首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The administration of the anorexigenic drugd,l-fenfluramine (Ponderax®) to laboratory animals results in a dose-dependent reduction in presynaptically located serotonergic reuptake transporter protein. This long-term effect may represent an altered mechanism of synthesis of the transporter (downregulation). Alternatively, fenfluramine may destroy the serotonergic terminals on which 5-HT transporters are located. To distinguish between these two alternatives, we applied an assay of neurotransmitter-specific nerve endings (α) to brain tissue from two animal models of reduced 5-HT transporter density. In Model 1, serotonergic nerve terminals were destroyed (rats received 5,7-dihydroxytryptamine [5,7-DHT] intracisternally); in Model 2, there was a loss of 5-HT transportersper se on otherwise intact serotonergic nerve terminals. The manner in which α declined as transporter density was decreased (reducingV max values) in animal Models 1 and 2 was found to be significantly different. In rats treated with fenfluramine, the association between 5-HT transporter density and α was the same as in the neurotoxic model.  相似文献   

2.
The mechanism underlying the serotoninergic neurotoxicity of some amphetamine derivatives, such as p-chloroamphetamine (pCA) and 3,4-methylenedioxymethamphetamine (MDMA), is still debated. Their main acute effect, serotonin (5-HT) release from nerve endings, involves their interaction with 5-HT transporters (SERTs), as substrates. Although this interaction is required for the neurotoxic effects, 5-HT release alone may not be sufficient to induce long-term 5-HT deficits. Some non-neurotoxic compounds, including p-methylthioamphetamine (MTA) and 1-(m-chlorophenyl)piperazine (mCPP), have 5-HT releasing properties in vivo and in brain slices comparable to that of neurotoxic amphetamine derivatives. We measured 5-HT release in superfused rat brain synaptosomes preloaded with [3H]5-HT, a model that distinguishes a releasing effect from reuptake inhibition. MTA and mCPP induced much lower release than pCA and MDMA. The striking difference between our findings in synaptosomes and those obtained in vivo or in brain slices is probably related to a different compartmentalisation of 5-HT in the different experimental models. Studies in synaptosomes, where the vesicular storage of 5-HT is predominant, could therefore bring to light differences between neurotoxic and non-neurotoxic 5-HT releasing agents which cannot be appreciated in other experimental models and might be useful to identify the mechanisms responsible for the neurotoxicity induced by amphetamine derivatives.  相似文献   

3.
4.
Reactions of 1-{[2-(arylazo)phenyl]iminomethyl}-2-phenol, HLsal, 1, [where H represents the dissociable protons upon complexation and aryl groups of HLsal are phenyl for HL1sal, p-methylphenyl for HL2sal, and p-chlorophenyl for HL3sal], ligands with Ru(H)(CO)(Cl)(PPh3)3 afforded complexes of composition [(Lsal)Ru(CO)(Cl)(PPh3)] and (Lsal)2Ru where the N,N,O donor tridentate (Lsal) ligands coordinated the metal centre facially and meridionally, respectively. Stepwise formation of [(Lsal)2Ru] has been ascertained. Reaction of 1-{[2-(arylazo)phenyl]iminomethyl}-2-napthol, HLnap, 2, [where H represents the dissociable protons upon complexation and aryl groups of HLnap are phenyl for HL1nap, p-methylphenyl for HL2nap, and p-chlorophenyl for HL3nap], ligands with Ru(H)(CO)(Cl)(PPh3)3 afforded exclusively the complexes of composition [(Lnap)Ru(CO)(Cl)(PPh3)], where N,N,O donor tridentate (Lnap) was facially coordinated. The ligand 1-{[2-(phenylazo)phenyl]aminomethyl}-2-phenol, HL, 3, was prepared by reducing the aldimine function of HL1sal. Reaction of HL with Ru(PPh3)3Cl2 afforded new azosalen complex of Ru(III) in concert with regiospecific oxygenation of phenyl ring of HL. All the new ligands were characterized by analytical and spectroscopic techniques. The complexes were characterized by analytical and spectroscopic techniques and subsequently confirmed by the determination of X-ray structures of selected complexes.  相似文献   

5.
Exploring the mechanisms of serotonin [5-hydroxytryptamine (5-HT)] in the brain requires an in vivo method that combines fast temporal resolution with chemical selectivity. Fast-scan cyclic voltammetry is a technique with sufficient temporal and chemical resolution for probing dynamic 5-HT neurotransmission events; however, traditionally it has not been possible to probe in vivo 5-HT mechanisms. Recently, we optimized fast-scan cyclic voltammetry for measuring 5-HT release and uptake in vivo in the substantia nigra pars reticulata (SNR) with electrical stimulation of the dorsal raphe nucleus (DRN) in the rat brain. Here, we address technical challenges associated with rat DRN surgery by electrically stimulating 5-HT projections in the medial forebrain bundle (MFB), a more accessible anatomical location. MFB stimulation elicits 5-HT in the SNR; furthermore, we find simultaneous release of an additional species. We use electrochemical and pharmacological methods and describe physiological, anatomical and independent chemical analyses to identify this species as histamine. We also show pharmacologically that increasing the lifetime of extracellular histamine significantly decreases 5-HT release, most likely because of increased activation of histamine H-3 receptors that inhibit 5-HT release. Despite this, under physiological conditions, we find by kinetic comparisons of DRN and MFB stimulations that the simultaneous release of histamine does not interfere with the quantitative 5-HT concentration profile. We therefore present a novel and robust electrical stimulation of the MFB that is technically less challenging than DRN stimulation to study 5-HT and histamine release in the SNR.  相似文献   

6.
We studied the role of 5-HT(1A) receptors in controlling the release of glutamate (GLU) in the medial prefrontal cortex (mPFC) of conscious rats with the in vivo microdialysis technique. The effect of the 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin infused in the prefrontal cortex was examined under basal conditions and on the rise of extracellular GLU (+106%) induced by co-infusion of the competitive N-methyl-d-aspartate receptor antagonist 3-[(R)-2-carboxypiperazin-4yl]-propyl-1-phosphonic acid (CPP). 8-OH-DPAT (0.3 and 3 microm) had no effect on basal extracellular GLU, but the higher concentration completely abolished the rise of extracellular GLU induced by CPP. CPP also increased extracellular serotonin (5-HT) in the mPFC (+50%) and this effect was antagonized by 3 microm 8-OH-DPAT which, by itself, had no effect on basal 5-HT release. The effects of 8-OH-DPAT on extracellular GLU and 5-HT were reversed by the 5-HT(1A) receptor antagonist WAY100 635 (100 microm), indicating a selective involvement of 5-HT(1A) receptors. WAY100 635 had no effect by itself. These results show that the stimulation of cortical 5-HT(1A) receptors prevents the CPP-evoked rise of extracellular GLU and 5-HT and suggest that these effects may contribute to the ability of intracortical 8-OH-DPAT to counteract cognitive deficits caused by the blockade of NMDA receptors.  相似文献   

7.
Development of highly effective, safe, and fast-acting anti-depressants is urgently required for the treatment of major depressive disorder. It has been suggested that targeting 5-HT2A and 5-HT2C in addition to inhibition of serotonin reuptake may be beneficial in generating anti-depressant agents with better pharmacology and less adverse effects. We have developed phthalazinone-based compounds that potently bind to 5-HT2A, 5-HT2C, and the serotonin transporter. The representative compounds 11j and 11l displayed strong binding affinities against these targets, and showed favorable toxicity profiles as determined by hERG binding and CYP inhibition assays. Furthermore, these compounds presented promising anti-depressant effects comparable to fluoxetine and also synergistic effects with fluoxetine in forced swimming test, which implicates these compounds can be developed to help the treatment of major depressive disorder.  相似文献   

8.
Neuropeptide S (NPS) is a neurotransmitter/neuromodulator that has been identified as the natural ligand of G protein-coupled receptors termed NPS receptors (NPSRs). The NPS-NPSR system is involved in the control of numerous centrally-mediated behaviours, including anxiety. As several classical transmitters play a role in fear/anxiety, we here investigated the regulation by NPS of the exocytotic release of 5-hydroxytryptamine (5-HT) and glycine in nerve terminals isolated from mouse frontal/prefrontal cortex and amygdala. Synaptosomes, prelabelled with the tritiated neurotransmitters, were depolarized in superfusion with 12–15 mM KCl and exposed to varying concentrations of NPS. The evoked release of [3H]5-HT in frontal/prefrontal cortex was potently inhibited by NPS (maximal effect about 25% at 0.1 nM). Differently, the neuropeptide exhibited higher efficacy but much lower potency in amygdala (maximal effect about 40% at 1 μM). NPS was an extremely potent inhibitor of the K+-evoked release of [3H]glycine in frontal/prefrontal nerve endings (maximal effect about 25% at 1 pM). All the inhibitory effects observed were counteracted by the NPSR antagonist SHA 68, indicating that the neuropeptide acted at NPSRs. In conclusion, NPS can inhibit the exocytosis of 5-HT and of glycine through the activation of presynaptic NPSRs situated on serotonergic and glycinergic terminals in areas involved in fear/anxiety behaviours. The possibility exists that the NPSRs in frontal/prefrontal cortex are high-affinity receptors involved in non-synaptic transmission, whereas the NPSRs on amygdala serotonergic terminals are low-affinity receptors involved in axo-axonic synaptic communication.  相似文献   

9.
采用分解袋法,研究了长白山次生针阔混交林内9种树种叶凋落物34个月的分解过程.结果表明:在次生针阔混交林中,不同树种叶凋落物的初始N和P浓度存在很大差异,叶凋落物分解速率(k)与初始N浓度和C/N显著相关.有机物剩余百分率与C剩余百分率呈显著的线性正相关关系,与N和P剩余百分率之间呈显著的二项式回归关系. N和P剩余百分率在初期阶段随有机物分解而增加,达到峰值后逐渐降低. 随着有机物剩余百分率的下降,C/N和C/P均呈逐渐降低趋势,各种叶凋落物之间C/N和C/P的差异逐渐减小,分解末期分别趋近于23和350. 随有机物剩余百分率的降低, N/P变化不明显,当有机物剩余百分率低于25%时,不同树种叶凋落物之间N/P差异显著下降. 有机物剩余百分率可用来预测C、N和P的剩余百分率.   相似文献   

10.
In the unrestrained rat, the hyperphagic-like ingestion of food evoked by the sustained elevation of neuropeptide-Y (NPY) in the hypothalamus was correlated with the release and turnover of monoaminergic transmitters in this structure. A single guide tube was implanted stereotaxically in the perifornical region of the hypothalamus for localized push-pull perfusion of an artificial CSF vehicle or NPY1–36 in a concentration of 10, 50, or 100 ng/1.0 l. After the rat was fully satiated, a site reactive to NPY was perfused repeatedly at a rate of 20 l/min for 6.0 min with an interval of 6.0–12 min elapsing between each perfusion. Samples of perfusate were analyzed by HPLC with coulometric detection for DA, HVA, DOPAC, NE, MHPG, 5-HT, and 5-HIAA. Although control perfusions were without effect on feeding or monoamine activity, NPY evoked mean cumulative intakes of food of 14±2.4, 25.6±3.0 and 26.5±3.2 g in response to 10, 50, or 100 ng/l concentrations of NPY, respectively, over the 4.0–5.0 hr test interval. HPLC analyses showed that during feeding the release of both NE and DA was enhanced significantly. The turnover of both catecholamines likewise increased significantly as reflected by the elevated levels of MHPG, DOPAC and HVA. However, neither the basal efflux of 5-HT nor its turnover, as reflected by the output of 5-HIAA, was affected during feeding induced by NPY perfused in the hypothalamus. These results suggest that a sustained elevation of NPY in the hypothalamus causes a perturbation in the basal activity of NE and DA which are both implicated in the neuronal mechanism regulating normal eating behavior. Thus, these catecholamine neurotransmitters are envisaged to comprise an intermediary step in the functional role played by NPY in the hypothalamus in integrating the control of energy metabolism and caloric intake.  相似文献   

11.
Adrenal steroids are important for maintaining neuronal maturation in the adult rats. Two weeks after bilateral adrenalectomy (ADX), hippocampal MAP-2 (microtubule associated protein-2) and calbindin immunoreactivity (IR) decreased in the molecular layer of the superior blade of the dentate gyrus. The molecular and granular cell layer at the lateral tip of the superior blade decreased in width by 32% and 50%, respectively. The granule neurons showed reduced staining with Nissl and an anti-calbindin antibody. These changes suggested a loss of the mature neuronal morphology. In this same localized regions, two glial proteins, glial fibrillary acidic protein (GFAP) and S-100 showed dramatically reduced immunoreactivity. These effects induced by ADX were reduced within 72 hrs by ipsapirone (1 mg/kg), a 5HT1A receptor agonist. Loss of adult neuronal morphology by ADX, and reversal by the 5HT1A agonist, may be evidence of the trophic importance of the 5HT1A receptor in granule neurons of hippocampus.  相似文献   

12.
Serotonin (5-HT)1A receptors modulate in vivo release of brain monoaminergic neurotransmitters which may be involved in isolation-induced aggressive behavior. The present study examined the effect of isolation rearing on the 5-HT1A receptor-mediated modulation of dopamine (DA), 5-HT and noradrenaline (NA) release in the frontal cortex of mice. The selective 5-HT1A receptor agonist (S)-5-[-[(1,4-benzodioxan-2-ylmethyl)amino]propoxy]-1,3-benzodioxole HCl (MKC-242) increased the release of DA and NA and decreased the release of 5-HT in the frontal cortex of mice. The effect of MKC-242 on DA release was significantly less in isolation-reared mice than in group-reared mice, while effects of the drug on NA and 5-HT release did not differ between both groups. The effect of the other 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin on cortical DA release was also less in isolation-reared mice than in group-reared mice, and that of the drug on cortical 5-HT release did not differ between both groups. In contrast to MKC-242-induced DA release, amphetamine-induced increase in cortical DA release in vivo was greater in isolation-reared mice. The present findings suggest that isolation rearing enhances the activity of cortical dopaminergic neurons and reduces selectively the 5-HT1A receptor-mediated release of DA in the cortex.  相似文献   

13.
14.
Methamphetamine (MAP) is one of the most commonly abused drugs in Asia, and previous studies suggest that serotonin 3 receptors (5-HT(3)) are involved in MAP-induced locomotion and reward. However, little is known about the role of 5-HT(3) receptors in MAP-induced behavioral sensitization. Here, we measured the effects of MDL 72222, a 5-HT(3) antagonist, and SR 57227 A, a 5-HT(3) agonist, on the development and expression of MAP-induced behavioral sensitization, and alternations of 5-HT(3) receptor binding labeled with the 5-HT(3)-selective antagonist, [(3)H]GR65630, in mice. In addition, we investigated the effects of MAP on 5-HT(3A) receptor channel activity in Xenopus laevis oocytes expressing 5-HT(3A) receptors. We found that MDL 72222 attenuated both the development and expression of behavioral sensitization to MAP (1.0 mg/kg, i.p.), and that this attenuating effect of MDL 72222 was reversed by pre-treatment with SR 57227 A. In oocytes expressing 5-HT(3A) receptor, MAP exhibited a dual modulation of 5-HT(3A) receptor channel activity, i.e. pre-treatment with a low dose of MAP (0.1 microm) enhanced 5-HT-induced inward peak current (I(5-HT)) but a high dose of MAP (100 microm) inhibited I(5-HT). The acute administration of MDL 72222 with MAP decreased [(3)H]GR65630 binding versus MAP alone in the mouse striatum. Our results suggest that MDL 72222 attenuates MAP-induced behavioral sensitization via 5-HT(3) receptors in the caudate putamen, and that 5-HT(3) receptor antagonists like MDL 72222 have potential as novel anti-psychotic agents for the treatment of MAP dependence and psychosis.  相似文献   

15.
The activities of the novel aminopeptidase N inhibitor (APNI), β-Amino-α-Hydroxyl-Phenyl butanic acid-Valine (AHPA-Val), were compared with APNI (amastatin). AHPA-Val and amastatin produced competitive inhibition of the hydrolysis of Tyr-Gly in the guinea-pig striatal membrane preparation, with Ki equal to 14.06 μM and 12.48 μM respectively. Met-enkephalin-induced twitch inhibition of the guinea-pig ileum preparation was enhanced by AHPA-Val and amastatin with pA1/2 values (the negative logarithm concentration of APNI that decreased the IC50 of Met-enkephalin by half), of 7.08 and 7.79 respectively. These results suggest that AHPA-Val has good activity as an APNI and that these two assay systems are useful for evaluating the potency of novel APNIs.  相似文献   

16.
Abstract: This study was undertaken to investigate the pharmacology of cloned guinea pig and rat 5-hydroxytryptamine (serotonin; 5-HT)1D receptor sites. Guinea pig, rat, and mouse 5-HT1D receptor genes were cloned, and their amino acid sequences were compared with those of the human, dog, and rabbit. The overall amino acid sequence identity between these 5-HT1D receptors is high and varies between 86 and 99%. The sequence homology is slightly more divergent (13–27%) in the N-terminal extracellular region of these 5-HT1D receptors. Guinea pig and rat 5-HT1D receptors, stably and separately expressed in rat C6 glial cells, are negatively coupled to cyclic AMP formation upon stimulation with agonists, as previously found for cloned human 5-HT1D receptor sites. The cyclic AMP data show some common pharmacological features for the 5-HT1D receptors of guinea pig, rat, and human: an almost similar rank order of potency for the investigated 5-HT1D receptor agonists, stereoselectivity for the binding affinity and agonist potency of R(+)-8-hydroxy-2-(di-n-propylamino)tetralin, and equal 5-HT1D receptor-mediated antagonist potency for methiothepin and the 5-HT2 receptor antagonists ritanserin and ketanserin. In conclusion, the pharmacology of the cloned 5-HT1D receptor subtype seems, unlike the 5-HT1B receptor subtype, conserved among various mammal species such as the human, guinea pig, and rat.  相似文献   

17.
Treatment of a suspension of AgNO3 and AgCl in MeOH with a solution of N,N,N′,N′-tetra(diphenylphosphanylmethyl)ethylene diamine (dppeda) in CHCl3 afforded a binuclear complex [Ag2(dppeda)Cl](NO3)·2MeOH (1). The analogous reactions using AgSCN and dppeda in EtOH/CH2Cl2 gave rise to a polymeric complex [Ag2(dppeda)(SCN)2]n (2). Both compounds were fully characterized by elemental analyses, IR spectra, 1H(31P) NMR, and single-crystal X-ray crystallography. The cation of 1 shows an interesting molecular basket framework in which dppeda adopts a side-by-side coordination mode. Compound 2 possesses an unique 2D (6,3) layer network with 34-membered metallomacrocycles in which dppeda takes a end-to-end coordination mode. The 2D topological framework of 2 is rare in the chemistry of tetraphosphines. The photoluminescent properties of 1 and 2 in solid state at ambient temperature were investigated.  相似文献   

18.
Serotonergic innervation of the spinal cord in mammals has multiple roles in the control of motor, sensory and visceral functions. In rats, functional consequences of spinal cord injury at thoracic level can be improved by a substitutive transplantation of serotonin (5-HT) neurons or regeneration under the trophic influence of grafted stem cells. Translation to either pharmacological and/or cellular therapies in humans requires the mapping of the spinal cord 5-HT innervation and its receptors to determine their involvement in specific functions. Here, we have performed a preliminary mapping of serotonergic processes and serotonin-lA (5-HT1A) receptors in thoracic and lumbar segments of the human spinal cord. As in rodents and non-human primates, 5-HT profiles in human spinal cord are present in the ventral horn, surrounding motoneurons, and also contact their presumptive dendrites at lumbar level. 5-HT1A receptors are present in the same area, but are more densely expressed at lumbar level. 5-HT profiles are also present in the intermediolateral region, where 5-HT1A receptors are absent. Finally, we observed numerous serotonergic profiles in the superficial part (equivalent of Rexed lamina II) of the dorsal horn, which also displayed high levels of 5-HT1A receptors. These findings pave the way for local specific therapies involving cellular and/or pharmacological tools targeting the serotonergic system.  相似文献   

19.
The release of 5-HT in terminal areas of the rodent brain is regulated by 5-HT1B receptors. Here we examined the role of 5-HT1B receptors in the control of 5-HT output and firing in the dorsal raphe nucleus (DR), median raphe nucleus (MnR) and forebrain of the rat in vivo. The local perfusion (30-300 microM) of the selective 5-HT1B receptor agonist CP-93,129 to freely moving rats decreased 5-HT release in the DR and more markedly in the MnR. Likewise, 300 microM CP-93,129 reduced 5-HT output in substantia nigra pars reticulata, ventral pallidum, lateral habenula and the suprachiasmatic nucleus. The effect of CP-93,129 was prevented by SB-224289, but not by WAY-100635, selective 5-HT1B and 5-HT1A receptor antagonists, respectively. SB-224289 did not alter dialysate 5-HT in any raphe nuclei. The intravenous administration of the brain-penetrant selective 5-HT1B receptor agonist CP-94,253 (0.5-2.0 mg/kg) to anesthetized rats decreased dialysate 5-HT in dorsal hippocampus and globus pallidus, increased it in MnR and left it unaltered in the DR and medial prefrontal cortex. SB-224289, at a dose known to block 5-HT1B autoreceptor-mediated effects (5 mg/kg), did not prevent the effect of CP-94,253 on MnR 5-HT. The intravenous administration of CP-94,253 (0.05-1.6 mg/kg) to anesthetized rats increased the firing rate of MnR, but not DR-5-HT neurons. The local perfusion of CP-94,253 in the MnR showed a biphasic effect, with 5-HT reductions at 0.3-3 microM and increase at 300 microM. These results suggest that 5-HT cell firing and release in midbrain raphe nuclei (particularly in the MnR) are under control of 5-HT1B receptors. The activation of 5-HT1B autoreceptors (possibly located on 5-HT nerve endings and/or varicosities within DR and MnR) reduces 5-HT release. The effects of higher concentrations of 5-HT1B receptor agonists seem more compatible with the activation of 5-HT1B heteroreceptors on inhibitory neurons.  相似文献   

20.
Dysregulation of 5-HT(2) receptor function has been strongly implicated in many neuropsychiatric disorders, including schizophrenia. At present, the molecular mechanisms linking 5-HT(2) receptor activation to behaviors is not well understood. In efforts to elucidate these processes, the fruit fly, Drosophila melanogaster, is proposed to serve as a powerful genetically tractable model organism to study 5-HT(2) receptor function. Data are presented here on the expression of the fly ortholog of the mammalian 5-HT(2) receptor, 5-HT(2)Dro, in the larval and adult brain of the fly, and on the involvement of these circuits in certain circadian behaviors. In the adult brain, 5-HT(2)Dro is expressed in the protocerebrum and ellipsoid body, areas believed to participate in higher order behaviors including learning, locomotion, and sensory perception. In the third instar larva, 5-HT(2)Dro receptor expression is detected in a specific pattern that markedly changes from early to late third instar. To probe the function of this receptor we have examined the effects of the 5-HT(2) receptor-specific agonist DOI in wild type and 5-HT(2)Dro hypomorphic flies on circadian behaviors. DOI was found to increase early day activity, eliminate anticipatory behavior, and reduce viability. The effects of DOI were significantly diminished in a 5-HT(2)Dro hypomorphic strain. Identifying the 5-HT(2)Dro receptor circuitry and behaviors they mediate are significant steps towards developing this model system to study conserved molecular mechanisms underlying behaviors mediated by 5-HT(2) receptors in mammalian systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号