首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
1. The release of S. muscae phage in veal infusion medium is correlated with lysis of the host. 2. The release of the bacterial virus in Fildes' synthetic medium occurs in a step-wise manner before observable lysis of the cells occurs. This result has been confirmed by both turbidimetric readings and direct microscopic examination of the infected cells.  相似文献   

2.
1. The addition of penicillin greatly increases the production of phage in bacterial suspensions containing 2.5 to 3.5 x 10(8) cells in 0.4 ml. broth plus 6.6 ml. Locke's solution. 2. Addition of niacin also greatly increases the formation of phage in the above system without the addition of penicillin. 3. The results indicate that niacin is necessary for phage production and that bacteria cannot utilize niacin in the presence of penicillin. 4. Staphylococcus muscae will grow in the synthetic medium of Fildes but do not form phage unless broth or yeast extract is added. 5. Phage formation requires the presence of one or more factors, besides niacin, present in broth and yeast extract which are not essential for bacterial growth. Penicillin does not prevent the utilization of the unknown substance or substances by the bacteria. 6. A solution containing biotin, guanine, adenine, beta-alanine, riboflavin, uracil, pyridoxamine, guanylic acid, adenylic acid, yeast nucleic acid, choline, p-aminobenzoic acid, a flavin component from liver, ribose, thymine, xanthine, folic acid, inositol, p-aminophenyl alanine, pantothentic acid and a strepogenin concentrate cannot replace broth or yeast extraction in increasing phage formation in the synthetic medium of Fildes. 7. The results indicate there is a continual competition between the bacteria and phage for certain essential building elements. 8. The results are discussed in relation to possible methods of control of virus diseases.  相似文献   

3.
A well characterized histidine kinase purified from yeast has been shown to phosphorylate histone H4 on a histidine residue. This enzyme is unlike the two-component histidine kinases predominantly found in prokaryotes. Until now, a histidine kinase similar to this yeast enzyme has not been purified from a mammalian source. By using a purification scheme similar to that used to purify the yeast histidine kinase, a protein fraction with histone H4 kinase activity has been isolated from porcine thymus. The yeast histidine kinase was shown to be detectable using an in-gel kinase assay system and using this system, four major bands of histone H4 kinase activity were apparent in the porcine thymus preparation. Through the use of immunoprecipitation, alkaline hydrolysis and subsequent phosphoamino acid analysis it has been demonstrated that this partially purified kinase fraction is capable of phosphorylating histone H4 on histidine. In conclusion, an preparation has been made from porcine thymus that contains histone H4 kinase activity and at least one of the kinases present in this preparation is a histidine kinase.  相似文献   

4.
A maize root fraction which inactivates nitrate reductase has been shown to have protease activity which can be measured by the hydrolysis of azocasein. This inactivating enzyme was also found to inactivate yeast tryptophan synthase. Yeast proteases A and B, which inactivate this latter enzyme, also gave a specific inactivation of the maize nitrate reductase. The maize root inactivating enzyme, like yeast protease B, degraded casein, and was inhibited by phenylmethylsulphonyl fluoride. A partially-purified yeast inhibitor prevented catalysis by the yeast proteases and maize root inactivating enzyme, but purified yeast inhibitors were without effect on the latter protein. The level of nitrate reductase-inactivating activity, and associated azocasein-degrading activity, increased with age of the maize root. Evidence was obtained for a heat stable inhibitor which maintained them in an inactive state, especially in the young root tip cells.  相似文献   

5.
Oolong tea extract (OTE) was found to inhibit the water-insoluble glucan-synthesizing enzyme, glucosyltransferase I (GTase-I), of Streptococcus sobrinus 6715. The GTase-inhibitory substance in the OTE was purified successive adsorption chromatography on Diaion HP-21 and HP-20 columns; this was followed by further purification by Sephadex LH-20 column chromatography. A major fraction that inhibited GTase activity (fraction OTF10) was obtained, and the chemical analysis of OTF10 indicated that it was a novel polymeric polyphenol compound that had a molecular weight of approximately 2,000 and differed from other tea polyphenols. Catechins and all other low-molecular-weight polyphenols except theaflavin derived from balck tea did not show significant GTase-inhibitory activities. It was found that OTE amd PTF10 markedly inhibit GTase-I and yeast alpha-glucosidase, but not salivary alpha-amylase. Various GTases purified from S. sobrinus and Streptococcus mutans were examined for inhibition by OTE and OTF10. It was determined that S. sobrinus GTase-I and S. mutans cell-free GTase synthesizing water-soluble glucan were most susceptible to the inhibitory action of OTF10, while S. sobrinus GTase-Sa and S. mutans cell-associated GTase were moderately inhibited; no inhibition of S. sobrinus GTase-Sb was observed. Inhibition of a specific GTase or specific GTases of mutants streptococci resulted in decreased adherence of the growing cells of these organisms. The inhibitory effect of OTF10 on cellular adherence was significantly stronger than that of OTE.  相似文献   

6.
7.
Antibodies prepared against a homogeneous preparation of Co-eIF-2A20 [Ahmad et al. (1985) J. Biol. Chem. 260, 6955-6959] reacted with several polypeptides including an 80-kDa polypeptide present in a crude yeast ribosomal salt wash. This 80-kDa polypeptide, containing Co-eIF-2A (Co-eIF-2A80) activity, has been extensively purified using a two-step purification procedure involving an immunoaffinity column chromatograph prepared using antibodies against Co-eIF-2A20 (fraction II) and hydroxyapatite chromatography (fraction III). The factors, eIF-2 + homogeneous Co-eIF-2A80 (fraction III) promoted Met-tRNAf.40S complex formation with an AUG codon but not with a physiological mRNA or a polyribonucleotide messenger poly(U,G) whereas eIF-2 + a partially purified Co-eIF-2A80 preparation (fraction II) promoted Met-tRNAf.40S complex formation with an AUG codon as well as with globin mRNA and poly(U,G) messenger. This factor-promoted Met-tRNAf binding to 40S ribosomes depends absolutely on the presence of a polyribonucleotide messenger containing an initiation codon (such as AUG or GUG). Other polyribonucleotide messengers tested, such as poly(U), poly(A) and poly(A,C) were completely ineffective in this binding reaction. This result indicates that the Met-tRNAf.40S.mRNA complex is formed by a direct interaction between Met-tRNAf, 40S ribosomes and the initiation site in mRNA. A mechanism has been proposed for Met-tRNAf.40S.mRNA complex formation in yeast.  相似文献   

8.
A ribonucleic acid (RNA)-dependent RNA polymerase was induced in chick embryo fibroblast cells after infection with Sendai virus (parainfluenza 1 virus). The enzyme was associated with the microsomal fraction of infected cells and reached maximum detectable activity at 18 hr after virus infection. The activity of the enzyme in vitro was dependent on the presence of added magnesium ions and all four nucleoside triphosphates and was not inhibited by actinomycin D. The RNA synthesized by the enzyme in vitro was sensitive to ribonuclease and consisted of a complex mixture of RNA species including 34S, 24S, and 18S components. Similar RNA components were detected in the microsomal fraction of Sendai virus-infected cells by labeling with (3)H-uridine from 17 to 18 hr postinfection in the presence of actinomycin D. Of the RNA synthesized by Sendai virus-induced RNA polymerase in vitro, 98% became insensitive to ribonuclease after annealing with RNA extracted from purified Sendai virus particles.  相似文献   

9.
1. A factor necessary for the formation, of Staphylococcus muscae phage was found in acid digests of many highly purified proteins. 2. The factor is released from egg albumen and pepsin by peptic digestion. 3. No amino acids tried could replace the acid digests of proteins as a source of the factor. 4. The factor, when added to a multiplying bacteria-phage system, cannot be found in purified phage or in the lysate after complete lysis of the system has taken place.  相似文献   

10.
Two recombinant baculoviruses that express the alpha and beta subunits of Drosophila melanogaster casein kinase II, respectively, have been constructed. The expressed proteins are similar to the authentic Drosophila subunits in size and are recognized by antisera raised against the Drosophila holoenzyme. Extracts derived from cells infected with the alpha subunit-expressing virus display elevated casein kinase II activity in vitro. This activity is markedly enhanced in extracts of cells infected with both viruses, or when alpha and beta subunit-containing extracts are mixed in vitro following lysis. Recombinant holoenzyme and the alpha subunit were purified to near homogeneity using phosphocellulose column chromatography. The specific activity of the purified recombinant holoenzyme was very similar to that of the native enzyme, and was fivefold higher than that of the purified free alpha subunit. The Stokes radius of the recombinant holoenzyme was estimated to be 50 A, a value similar to that reported for the native enzyme, whereas the alpha subunit demonstrated a Stokes radius of 26.5 A. Studies using sucrose density gradient centrifugation showed that, under conditions of high ionic strength, the quaternary structure of the purified holoenzyme was tetrameric (like the native enzyme), whereas the structure of the alpha subunit was monomeric. At lower ionic strength the recombinant holoenzyme had a significantly higher sedimentation coefficient, characteristic of the formation of filaments found for the native enzyme. Interestingly, the purified catalytic subunit also displayed a higher S value under conditions of low ionic strength, revealing the formation of alpha subunit aggregates.  相似文献   

11.
In contrast with previous results that indicate that Saccharomyces cerevisiae fructose-1,6-bisphosphatase is a dimer of 56,000 molecular weight subunits, we find that the subunit Mr of the enzyme purified from baker's yeast is 40,000. The same subunit Mr was observed in immunoprecipitates of crude supernatants of baker's yeast and S. cerevisiae cultures, as well as in acid-extracts of cells detected by immunoblotting, suggesting that the native subunit indeed has a Mr of 40,000 and it has not been produced from a larger polypeptide. Complete immunoprecipitation of fructose-1,6-bisphosphatase activity with saturating concentrations of specific antibody suggests that there is only one fructose-1,6-bisphosphatase isozyme in S. cerevisiae. The Mr of the purified enzyme determined by size exclusion HPLC suggests that it has a tetrameric structure characteristic of fructose-1,6-bisphosphatases from a broad phylogenetic spectrum.  相似文献   

12.
(24S)-Hydroxycholesterol is formed from cholesterol in the brain and is important for cholesterol homeostasis in this organ. Elimination of (24S)-hydroxycholesterol has been suggested to occur in the liver but little is known about the metabolism of this oxysterol. In the present investigation, we report formation of 7alpha, 24-dihydroxycholesterol in pig and human liver. 7alpha-hydroxylase activity toward both isomers of 24-hydroxycholesterol [(24S) and (24R)] was found in a partially purified and reconstituted cholesterol 7alpha-hydroxylase (CYP7A) enzyme fraction from pig liver microsomes. In contrast, a purified enzyme fraction of pig liver oxysterol 7alpha-hydroxylase with high activity toward 27-hydroxycholesterol did not show any detectable activity toward 24-hydroxycholesterol. 7alpha-Hydroxylation of 24-hydroxycholesterol was strongly inhibited by 7-oxocholesterol, a known inhibitor of CYP7A. Human CYP7A, recombinantly expressed in Escherichia coli and in simian COS cells, showed 7alpha-hydroxylase activity toward both cholesterol and the two isomers of 24-hydroxycholesterol, with a preference for the (24S)-isomer. Our results show that 24-hydroxycholesterol is metabolized by CYP7A, an enzyme previously considered to be specific for cholesterol and cholestanol and not active toward oxysterols. Because CYP7A is the rate-limiting enzyme in the major pathway of bile acid biosynthesis, the possibility is discussed that at least part of the 24-hydroxycholesterol is converted into 7alpha-hydroxylated bile acids by the enzymes involved in the normal biosynthesis of bile acids.  相似文献   

13.
1. A substance is present in autolyzed pepsin solutions which stimulates the release of phage by some strains of S. muscae when added to Fildes' synthetic medium. 2. The substance is assayed by determining the quantity necessary to increase the phage yield to one-half the maximum value, using the one-step growth curve technique. 3. The substance has been concentrated and partially purified (500-fold) by heavy metal precipitation, butyl alcohol extraction, and absorption on norit. 4. No known amino acid or accessory growth substance tested could replace this substance.  相似文献   

14.
The cytoplasm of vesicular stomatitis virus (VSV)-infected BHK cells has been separated into a fraction containing the membrane-bound polysomes and the remaining supernatant fraction. Total poly(A)-containing RNA was isolated from each fraction and purified. A 17S class of VSV mRNA was found associated almost exclusively with the membrane-bound polysomes, whereas 14,5S and 12S RNAs were found mostly in the postmembrane cytoplasmic supernatant. Poly(A)-containing VSV RNA synthesized in vitro by purified virus was resolved into the same size classes. The individual RNA fractions isolated from VSV-infected cells or synthesized in vitro were translated in cell-free extracts of wheat germ, and their polypeptide products were compared by sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis. The corresponding in vivo and in vitro RNA fractions qualitatively direct the synthesis of the same viral polypeptides and therefore appear to contain the same mRNA species. By tryptic peptide analysis of their translation products, the in vivo VSV mRNA species have been identified. The 17S RNA, which is compartmentalized on membrane-bound polysomes, codes for a protein of molecular weight 63,000 (P-63) which is most probably a nonglycosylated form of the viral glycoprotein, G. Of the viral RNA species present in the remaining cytoplasmic supernatant, the 14.5S RNA codes almost exclusively for the N protein, whereas the 12S RNA codes predominantly for both the NS and M proteins of the virion.  相似文献   

15.
The TOP3 gene of the yeast Saccharomyces cerevisiae was postulated to encode a DNA topoisomerase, based on its sequence homology to Escherichia coli DNA topoisomerase I and the suppression of the poor growth phenotype of top3 mutants by the expression of the E. coli enzyme (Wallis, J.W., Chrebet, G., Brodsky, G., Golfe, M., and Rothstein, R. (1989) Cell 58, 409-419). We have purified the yeast TOP3 gene product to near homogeneity as a 74-kDA protein from yeast cells lacking DNA topoisomerase I and overexpressing a plasmid-borne TOP3 gene linked to a phosphate-regulated yeast PHO5 gene promoter. The purified protein possesses a distinct DNA topoisomerase activity: similar to E. coli DNA topoisomerases I and III, it partially relaxes negatively but not positively supercoiled DNA. Several experiments, including the use of a negatively supercoiled heteroduplex DNA containing a 29-nucleotide single-stranded loop, indicate that the activity has a strong preference for single-stranded DNA. A protein-DNA covalent complex in which the 74-kDa protein is linked to a 5' DNA phosphoryl group has been identified, and the nucleotide sequences of 30 sites of DNA-protein covalent complex formation have been determined. These sequences differ from those recognized by E. coli DNA topoisomerase I but resemble those recognized by E. coli DNA topoisomerase III. Based on these results, the yeast TOP3 gene product can formally be termed S. cerevisiae DNA topoisomerase III. Analysis of supercoiling of intracellular yeast plasmids in various DNA topoisomerase mutants indicates that yeast DNA topoisomerase III has at most a weak activity in relaxing negatively supercoiled double-stranded DNA in vivo, in accordance with the characteristics of the purified enzyme.  相似文献   

16.
《The Journal of cell biology》1989,109(6):2693-2702
A membrane-associated galactosyltransferase has been purified to homogeneity from the fission yeast, Schizosaccharomyces pombe. The enzyme has a molecular weight of 61,000 and is capable of transfering galactose from UDP-galactose (UDP-Gal) to a variety of mannose-based acceptors to form an alpha-1,2 galactosyl mannoside linkage. Immunofluorescence localization of the protein is consistent with the presence of the enzyme in the Golgi apparatus of S. pombe. This, together with the presence of terminal, alpha-linked galactose on the N- linked oligosaccharides of S. pombe secretory proteins, suggests that the galactosyltransferase is an enzyme involved in the processing of glycoproteins transported through the Golgi apparatus in fission yeast.  相似文献   

17.
Recent studies have shown that a cytochrome P-450 present in microsomes of semi-anaerobically grown cells of Saccharomyces cerevisiae is functional in the 14 alpha-demethylation of lanosterol (4,4,14 alpha-trimethyl-5 alpha-cholesta-8,24-dien-3 beta-ol), but the occurrence of the same cytochrome P-450 in microsomes of aerobically grown yeast cells has not yet been reported. In this study, the microsomal fraction from aerobically grown cells was found to catalyze the lanosterol demethylation in the presence of NADPH and O2 and that this activity was sensitive to CO. In Ouchterlony double diffusion test, antibodies to the yeast cytochrome P-450 formed a single precipitin line with the microsomal fraction as well as with the purified yeast cytochrome P-450 and the two precipitin lines fused with each other. Furthermore, the antibodies inhibited the lanosterol demethylation activity of the microsomal fraction from aerobically grown cells. The quadratic-derivative absorption spectrum of the microsomal fraction measured in the presence of both Na2S2O4 and CO showed an absorption band at 450 nm which is attributable to the reduced CO compound of cytochrome P-450. These facts led to the conclusion that cytochrome P-450 actually exists in aerobically grown yeast and participates in the lanosterol 14 alpha-demethylation which is essential for the ergosterol (5 alpha-ergosta-5,7,22-trien-3 beta-ol) biogenesis by yeast.  相似文献   

18.
19.
The membrane-associated isozyme of invertase (beta-D-fructofuranoside fructo-hydrolase, EC 3.2.1.26) -- precursor of the external glycoprotein invertase (Babczinski, P. and Tanner, W. (1978) Biochim. Biophys. Acta 538, 426-434) - has been purified 60-fold from deoxycholate extracts of derepressed yeast cells. The partially purified enzyme exhibits considerable stability as a salt-free lyophilized powder. Its molecular weight, in this precursor form, has been determined by by sodium dodecyl sulphate (SDS) gel electrophoresis to be 180 000 daltons. This correlates well with the presence of only the inner core carbohydrate parts of the external invertase. The enzyme can be split completely by treatment with endo-beta-N-acetyl-glucosaminidase H from Streptomyces griseus, demonstrating the presence of a di-N-acetylchitobiosyl-asparagine linkage. The proteinaceous split product is still active and has a molecular weight of approx. 120 000. The enzyme cannot be transferred into a supernatant fraction upon osmotic shock treatment of yeast membrane vesicles, indicating that it is strictly membrane-bound. After separation of yeast membranes on a sucrose density gradient, precursor invertase is predominantly associated with two gradient membrane fractions which most probably represent rough and smooth endoplasmic reticulum.  相似文献   

20.
To provide a bridge between in vivo and in vitro studies of eukaryotic translation initiation, we have developed a reconstituted translation initiation system using components from the yeast Saccharomyces cerevisiae. We have purified a minimal set of initiation factors (elFs) that, together with yeast 80S ribosomes, GTP, and initiator methionyl-tRNA, are sufficient to assemble active initiation complexes on a minimal mRNA template. The kinetics of various steps in the pathway of initiation complex assembly and the formation of the first peptide bond in vitro have been explored. The formation of active initiation complexes in this system is dependent on ribosomes, mRNA, Met-tRNAi, GTP hydrolysis, elF1, elF1A, elF2, elF5, and elF5B. Our data indicate that elF1 and elF1A both facilitate the binding of the elF2 x GTP x Met-tRNAi complex to the 40S ribosomal subunit to form the 43S complex. elF5 stimulates a step after 43S complex formation, consistent with its proposed role in activating GTP hydrolysis by elF2 upon initiation codon recognition. The presence of elF5B is required for the joining of the 40S and 60S subunits to form the 80S initiation complex. The step at which each of these factors acts in this reconstituted system is in agreement with previous data from in vivo studies and work using reconstituted mammalian systems, indicating that the system recapitulates fundamental events in translation initiation in eukaryotic cells. This system should allow us to couple powerful yeast genetic and molecular biological experiments with in vitro kinetic and biophysical experiments, yielding a better understanding of the molecular mechanics of this central, complex process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号