Fas-induced apoptosis. In addition, binding to E6 leads to degradation of FADD, with the loss of cellular FADD proportional to the amount of E6 expressed. These results support a model in which E6-mediated degradation of FADD prevents transmission of apoptotic signals via the Fas pathway.  相似文献   

15.
Unfused human papillomavirus type 16 (HPV 16) E6 protein was expressed in Escherichia coli using a lambda PL promoter system. The protein was isolated from the cells as inclusion bodies, extracted by 6 M guanidine-HCl, and purified by chromatography. The purified protein had high affinity to DNA and was demonstrated for the first time to bind to a specific sequence within the long control region of HPV 16.  相似文献   

16.
17.
Production of human papillomavirus type 16 E7 protein in Lactococcus lactis   总被引:4,自引:0,他引:4  
The E7 protein of human papillomavirus type 16 was produced in Lactococcus lactis. Secretion allowed higher production yields than cytoplasmic production. In stationary phase, amounts of cytoplasmic E7 were reduced, while amounts of secreted E7 increased, suggesting a phase-dependent intracellular proteolysis. Fusion of E7 to the staphylococcal nuclease, a stable protein, resulted in a highly stable cytoplasmic protein. This work provides new candidates for development of viral screening systems and for oral vaccine against cervical cancer.  相似文献   

18.
Bypass of two arrest points is essential in the process of cellular immortalization, one of the components of the transformation process. Expression of human papillomavirus type 16 E6 and E7 together can escape both senescence and crisis, processes which normally limit the proliferative capacity of primary human keratinocytes. Crisis is thought to be mediated by telomere shortening. Because E6 stimulates telomerase activity and exogenous expression of the TERT gene with E7 can immortalize keratinocytes, this function is thought to be important for E6 to cooperate with E7 to bypass crisis. However, it has also been reported that E6 dissociates increased telomerase activity from maintenance of telomere length and that a dominant-negative p53 molecule can substitute for E6 in cooperative immortalization of keratinocytes with E7. Thus, to determine which functions of E6 are required to allow bypass of crisis and immortalization of keratinocytes with E7, immortalization assays were performed using specific mutants of E6, in tandem with E7. In these experiments, every clone expressing an E6 mutant capable of degrading p53 was able to bypass crisis and immortalize, regardless of telomerase induction. All clones containing E6 mutants incapable of degrading p53 died at crisis. These results suggest that the ability of E6 to induce degradation of p53 compensates for continued telomere shortening in E6/E7 cells and demonstrate that degradation of p53 is required for immortalization by E6/E7, while increased telomerase activity is dispensable.  相似文献   

19.
Expression of the papillomavirus E4 protein correlates with the onset of viral DNA amplification. Using a mutant cottontail rabbit papillomavirus (CRPV) genome incapable of expressing the viral E4 protein, we have shown that E4 is required for the productive stage of the CRPV life cycle in New Zealand White and cottontail rabbits. In these lesions, E4 was not required for papilloma development, but the onset of viral DNA amplification and L1 expression were abolished. Viral genome amplification was partially restored when mutant genomes able to express longer forms of E4 were used. These findings suggest that efficient amplification of the CRPV genome is dependent on the expression of a full-length CRPV E4 protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号