首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
? Premise of study: To reliably identify lineages below the species level such as subspecies or varieties, we propose an extension to DNA-barcoding using next-generation sequencing to produce whole organellar genomes and substantial nuclear ribosomal sequence. Because this method uses much longer versions of the traditional DNA-barcoding loci in the plastid and ribosomal DNA, we call our approach ultra-barcoding (UBC). ? Methods: We used high-throughput next-generation sequencing to scan the genome and generate reliable sequence of high copy number regions. Using this method, we examined whole plastid genomes as well as nearly 6000 bases of nuclear ribosomal DNA sequences for nine genotypes of Theobroma cacao and an individual of the related species T. grandiflorum, as well as an additional publicly available whole plastid genome of T. cacao. ? Key results: All individuals of T. cacao examined were uniquely distinguished, and evidence of reticulation and gene flow was observed. Sequence variation was observed in some of the canonical barcoding regions between species, but other regions of the chloroplast were more variable both within species and between species, as were ribosomal spacers. Furthermore, no single region provides the level of data available using the complete plastid genome and rDNA. ? Conclusions: Our data demonstrate that UBC is a viable, increasingly cost-effective approach for reliably distinguishing varieties and even individual genotypes of T. cacao. This approach shows great promise for applications where very closely related or interbreeding taxa must be distinguished.  相似文献   

2.
Nuclear genomes of eukaryotes are bombarded by a continuous deluge of organellar DNA which contributes significantly to eukaryote evolution. Here, we present a new PCR-based method that allows the specific amplification of nuclear integrants of organellar DNA (norgs) by exploiting recent deletions present in organellar genome sequences. We have used this method to amplify nuclear integrants of plastid DNA (nupts) from the nuclear genomes of several nicotiana species and to study the evolutionary forces acting upon these sequences. The role of nupts in endosymbiotic evolution and the different genetic factors influencing the time available for a chloroplastic gene to be functionally relocated in the nucleus are discussed.  相似文献   

3.
The transfer and integration of tRNA genes from organellar genomes to the nuclear genome and between organellar genomes occur extensively in flowering plants. The routes of the genetic materials flowing from one genome to another are biased, limited largely by compatibility of DNA replication and repair systems differing among the organelles and nucleus. After thoroughly surveying the tRNA gene transfer among organellar genomes and the nuclear genome of a domesticated rice (Oryza sativa L. ssp. indica), we found that (i) 15 mitochondrial tRNA genes originate from the plastid; (ii) 43 and 80 nuclear tRNA genes are mitochondrion-like and plastid-like, respectively; and (iii) 32 nuclear tRNA genes have both mitochondrial and plastid counterparts. Besides the native (or genuine) tRNA gene sets, the nuclear genome contains organelle-like tRNA genes that make up a complete set of tRNA species capable of transferring all amino acids. More than 97% of these organelle-like nuclear tRNA genes flank organelle-like sequences over 20 bp. Nearly 40% of them colocalize with two or more other organelle-like tRNA genes. Twelve of the 15 plastid-like mitochondrial tRNA genes possess 5′- and 3′-flanking sequences over 20 bp, and they are highly similar to their plastid counterparts. Phylogenetic analyses of the migrated tRNA genes and their original copies suggest that intergenomic tRNA gene transfer is an ongoing process with noticeable discriminatory routes among genomes in flowering plants. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. Reviewing Editor: Dr. David Guttman  相似文献   

4.
Date palm is a very important crop in western Asia and northern Africa, and it is the oldest domesticated fruit tree with archaeological records dating back 5000 years. The huge economic value of this crop has generated considerable interest in breeding programs to enhance production of dates. One of the major limitations of these efforts is the uncertainty regarding the number of date palm cultivars, which are currently based on fruit shape, size, color, and taste. Whole mitochondrial and plastid genome sequences were utilized to examine single nucleotide polymorphisms (SNPs) of date palms to evaluate the efficacy of this approach for molecular characterization of cultivars. Mitochondrial and plastid genomes of nine Saudi Arabian cultivars were sequenced. For each species about 60 million 100 bp paired-end reads were generated from total genomic DNA using the Illumina HiSeq 2000 platform. For each cultivar, sequences were aligned separately to the published date palm plastid and mitochondrial reference genomes, and SNPs were identified. The results identified cultivar-specific SNPs for eight of the nine cultivars. Two previous SNP analyses of mitochondrial and plastid genomes identified substantial intra-cultivar ( = intra-varietal) polymorphisms in organellar genomes but these studies did not properly take into account the fact that nearly half of the plastid genome has been integrated into the mitochondrial genome. Filtering all sequencing reads that mapped to both organellar genomes nearly eliminated mitochondrial heteroplasmy but all plastid SNPs remained heteroplasmic. This investigation provides valuable insights into how to deal with interorganellar DNA transfer in performing SNP analyses from total genomic DNA. The results confirm recent suggestions that plastid heteroplasmy is much more common than previously thought. Finally, low levels of sequence variation in plastid and mitochondrial genomes argue for using nuclear SNPs for molecular characterization of date palm cultivars.  相似文献   

5.
Background and Aims Some plant groups, especially on islands, have been shaped by strong ancestral bottlenecks and rapid, recent radiation of phenotypic characters. Single molecular markers are often not informative enough for phylogenetic reconstruction in such plant groups. Whole plastid genomes and nuclear ribosomal DNA (nrDNA) are viewed by many researchers as sources of information for phylogenetic reconstruction of groups in which expected levels of divergence in standard markers are low. Here we evaluate the usefulness of these data types to resolve phylogenetic relationships among closely related Diospyros species.Methods Twenty-two closely related Diospyros species from New Caledonia were investigated using whole plastid genomes and nrDNA data from low-coverage next-generation sequencing (NGS). Phylogenetic trees were inferred using maximum parsimony, maximum likelihood and Bayesian inference on separate plastid and nrDNA and combined matrices.Key Results The plastid and nrDNA sequences were, singly and together, unable to provide well supported phylogenetic relationships among the closely related New Caledonian Diospyros species. In the nrDNA, a 6-fold greater percentage of parsimony-informative characters compared with plastid DNA was found, but the total number of informative sites was greater for the much larger plastid DNA genomes. Combining the plastid and nuclear data improved resolution. Plastid results showed a trend towards geographical clustering of accessions rather than following taxonomic species.Conclusions In plant groups in which multiple plastid markers are not sufficiently informative, an investigation at the level of the entire plastid genome may also not be sufficient for detailed phylogenetic reconstruction. Sequencing of complete plastid genomes and nrDNA repeats seems to clarify some relationships among the New Caledonian Diospyros species, but the higher percentage of parsimony-informative characters in nrDNA compared with plastid DNA did not help to resolve the phylogenetic tree because the total number of variable sites was much lower than in the entire plastid genome. The geographical clustering of the individuals against a background of overall low sequence divergence could indicate transfer of plastid genomes due to hybridization and introgression following secondary contact.  相似文献   

6.
? Premise of the study: Genome survey sequences (GSS) from massively parallel sequencing have potential to provide large, cost-effective data sets for phylogenetic inference, replace single gene or spacer regions as DNA barcodes, and provide a plethora of data for other comparative molecular evolution studies. Here we report on the application of this method to estimating the molecular phylogeny of core Asparagales, investigating plastid gene losses, assembling complete plastid genomes, and determining the type and quality of assembled genomic data attainable from Illumina 80-120-bp reads. ? Methods: We sequenced total genomic DNA from samples in two lineages of monocotyledonous plants, Poaceae and Asparagales, on the Illumina platform in a multiplex arrangement. We compared reference-based assemblies to de novo contigs, evaluated consistency of assemblies resulting from use of various references sequences, and assessed our methods to obtain sequence assemblies in nonmodel taxa. ? Key results: Our method returned reliable, robust organellar and nrDNA sequences in a variety of plant lineages. High quality assemblies are not dependent on genome size, amount of plastid present in the total genomic DNA template, or relatedness of available reference sequences for assembly. Phylogenetic results revealed familial and subfamilial relationships within Asparagales with high bootstrap support, although placement of the monotypic genus Aphyllanthes was placed with moderate confidence. ? Conclusions: The well-supported molecular phylogeny provides evidence for delineation of subfamilies within core Asparagales. With advances in technology and bioinformatics tools, the use of massively parallel sequencing will continue to become easier and more affordable for phylogenomic and molecular evolutionary biology investigations.  相似文献   

7.
A decade of progress in plant molecular phylogenetics   总被引:8,自引:0,他引:8  
Over the past decade, botanists have produced several thousand phylogenetic analyses based on molecular data, with particular emphasis on sequencing rbcL, the plastid gene encoding the large subunit of Rubisco (ribulose bisphosphate carboxylase). Because phylogenetic trees retrieved from the three plant genomes (plastid, nuclear and mitochondrial) have been highly congruent, the ‘Angiosperm Phylogeny Group’ has used these DNA-based phylogenetic trees to reclassify all families of flowering plants. However, in addition to taxonomy, these major phylogenetic efforts have also helped to define strategies to reconstruct the ‘tree of life’, and have revealed the size of the ancestral plant genome, uncovered potential candidates for the ancestral flower, identified molecular living fossils, and linked the rate of neutral substitutions with species diversity. With an increased interest in DNA sequencing programmes in non-model organisms, the next decade will hopefully see these phylogenetic findings integrated into new genetic syntheses, from genomes to taxa.  相似文献   

8.
This is the first de novo assembly and annotation of a complete mitochondrial genome in the Ericales order from the American cranberry (Vaccinium macrocarpon Ait.). Moreover, only four complete Asterid mitochondrial genomes have been made publicly available. The cranberry mitochondrial genome was assembled and reconstructed from whole genome 454 Roche GS-FLX and Illumina shotgun sequences. Compared with other Asterids, the reconstruction of the genome revealed an average size mitochondrion (459,678 nt) with relatively little repetitive sequences and DNA of plastid origin. The complete mitochondrial genome of cranberry was annotated obtaining a total of 34 genes classified based on their putative function, plus three ribosomal RNAs, and 17 transfer RNAs. Maternal organellar cranberry inheritance was inferred by analyzing gene variation in the cranberry mitochondria and plastid genomes. The annotation of cranberry mitochondrial genome revealed the presence of two copies of tRNA-Sec and a selenocysteine insertion sequence (SECIS) element which were lost in plants during evolution. This is the first report of a land plant possessing selenocysteine insertion machinery at the sequence level.  相似文献   

9.
Reconstructing a tree of life by inferring evolutionary history is an important focus of evolutionary biology. Phylogenetic reconstructions also provide useful information for a range of scientific disciplines such as botany, zoology, phylogeography, archaeology and biological anthropology. Until the development of protein and DNA sequencing techniques in the 1960s and 1970s, phylogenetic reconstructions were based on fossil records and comparative morphological/physiological analyses. Since then, progress in molecular phylogenetics has compensated for some of the shortcomings of phenotype-based comparisons. Comparisons at the molecular level increase the accuracy of phylogenetic inference because there is no environmental influence on DNA/peptide sequences and evaluation of sequence similarity is not subjective. While the number of morphological/physiological characters that are sufficiently conserved for phylogenetic inference is limited, molecular data provide a large number of datapoints and enable comparisons from diverse taxa. Over the last 20 years, developments in molecular phylogenetics have greatly contributed to our understanding of plant evolutionary relationships. Regions in the plant nuclear and organellar genomes that are optimal for phylogenetic inference have been determined and recent advances in DNA sequencing techniques have enabled comparisons at the whole genome level. Sequences from the nuclear and organellar genomes of thousands of plant species are readily available in public databases, enabling researchers without access to molecular biology tools to investigate phylogenetic relationships by sequence comparisons using the appropriate nucleotide substitution models and tree building algorithms. In the present review, the statistical models and algorithms used to reconstruct phylogenetic trees are introduced and advances in the exploration and utilization of plant genomes for molecular phylogenetic analyses are discussed.  相似文献   

10.
A bacterial artificial chromosome (BAC) library has been established for Arabidopsis thaliana (ecotype Col-0) covering about seven haploid nuclear genome equivalents. This library, called the Institut für Genbiologische Forschung (IGF) BAC library, consists of 10?752 recombinant clones carrying inserts (generated by partial EcoRI digestion) of an average size of about 100?kb in a modified BAC vector, pBeloBAC-Kan. Hybridization with organellar DNA and nuclear repetitive DNA elements revealed the presence of 1.1% clones with mitochondrial DNA, 0.2% clones with plastid DNA, 3.2% clones with the 180?bp paracentromeric repeat, 1.6% clones with 5S rDNA, and 10.8% clones with the 18S-25S rDNA repeat. With its extensive genome coverage, its rather uniformly sized inserts (80?kb?<85% <120?kb) and low contamination with organellar DNA, this library provides an excellent resource for A. thaliana genomic mapping, map-based gene cloning, and genome sequencing.  相似文献   

11.
Genomic variations represent the molecular basis of the biodiversity of living organisms on which selection operates to generate evolution. In eukaryotes, genomic variability can be experienced in both nuclear and organellar, i.e. mitochondrial and plastid (where present), genomes, which can follow completely different evolution pathways, as revealed by comparative genomics analyses. In Metazoa, for which a substantial number of complete genome sequences are available (nuclear, but mainly mitochondrial), we are just starting to grasp the selective pressures operating on some basic features of the genome as a whole. In this brief review, we discuss the variability of the mitochondrial metazoan genome, with particular reference to mitochondrial DNA in mammals. In light of the recent assumption that a small segment of mitochondrial DNA may be used, particularly in Metazoa, as a species marker, some data on mitochondrial gene variability at the inter-species/intra-species boundary are reported. Intra-species variability has been evaluated in four mammalian species, Homo sapiens, Bos taurus, Sus scrofa and Canis familiaris, whereas the relationship between intra- and inter-species variability has been investigated in Bos taurus and Bos indicus.  相似文献   

12.
The complete plastid genome sequence of the American cranberry (Vaccinium macrocarpon Ait.) was reconstructed using next-generation sequencing data by in silico procedures. We used Roche 454 shotgun sequence data to isolate cranberry plastid-specific sequences of “HyRed” via homology comparisons with complete sequences from several species available at the National Center for Biotechnology Information database. Eleven cranberry plastid contigs were selected for the construction of the plastid genome-based homologies and on raw reads flowing through contigs and connection information. We assembled and annotated a cranberry plastid genome (82,284 reads; 185x coverage) with a length of 176 kb and the typical structure found in plants, but with several structural rearrangements in the large single-copy region when compared to other plastid asterid genomes. To evaluate the reliability of the sequence data, phylogenetic analysis of 30 species outside the order Ericales (with 54 genes) showed Vaccinium inside the clade Asteridae, as reported in other studies using single genes. The cranberry plastid genome sequence will allow the accumulation of critical data useful for breeding and a suite of other genetic studies.  相似文献   

13.

Background

Cellular organelles with genomes of their own (e.g. plastids and mitochondria) can pass genetic sequences to other organellar genomes within the cell in many species across the eukaryote phylogeny. The extent of the occurrence of these organellar-derived inserted sequences (odins) is still unknown, but if not accounted for in genomic and phylogenetic studies, they can be a source of error. However, if correctly identified, these inserted sequences can be used for evolutionary and comparative genomic studies. Although such insertions can be detected using various laboratory and bioinformatic strategies, there is currently no straightforward way to apply them as a standard organellar genome assembly on next-generation sequencing data. Furthermore, most current methods for identification of such insertions are unsuitable for use on non-model organisms or ancient DNA datasets.

Results

We present a bioinformatic method that uses phasing algorithms to reconstruct both source and inserted organelle sequences. The method was tested in different shotgun and organellar-enriched DNA high-throughput sequencing (HTS) datasets from ancient and modern samples. Specifically, we used datasets from lions (Panthera leo ssp. and Panthera leo leo) to characterize insertions from mitochondrial origin, and from common grapevine (Vitis vinifera) and bugle (Ajuga reptans) to characterize insertions derived from plastid genomes. Comparison of the results against other available organelle genome assembly methods demonstrated that our new method provides an improvement in the sequence assembly.

Conclusion

Using datasets from a wide range of species and different levels of complexity we showed that our novel bioinformatic method based on phasing algorithms can be used to achieve the next two goals: i) reference-guided assembly of chloroplast/mitochondrial genomes from HTS data and ii) identification and simultaneous assembly of odins. This method represents the first application of haplotype phasing for automatic detection of odins and reference-based organellar genome assembly.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0682-1) contains supplementary material, which is available to authorized users.  相似文献   

14.
Summary The tobacco (Nicotiana tabacum) nuclear genome contains long tracts of DNA (i.e. in excess of 18 kb) with high sequence homology to the tobacco plastid genome. Five lambda clones containing these nuclear DNA sequences encompass more than one-third of the tobacco plastid genome. The absolute size of these five integrants is unknown but potentially includes uninterrupted sequences that are as large as the plastid genome itself. An additional sequence was cloned consisting of both nuclear and plastid-derived DNA sequences. The nuclear component of the clone is part of a family of repeats, which are present in about 400 locations in the nuclear genome. The homologous sequences present in chromosomal DNA were very similar to those of the corresponding sequences in the plastid genome. However significant sequence divergence, including base substitutions, insertions and deletions of up to 41 bp, was observed between these nuclear sequences and the plastid genome. Associated with the larger deletions were sequence motifs suggesting that processes such as DNA replication slippage and excision of hairpin loops may have been involved in deletion formation.  相似文献   

15.
16.
Inserts of DNA from extranuclear sources, such as organelles and microbes, are common in eukaryote nuclear genomes. However, sequence similarity between the nuclear and extranuclear DNA, and a history of multiple insertions, make the assembly of these regions challenging. Consequently, the number, sequence and location of these vagrant DNAs cannot be reliably inferred from the genome assemblies of most organisms. We introduce two statistical methods to estimate the abundance of nuclear inserts even in the absence of a nuclear genome assembly. The first (intercept method) only requires low-coverage (<1×) sequencing data, as commonly generated for population studies of organellar and ribosomal DNAs. The second method additionally requires that a subset of the individuals carry extranuclear DNA with diverged genotypes. We validated our intercept method using simulations and by re-estimating the frequency of human NUMTs (nuclear mitochondrial inserts). We then applied it to the grasshopper Podisma pedestris, exceptional for both its large genome size and reports of numerous NUMT inserts, estimating that NUMTs make up 0.056% of the nuclear genome, equivalent to >500 times the mitochondrial genome size. We also re-analysed a museomics data set of the parrot Psephotellus varius, obtaining an estimate of only 0.0043%, in line with reports from other species of bird. Our study demonstrates the utility of low-coverage high-throughput sequencing data for the quantification of nuclear vagrant DNAs. Beyond quantifying organellar inserts, these methods could also be used on endosymbiont-derived sequences. We provide an R implementation of our methods called “vagrantDNA” and code to simulate test data sets.  相似文献   

17.
Plant cells possess two more genomes besides the central nuclear genome: the mitochondrial genome and the chloroplast genome (or plastome). Compared to the gigantic nuclear genome, these organelle genomes are tiny and are present in high copy number. These genomes are less prone to recombination and, therefore, retain signatures of their age to a much better extent than their nuclear counterparts. Thus, they are valuable phylogenetic tools, giving useful information about the relative age and relatedness of the organisms possessing them. Unlike animal cells, mitochondrial genomes of plant cells are characterized by large size, extensive intramolecular recombination and low nucleotide substitution rates and are of limited phylogenetic utility. Chloroplast genomes, on the other hand, show resemblance to animal mitochondrial genomes in terms of phylogenetic utility and are more relevant and useful in case of plants. Conservation in gene order, content and lack of recombination make the plastome an attractive tool for plant phylogenetic studies. Their importance is reflected in the rapid increase in the availability of complete chloroplast genomes in the public databases. This review aims to summarize the progress in chloroplast genome research since its inception and tries to encompass all related aspects. Starting with a brief historical account, it gives a detailed account of the current status of chloroplast genome sequencing and touches upon RNA editing, ycfs, molecular phylogeny, DNA barcoding as well as gene transfer to the nucleus.  相似文献   

18.
A bacterial artificial chromosome (BAC) library has been established for Arabidopsis thaliana (ecotype Col-0) covering about seven haploid nuclear genome equivalents. This library, called the Institut für Genbiologische Forschung (IGF) BAC library, consists of 10 752 recombinant clones carrying inserts (generated by partial EcoRI digestion) of an average size of about 100 kb in a modified BAC vector, pBeloBAC-Kan. Hybridization with organellar DNA and nuclear repetitive DNA elements revealed the presence of 1.1% clones with mitochondrial DNA, 0.2% clones with plastid DNA, 3.2% clones with the 180 bp paracentromeric repeat, 1.6% clones with 5S rDNA, and 10.8% clones with the 18S-25S rDNA repeat. With its extensive genome coverage, its rather uniformly sized inserts (80 kb <85% <120 kb) and low contamination with organellar DNA, this library provides an excellent resource for A. thaliana genomic mapping, map-based gene cloning, and genome sequencing. Received: 26 November 1997 / Accepted: 19 February 1998  相似文献   

19.
Although the nuclear genome of banana (Musa spp.) is relatively small (1C approximately 610 Mbp for M. acuminata), the results obtained from other sequenced genomes suggest that more than half of the banana genome may be composed of repetitive and non-coding DNA sequences. Knowledge of repetitive DNA can facilitate mapping of important traits, phylogenetic studies, BAC-based physical mapping, and genome sequencing/annotation. However, only a few repetitive DNA sequences have been characterized in banana. In this work, we used DNA reassociation kinetics to isolate the highly repeated fraction of the banana genome (M. acuminata 'Calcutta 4'). Two libraries, one prepared from Cot 相似文献   

20.
Organelle genomics has become an increasingly important research field, with applications in molecular modeling, phylogeny, taxonomy, population genetics and biodiversity. Typically, research projects involve the determination and comparative analysis of complete mitochondrial and plastid genome sequences, either from closely related species or from a taxonomically broad range of organisms. Here, we describe two alternative organelle genome sequencing protocols. The "random genome sequencing" protocol is suited for the large majority of organelle genomes irrespective of their size. It involves DNA fragmentation by shearing (nebulization) and blunt-end cloning of the resulting fragments into pUC or BlueScript-type vectors. This protocol excels in randomness of clone libraries as well as in time and cost-effectiveness. The "long-PCR-based genome sequencing" protocol is specifically adapted for DNAs of low purity and quantity, and is particularly effective for small organelle genomes. Library construction by either protocol can be completed within 1 week.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号