首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in levels of metabolites in isolated spinach (Spinacia oleracea) chloroplasts seen upon addition of antimycin A suggest that the activities of enzymes mediating several regulated reactions are affected. Apparently, the presence of added antimycin A does not increase the level of CO2 in the chloroplasts, nor does it stimulate CO2 fixation by increasing the level of the carboxylation substrate, ribulose-1,5-diphosphate. Rather, it appears that antimycin A increases CO2 fixation rate by indirectly stimulating the enzyme, ribulose-1,5-diphosphate carboxylase (E.C. 4.1.1.39), which mediates the carboxylation of ribulose-1,5-diphosphate to give 3-phosphoglycerate. Another rate-limiting enzyme of the reductive pentose phosphate cycle, hexose diphosphatase (E.C. 3.1.3.11), seems also to be stimulated. The synthesis of polysaccharides (mostly starch) seems also to be stimulated. These results are interpreted as indicating that antimycin A addition enhances the general activation of those enzymes which already are activated during photosynthesis but are inactive in the dark. The ratio of adenosine triphosphate-adenosine diphosphate under conditions of photosynthesis was only moderately decreased in the presence of antimycin A, perhaps accounting in part for an observed increase in accumulation of 3-phosphoglycerate as compared with dihydroxyacetone phosphate. No significant effect on movement of metabolites from the chloroplast to the medium was seen.  相似文献   

2.
Inhibitor experiments indicate that photosynthetic electron transport is required for light activation of the pea (Pisum sativum) leaf chloroplast enzymes NADP-linked glyceraldehyde-3-phosphate dehydrogenase, NADP-linked malic dehydrogenase, ribulose-5-phosphate kinase and sedoheptulose-1,7-diphosphate phosphatase, and for inactivation of glucose-6-phosphate dehydrogenase. Modulation of the activity of the dehydrogenases and kinase apparently involves a component preceding ferredoxin in the photosynthetic electron transport chain; activation of the phosphatase involves an electron transport component at the level of ferredoxin. Modulation of enzyme activity can be obtained in a broken chloroplast system consisting of membrane fragments and stromal extract. The capacity for light regulation in this system is reduced or eliminated when the membrane fraction is exposed to arsenite in the light or to sulfite in light or dark. Light-generated vicinal-dithiols seem therefore to be involved in modulation of the activity of the enzymes included in this study.  相似文献   

3.
The mechanisms regulating transient photosynthesis by soybean (Glycine max) leaves were examined by comparing photosynthetic rates and carbon reduction cycle enzyme activities under flashing (saturating 1 s lightflecks separated by low photon flux density (PFD) periods of different durations) and continuous PFD. At the same mean PFD, the mean photosynthetic rates were reduced under flashing as compared to continuous light. However, as the duration of the low PFD period lengthened, the CO2 assimilation attributable to a lightfleck increased. This enhanced lightfleck CO2 assimilation was accounted for by a greater postillumination CO2 fixation occurring after the lightfleck. The induction state of photosynthesis, ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco), fructose 1,6-bisphosphatase (FBPase) and ribulose 5-phosphate kinase (Ru5P kinase) activities all responded similarly and were all lower under flashing as compared to constant PFD of the same integrated mean value. However, the fast phase of induction and FBPase and Ru5P kinase activities were reduced more than were the slow phase of induction and rubisco activity. This was consistent with the role of the former enzymes in the fast induction component that limited RuBP regeneration. Competition for reducing power between carbon metabolism and thioredoxin-mediated enzyme activation may have resulted in lower enzyme activation states and hence lower induction states under flashing than continuous PFD, especially at low lightfleck frequencies (low mean PFD).Abbreviations FBPase fructose 1,6-bisphosphatase (EC 3.1.3.11) - LUE lightfleck use efficiency - P-glycerate 3-phosphoglycerate - PICF post-illumination CO2 fixation - Ru5P kinase ribulose 5-phosphate kinase (EC 2.7.1.19) - RuBP ribulose 1,5-bisphosphate - rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) - SBpase sedoheptulose 1,7-bisphosphatase (EC 3.1.3.37)  相似文献   

4.
用红光(650nm)或远红光(740nm)照射后,测定了黄化芥菜子叶中活化状态下核酮糖1,5-二磷酸羧化酶(RuBPCase,E.C.4.1.1,39),果糖1,6-二磷酸酯酶(FBPase,E.C.3.1.3.11)和景天庚酮糖1,6-二磷酸酯酶(SBPase,E.C.3,1.3.37)的酶活性。叶片对光的反应表明存在光敏感期。在光敏感期的红光可使 RuBPCase 和 FBPase 合成,但对 SBPase 的合成没有影响。红光的这种作用可被远红光逆转,所以红光对这两种酶的合成的启动是通过光敏色素而实现的。在超过阈值的光下,酶合成的量与光量子数无关,光敏色素只影响酶合成的启动,但是酶的持续合成还要依赖其它因素。  相似文献   

5.
14CO2 assimilation rate (P), leaf diffusive conductance (gs), photosynthetic electron flow, and activities of enzymes of Calvin cycle were studied in a horsegram [Macrotyloma uniflorum (Lam.)] in response to salinity induced by NaCl or Na2SO4. A significant reduction in P and gs by both salt treatments was registered. Na2SO4 caused a greater reduction in gs than the NaCl salinity. Studies with isolated chloroplasts confirmed a greater sensitivity to NaCl than to Na2SO4. Salinity inhibited the photosynthetic electron transport. The activity of ribulose-1,5-bisphosphate carboxylase (E.C.4.1.1.39) was under salinity inhibited more than the activities of other three enzymes of the Calvin cycle, ribulose-5-phosphate kinase (E.C.2.7.1.19), ribose-5-phosphate isomerase (E.C.5.3.16), and NADP-glyceraldehyde-3-phosphate dehydrogenase (E.C.1.2.13). These inhibitions lead to a reduced capacity for ribulose-1,5-bisphosphate regeneration. Isolated chloroplasts extracted from salt stressed plants and supplemented with the substrates of Calvin cycle could elevate P, but the P was always lower than in the controls. Decreased P in horsegram exposed to high salinity can be attributed to both stomatal and non-stomatal components, however, the sensitivity to the salt source, NaCl or Na2SO4, was different.  相似文献   

6.
S. Boag  A. R. Portis Jr. 《Planta》1985,165(3):416-423
The levels of stromal photosynthetic intermediates were measured in isolated intact spinach (Spinacia oleracea L.) chloroplasts exposed to reduced osmotic potentials. Stressed chloroplasts showed slower rates of metabolite accumulation upon illumination than controls. Relative to other metabolites sedoheptulose-1,7-bisphosphate (SBP) and fructose-1,6-bisphosphate (FBP) accumulated in the stroma in the stressed treatments. Under these conditions 3-phosphoglycerate (3-PGA) efflux to the medium was restricted. Chloroplasts previously incubated with [32P]KH2PO4 and [32P]dihydroxyacetone phosphate ([32P]DAP) in the dark were characterized by very high FBP and SBP levels prior to illumination. Metabolism of these pools upon illumination increased with increasing pH of the medium but was consistently inhibited in osmotically stressed chloroplasts. The responses of stromal FBP and SBP pools under hypertonic conditions are discussed in terms of both inhibited light activation of fructose-1,6-bisphosphatase (EC 3.1.3.11) and sedoheptulose-1,7-bisphosphatase (EC 3.1.3.37), and likely increases in stromal ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) active-site concentrations.Abbreviations and symbols DAP dihydroxyacetone phosphate - FBP fructose-1,6-bisphosphate - PGA 3-phosphoglycerate - RuBP ribulose-1,5-bisphosphate - SBP sedoheptulose-1,7-bisphosphate - s osmotic potential  相似文献   

7.
Degl'Innocenti  E.  Guidi  L.  Soldatini  G.F. 《Photosynthetica》2002,40(1):121-126
The effects of long-term exposure to ozone (O3, 60 mm3 m-3 for 5 h d-1) on some Calvin cycle enzymes, in particular those modulated by the thioredoxin system, were studied in two poplar clones. These clones differ in sensitivity to O3. In the I-214 clone, the first effects from O3 treatment were seen after 40 d of fumigation, while the Eridano clone showed visible symptoms of damage after only 15 d of the treatment. Specific activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (E.C. 4.1.1.39) diminished in both the clones, while specific activity of phosphoenolpyruvate carboxylase (E.C. 4.1.1.31) increased. Exposure to O3 also caused a reduction in the specific activity of ribulose-1,5-bisphosphate kinase (E.C. 2.7.1.19) in both clones. At the end of the exposure to O3, specific activity of glyceraldehyde 3-phosphate dehydrogenase (E.C. 1.2.1.13) increased in I-214 and remained similar to the control in Eridano, whereas specific activity of fructose-1,6-bisphosphate phosphatase (E.C. 3.1.3.11) was higher in Eridano and similar to the control in I-214.  相似文献   

8.
The patterns of light activation of 4 chloroplastic enzymes were examined in mesophyll protoplasts of pea ( Pisum sativum ) in the absence or presence of oligomycin (inhibitor of oxidative phosphorylation) or antimycin A (inhibitor of cytochrome pathway) or salicylhydroxamic acid (SHAM, inhibitor of alternative pathway). The results were compared with those of DCMU (inhibitor of photosynthetic electron transport). The light activation of NADP glyceraldehyde-3-phosphate dehydrogenase (NADP-GAPDH), fructose-1,6-bisphosphatase (FBPase), phosphoribulokinase (PRK) (enzymes of the Calvin cycle) and NADP malate dehydrogenase (NADP-MDH) (reflects chloroplast redox state) was more pronounced at limiting CO2 (0.1 m M NaHCO3) than that at optimal CO2 (1.0 m M NaHCO3). SHAM decreased markedly (up to 33%) the light activation of all 4 enzymes, while antimycin A or oligomycin exerted only a limited effect (<10% decrease). Antimycin A or oligomycin or SHAM had no significant effect on light activation of these 4 enzymes in isolated chloroplasts. However, DCMU caused a remarkable decrease in light activation of enzymes in both protoplasts (up to 78%) and chloroplasts (up to 69%). These results suggest that the restriction of alternative pathway of mitochondrial metabolism results in a marked decrease in the light activation of key chloroplastic enzymes in mesophyll protoplasts but not in isolated chloroplasts. Such a decrease in the light activation of enzymes could be also a secondary feedback effect because of the restriction on carbon assimilation.  相似文献   

9.
Growth, photosynthesis and carbohydrate metabolism in plants of two grassland species, clover ( Trifolium subterraneum L. cv. Areces and Gaitan) and tall fescue ( Festuca arundinacea Schreb.), shifted from 25 to 12°C for 1 day or developed at 12°C were compared with controls kept at 25°C. Cold development produced a larger inhibition of growth in fescue than in clovers. In contrast, transferring plants from high to low temperature inhibited photosynthesis to a lesser extent in fescue than in clovers, this difference being associated with an increase in the activation state of Calvin cycle enzymes in fescue, but not in the clovers, a decreased cytosolic fructose-1,6-bisphosphatase (cFBPase, EC 3.1.3.11) activity in clovers, and an accumulation of hexose phosphates only in fescue. Development at 12°C partly relieved the inhibition of photosynthesis in clovers, in contrast with fescue, which correlated with increases in total ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco, EC 4.1.1.39) activity only in clovers, and with greater increases in total stromal FBPase (sFBPase) activity in clovers than in fescue. The activity of sucrose synthesis enzymes was increased in the two clovers and fescue developed in the cold, while carbohydrate accumulation was much bigger in cold-developed fescue than in clovers because of a 5-fold increase in fructan contents in the former. The contents of phosphorylated intermediates increased in clovers but decreased in fescue grown at 12°C. Our results suggest that restricted ribulose-1,5-bisphosphate (RuBP) regeneration limited the recovery of photosynthetic capacity in cold-developed fescue.  相似文献   

10.
Using partially purified sedoheptulose-1,7-bisphosphatase from spinach (Spinacia oleracea L.) chloroplasts the effects of metabolites on the dithiothreitoland Mg2+-activated enzyme were investigated. A screening of most of the intermediates of the Calvin cycle and the photorespiratory pathway showed that physiological concentrations of sedoheptulose-7-phosphate and glycerate specifically inhibited the enzyme by decreasing its maximal velocity. An inhibition by ribulose-1,5-bisphosphate was also found. The inhibitory effect of sedoheptulose-7-phosphate on the enzyme is discussed in terms of allowing a control of sedoheptulose-1,7-bisphosphate hydrolysis by the demand of the product of this reaction. Subsequent studies with partially purified fructose-1,6-bisphosphatase from spinach chloroplasts showed that glycerate also inhibited this enzyme. With isolated chloroplasts, glycerate was found to inhibit CO2 fixation by blocking the stromal fructose-1,6-bisphosphatase. It is therefore possible that the inhibition of the two phosphatases by glycerate is an important regulatory factor for adjusting the activity of the Calvin cycle to the ATP supply by the light reaction.Abbreviations DTT dithiothreitol - FBPase fructose-1,6-bisphosphatase - Fru-1,6-P2 fructose-1,6-bisphosphate - Fru-6-P fructose-6-phosphate - 3-PGA 3-phosphoglycerate - Ru-1,5-P2 ribulose-1,5-bisphosphate - Ru-5-P ribulose-5-phosphate - SBPase sedoheptulose-1,7-bisphosphatase - Sed-1,7-P2 sedoheptulose-1,7-bisphosphate - Sed-7-P sedoheptulose-7-phosphate This work was supported by the Deutsche Forschungsgemein-schaft.  相似文献   

11.
J.M. Keller et al. (1989, EMBO J. 8, 1005–1012) introduced a phytochrome gene controlled by a cauliflower mosaic virus 35S promoter into tobacco (Nicotiana tabacum L.) providing material to test whether several photosynthesis enzymes can be increased by one modification to the plant. We report here that this transgenic tobacco had greater amounts of all enzymes examined as well as greater amounts of total protein and chlorophyll per unit leaf area. Fructose bisphosphatase (E.C. 3.1.3.11), glyceraldehyde 3-phosphate dehydrogenase (E.C. 1.2.1.12), and sucrose-phosphate synthase (E.C. 2.4.1.14) were also higher when expressed per unit protein. However, ribulose-1,5-bisphosphate carboxylase (E.C. 4.1.1.39) amount per unit leaf protein was the same in transgenic and wild-type (WT) plants. Photosynthesis in the transgenic plants was lower than in WT at air levels of CO2, but higher than in WT above 1000 bar CO2. The photosynthesis results indicated a high resistance to CO2 diffusion in the mesophyll of the transgenic plants. Examination of electron micrographs showed that chloroplasts in the transgenic plants were often cup-shaped, preventing close association between chloroplast and cell surface. Chloroplast cupping may have caused the increase in the mesophyll resistance to CO2 diffusion. We conclude that it is possible to affect more than one enzyme with a single modification, but unexpected physical modifications worsened the photosynthetic performance of this plant.Abbreviations CABP 2-carboxyarabitinol 1,5-bisphosphate - FBP fructose-1,6-bisphosphate - FBPase fructose-1,6-bisphosphatase - GAP glyceraldehyde 3-phosphate - Rubisco ribulose-1,5-bisphosphate carboxylase - SPS sucrose-phosphate synthase - WT wild type This research was supported by U.S. Department of Energy contracts DE-FG02-87ER60568 to T.D.S. and DE-FG02-88ER 13968 to R.D.V. We thank Drs. Joel Cherry and Howard P. Hershey for assistance with the transgenic plants.  相似文献   

12.
John Kobza  Gerald E. Edwards 《Planta》1987,171(4):549-559
The photosynthetic induction response was studied in whole leaves of wheat (Triticum aestivum L.) following 5-min, 30-min and 10-h dark periods. After the 5-min dark treatment there was a rapid burst in the rate of photosynthesis upon illumination (half of maximum after 30s), followed by a slight decrease after 1.5 more min and then a gradual rise to the maximum rate. During this initial burst in photosynthesis, there was a rapid rise in the level of 3-phosphoglycerate (PGA) and a high PGA/triose-phosphate (triose-P) ratio was obtained. In addition, after the 5-min dark treatment, ribulose-1,5-bisphosphate carboxylase (Rubisco, EC 4.1.1.39), ribulose-5-phosphate kinase (EC 2.7.1.19) and chloroplastic fructose-1,6-bisphosphatase (EC 3.1.3.11) maintained a relatively high state of activation, and maximum activation occurred within 1 min of illumination. The results indicate there is a high capacity for CO2 fixation in the cycle upon illumination but attaining maximum rates requires an increase in the ribulose-1,5-bisphosphate (RuBP) pool (adjustment in triose-P utilization for carbohydrate synthesis versus RuBP synthesis). With both the 30-min and 10-h dark pretreatments there was only a slight rise in photosynthesis upon illumination, followed by a lag, then a gradual increase to steady-state (half-maximum rate after 6 min). In contrast to the 5-min dark treatment, the level of PGA was low and actually decreased initially, whereas the level of RuBP increased and was high during induction, indicating that Rubisco is limiting. This regulation via the carboxylase was not reflected in the initial extractable activity, which reached a maximum by 1 min after illumination. The light activation of chloroplastic fructose-1,6-bisphosphatase in leaves darkened for 30 min and 10 h prior to illumination was relatively slow (reaching a maximum after 8 min). However, this was not considered to limit carbon flux through the carbon-fixation cycle during induction since RuBP was not limiting. When photosynthesis approached the maximum steady-state rate, a high PGA/triose-P ratio and a high PGA/RuBP ratio were obtained. This may allow a high rate of photosynthesis by producing a favorable mass-action ratio for the reductive phase (the conversion of PGA to triose phosphate) while stimulating starch and sucrose synthesis.Abbreviations Chl chlorophyll - FBP fructose-1,6-bisphosphate - FBPase fructose-1,6-bisphosphatase - Fru6P fructose-6-phosphate - Glc6P glucose-6-phosphate - PGA 3-phosphoglycerate - Pi inoganic phosphate - Rubisco RuBP carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - Ru5P ribulose-5-phosphate - triose-P triose phosphates (dihydroxyacetone phosphate+glyceraldehyde-3-phosphate)  相似文献   

13.
Engelbert Weis 《Planta》1981,151(1):33-39
Photosynthetic CO2 fixation rates in leaves and intact chloroplasts of spinach measured at 18°–20° C are substantially decreased by pretreatment at temperatures exceeding 20° C. Mild heating which causes 80% inhibition of CO2 fixation does not affect phosphoglyceroacid reduction and causes increases in the ATP/ADP ratio and the light-induced transthylakoid proton gradient. The inactivation of the CO2 fixation is completely reversible with half-times of recovery in the order of 15–20 min. Comparison of steady-state patterns of 14C labeled Calvin cycle intermediates of heat-treated and control samples reveals a large increase in the ribulose-1,5-bisphosphate/phosphoglyceroacid ratio and a large decrease in the phosphoglyceroacid/triosephosphate ratio. It is concluded that inactivation of CO2 fixation occurring at elevated temperatures is caused by inhibition of the ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39). Measurements of light-induced light scattering changes of thylakoids and of the light-induced electrochromic absorption shift show that these signals are affected by mild heating in a way which is strictly correlated with the inactivation of the CO2 fixation. It is proposed that the function of the ribulose-1,5-bisphosphate carboxylase in vivo requires a form of activation that involves properties of the thylakoid membrane which are affected by the heat treatment. The fact that these changes in thylakoid membrane properties and of ribulose-1,5-bisphosphate carboxylase activity are already affected at elevated temperatures which can still be considered physiological, and the reversible nature of these changes, suggest that they may play a role in temperature regulation of the overall photosynthetic process.Abbreviations 9-AA 9-aminoacridine - DMO 5,5-dimethyloxazolidine-2,4-dione - FBP fructose-1,6-bisphosphate - HEPES N-2-hydroxyethylpiperazine N-2-ethane sulfonic acid - HMP hexose monophosphates - PGA 3-phosphoglycerate - PMP pentose monophosphates - RuBP ribulose-1,5-bisphosphate - SBP seduheptulose-1,7-bisphosphate - TP triose monophosphates  相似文献   

14.
Light was not essential for the development of ribulose-1,5-diphosphate carboxylase protein or catalytic activity in the photosynthetic cotyledons of germinating castor beans (Ricinus communis). Cotyledons developing in the dark showed higher activity than those in the light. Returning cotyledons developing in the light to darkness resulted in a significant increase in ribulose-1,5-diphosphate carboxylase activity compared to cotyledons in continuous light.  相似文献   

15.
In spite of only slightly subnormal pigment contents, two plastome mutants of Oenothera (Valpha, Isigma) were practically incapable of photosynthetic CO2 fixation and another one exhibited considerably reduced photosynthesis (IVbeta). While other photosynthetic enzymes were present as far as investigated, ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) activity was very low or missing altogether. As shown by gel electrophoresis, mutant IVbeta contained some, though little, fraction I protein. In the other two mutants fraction I protein could not be detected. Also, neither the small nor the large subunit of ribulose-1,5-biphosphate carboxylase could be found in these mutants. In immunodiffusion experiments with a monospecific antiserum against rye ribulose-1,5-bisphosphate carboxylase, only extracts from wild-type Oenothera produced visible precipitation lines. Still, the presence of very low levels of immunochemically reactive antigen was indicated for all three mutants. The highest level was observed in mutant IVbeta. The behaviour of the mutant extracts suggested that the antigens of mutant and wild type leaves reacting with the antiserum were not identical. All mutants appeared to have a coupled electron transport system as shown by ATP measurements, light scattering and 515 nm absorption changes. Linear electron transport was possible in the mutants. Still, the photoresponse of cytochrome f and fluorescence measurements suggested altered electron transport properties in the mutants. These are interpreted to be secondary lesions of the photosynthetic apparatus caused by primary deficiency in ribulose-1,5-bisphosphate carboxylase activity. From the absence in two mutants (Valpha, Isigna) of the small subunit of ribulose-1,5-bisphosphate carboxylase, which is known to be coded for by nuclear DNA and to be synthesized on cytoplasmic ribosomes, it appears that the genetic system of the plastids is capable of interfering with the genome-controlled synthesis of plastid components.  相似文献   

16.
The C4 dicot Flaveria bidentis was genetically transformed with an antisense RNA construct targeted to the nuclear-encoded gene for the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; RbcS). RbcS mRNA levels in leaves of transformants were reduced by as much as 80% compared to wild-type levels, and extractable enzyme activity was reduced by up to 85%. There was no significant effect of transformation with the gene construct on levels of other photosynthetic enzymes. Antisense transformants with reduced Rubisco activity exhibited a stunted phenotype. Rates of photosynthesis were reduced in air at high light and over a range of CO2 concentrations but were unaffected at low light. From these results we conclude that, as is the case in C3 plants, Rubisco activity is a major determinant of photosynthetic flux in C4 plants under high light intensities and air levels of CO2.  相似文献   

17.
This study was undertaken to examine the dependence of the regulatory enzymes of photosynthetic induction on photon flux density (PFD) exposure in soybean (Glycine max L.). The induction state varies as a function of both the magnitude and duration of the PFD levels experienced prior to an increase in PFD. The photosynthetic induction state results from the combined activity of separate processes that each in turn depend on prior PFD environment in different ways. Direct measurement of enzyme activities coupled with determination of in situ metabolite pool sizes indicated that the fast-induction component was associated with the activation state of stromal fructose-1,6-bisphosphatase (FBPase, EC 3.1.3.11) and showed rapid deactivation in the dark and at low PFD. The fast-induction component was activated at low PFD levels, around 70 [mu]mol photons m-2 s-1. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 2.7.1.19) deactivated very slowly in the dark and required higher PFD for activation. Both enzymes saturated at lower PFD than did photosynthesis, around 400 [mu]mol photons m-2 s-1. Ribulose-5-phosphate kinase (EC 2.7.1.19) appeared never to be limiting to photosynthesis, and saturated at much lower PFD than either FBPase or Rubisco. Determination of photosynthetic metabolite pool sizes from leaves at different positions within a soybean canopy showed a limitation to carbon uptake at the stromal FBPase and possibly the sedoheptulose-1,7-bisphosphatase (EC 3.1.3.37) in shade leaves upon initial illumination at saturating PFD levels.  相似文献   

18.
Summary Antimycin A did not induce carotenogenesis in dark grown cultures of V. agaricinum, but total protein was increased. In light, antimycin A did not affect total carotenoids, although protein was slightly increased. The results suggest that antimycin A could not have acted here as an inducer for the synthesis of specific carotenogenic enzymes or by inactivating a repressor as has been suggested for certain bacteria.  相似文献   

19.
We have recently described the existence of two sets of genes encoding ribulose-1,5-bisphosphate carboxylase/oxygenase (Rbu-P2 carboxylase), rbcA-rbcB and rbcL-rbcS, in the photosynthetic purple sulfur bacterium Chromatium vinosum (Viale, A.M., Kobayashi, H., and Akazawa, T. (1989) J. Bacteriol. 171, 2391-2400). These genes were cloned in plasmid vectors, and their expression was studied in Escherichia coli. Expression of rbcA-rbcB in E. coli was obtained under the control of its own promoter. On the other hand, expression of rbcL-rbcS in this host was not observed unless these genes were cloned under the control of the tac promoter. Purified rbcA-rbcB and rbcL-rbcS products from E. coli consisted of large and small subunits in equimolar ratios. They also showed very close elution profiles to Rbu-P2 carboxylase isolated from C. vinosum in size-exclusion chromatography columns, thus suggesting hexadecameric (L8S8) structures. Vmax of Rbu-P2 carboxylase were very similar for both enzymes, but the Km values for CO2 and ribulose 1,5-bisphosphate showed some differences. Immunochemical and N-terminal amino acid sequence analyses of the large and small subunits encoded by rbcA-rbcB and rbcL-rbcS also differed, especially at the level of the small subunits. The comparisons described above as well as the analysis of C. vinosum crude extracts by anion-exchange chromatography indicated that Rbu-P2 carboxylase encoded by rbcA-rbcB was the only species detected in the photosynthetic bacterium.  相似文献   

20.
Alocasia (Alocasia macrorrhiza [L.] G. Don) and soybean (Glycine max [L.]) were grown under high or low photon flux density (PFD) conditions to achieve a range of photosynthetic capacities and light-adaptation modes. The CO2 assimilation rate and in vivo linear electron transport rate (Jf) were determined over a range of PFDs and under saturating 1-s-duration lightflecks applied at a range of frequencies. At the same mean PFD, the assimilation rate and the Jf were lower under the lightfleck regimes than under constant light. The activation state of two, key enzymes of the photosynthetic carbon reduction cycle pathway, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and fructose-1,6-bisphosphatase, and the photosynthetic induction states (ISs) were also found to be lower under flashing as compared to continuous PFD. Under all conditions, the IS measured 120 s after an increase in PFD to constant and saturating values was highly correlated with the Rubisco activation state and stomatal conductances established in the light regime before the increase. Both the fructose-1,6-bisphosphatase and Rubisco activities established in a particular light regime were highly correlated with the mean Jf in that regime. The relationships between enzyme activation state and Jf and between IS and enzyme activation state were similar in soybean and Alocasia and were not affected either by growth-light regime, and hence photosynthetic capacity, or by flashing versus constant PFD. The common relationship between the linear Jf and the activation state of key enzymes suggests that electron transport may be the determinant of the signal regulating IS, at least to the extent that the IS is controlled by the activation state of key stromal enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号