首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The internal morphology of the western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) (WFT), a primary vector of tomato spotted wilt virus (TSWV), was shown to bear certain similarities to other thrips species, particularly in the composition of the piercing-sucking feeding structures. Striking differences were observed in number, position and ducting of the salivary glands, the morphology of the alimentary canal and the number and arrangement of the malpighian tubules between the WFT and other studied Thysanopterans. These differences provide support for the conclusion that internal morphologies may vary widely in this order, and perhaps among species in the same genus. The results of our investigation support the need for more detailed studies of other thrips species, particularly in light of the potential importance morphological characteristics may play in governing the capacity of thrips species to serve as vectors of TSWV.  相似文献   

2.
3.
Tomato spotted wilt orthotospovirus (TSWV) causes substantial economic losses to vegetables and other crops. TSWV is mainly transmitted by thrips in a persistent and proliferative manner, and its most efficient vector is the western flower thrips, Frankliniella occidentalis (Pergande). In moving from the thrips midgut to the salivary glands in preparation for transmission, the virions must overcome multiple barriers. Although several proteins that interact with TSWV in thrips have been characterized, we hypothesized that additional thrips proteins interact with TSWV and facilitate its transmission. In the current study, 67 F. occidentalis proteins that interact with GN (a structural glycoprotein) were identified using a split-ubiquitin membrane-based yeast 2-hybrid (MbY2H) system. Three proteins, apolipoprotein-D (ApoD), orai-2-like (Orai), and obstructor-E-like isoform X2 (Obst), were selected for further study based on their high abundance and interaction strength; their interactions with GN were confirmed by MbY2H, yeast β-galactosidase and luciferase complementation assays. The relative expressions of ApoD and Orai were significantly down-regulated but that of Obst was significantly up-regulated in viruliferous thrips. When interfering with Obst in larval stage, the TSWV acquisition rate in 3 independent experiments was significantly decreased by 26%, 40%, and 35%, respectively. In addition, when Obst was silenced in adults, the virus titer was significantly decreased, and the TSWV transmission rate decreased from 66.7% to 31.9% using the leaf disk method and from 86.67% to 43.33% using the living plant method. However, the TSWV acquisition and transmission rates were not affected by interference with the ApoD or Orai gene. The results indicate that Obst may play an important role in TSWV acquisition and transmission in Frankliniella occidentalis.  相似文献   

4.
Spherical viruslike particles (VLP) were found in the tissues of apparently healthy tobacco thrips, Frankliniella fusca. The particles occurred in abundance in thrips from Ontario but were absent in thrips from Oklahoma reared under identical conditions. The VLP were not transmissible to any of the seven plant hosts (in four families) of F. fusca suggesting that they may be an insect virus. Transmission of tomato spotted wilt virus (TSWV) by F. fusca, a known vector, was not affected by the presence or absence of the VLP. No TSWV particles were detected in tissues of F. fusca that transmitted TSWV to test plants. The VLP occurred in several internal organs and hemocoele of the thrips and were isolated in vitro by preparing homogenates of gut tissues. Infection of oocytes and presence of VLP in young nymphs suggested transovarial transmission of the particles. The VLP measured 62 ± 4 nm in diameter and usually occurred in dense viroplasms in the cell cytoplasm. Development of the particles within the viroplasms is discussed.  相似文献   

5.
Tomato spotted wilt virus (TSWV) replicates in both its plant hosts and its thrips vectors. Replication of TSWV within thrips suggests the potential for pathological effects that could affect the fitness of its vectors directly, whereas infection of the plant may alter its suitability as a host for thrips development. This study was undertaken to examine the influence of TSWV isolate, host plant, and temperature on potential direct and host-mediated effects of virus infection of the thrips and the plant on Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), an important vector of TSWV. Neonate F. occidentalis were reared to adult eclosion on excised foliage of Datura stramonium (L.) (Solanaceae) or Emilia sonchifolia (L.) (Compositae) infected with either the CFL or RG2 isolate of TSWV, or not infected. Effects of the TSWV isolates and host plants on thrips were measured at 18.3, 23.9, and 29.4 °C. Results demonstrate significantly improved survival and a small but significant decrease in development time of F. occidentalis on TSWV-infected plants. These effects resulted from the combined influence of the direct effects of the virus on infected thrips and plant-mediated effects resulting from virus infection of the thrips’ host plant. Our results extend previous findings and help to explain inconsistencies among previously published reports by demonstrating that the manifestation and magnitude of effects of TSWV on F. occidentalis are dependent on host plant, virus isolate, and temperature.  相似文献   

6.
The accumulation and transmission of tomato spotted wilt virus (TSWV) was examined in second instar larvae and adults of two thrips genera, Frankliniella and Thrips. The species tested were F. occidentalis (Pergande), F. intonsa (Trybom), T. tabaciLindeman, T. setosus Moulton, T. palmi Karny and T. hawaiiensis (Morgan). In a standard petunia leaf disc assay, the efficiencies of TSWV transmission by two species of Frankliniella were higher than those of any Thrips species in the adult stage. A triple antibody sandwich enzyme-linked immunosorbent assay (TAS-ELISA) showed that large amounts of the TSWV-nucleocapsid (N) protein were present in the ELISA-positive larvae of each species, with the exception of T. palmi. The ELISA titre of and the proportion of virus-infected individuals of the two Frankliniella species increased or did not significantly change from the larval to the adult stages, whereas those of the four Thrips species decreased significantly. These results show that the specificity of virus transmission by adult thrips is probably affected by the amount of viral N protein accumulation in the adults and that the accumulation pattern from the larval to the adult stages is in between the two genera tested in the present study.  相似文献   

7.
Tree pollen, especially Pinus spp. (Pinaceae), is shed in large quantities every spring in North America. Pine pollen deposition onto leaves was found to significantly influence the ovipositional behaviors of certain thrips species (Thysanoptera: Thripidae) in peanut and tomato leaf choice and no‐choice tests. Pine pollen (Pinus elliottii Engelm.) increased the oviposition rate 2.9‐fold for Frankliniella occidentalis (Pergande) (western flower thrips) and 1.6‐fold for Frankliniella fusca (Hinds) (tobacco thrips) in choice tests averaged over both plant species. These results support the idea that pollen has a greater impact on F. occidentalis behavior than on F. fusca behavior. The most dramatic increase was in peanut, where F. occidentalis only oviposited on leaves dusted with pollen, suggesting that the addition of pollen stimulated this flower thrips to lay eggs on a poor host‐plant part. The impact of pollen on the rate of oviposition by thrips is important because it is the early‐instar nymphs that acquire tomato spotted wilt virus (TSWV), which these two thrips species vector. In a laboratory bioassay, the addition of pine pollen to TSWV‐infected peanut foliage increased the percentage of infected F. fusca after one generation.  相似文献   

8.
Thrips were surveyed in tomato spotted wilt-susceptible crops in five areas across North Carolina. Tomato, pepper, and tobacco plants in commercial fields were sampled and 30 species of thrips were collected over a 3-year period. The most common species overall was Frankliniella tritici (Fitch). The most common thrips species that are known to vector Tomato Spotted Wilt Virus (TSWV) were F. fusca (Hinds), and F. occidentalis (Pergande). Relatively low numbers of Thrips tabaci Lindeman, another reported vector, were collected. The spatial and temporal occurrence of vectors varied with sampling method, crop species, region of North Carolina, and localized areas within each region. In a laboratory experiment, no difference was detected between the ability of F. fusca and F. occidentalis to acquire and transmit a local isolate of TSWV. Based on vector efficiency and occurrence, F. fusca is considered the most important vector of TSWV in tobacco, whereas both F. fusca and F. occidentalis are important vectors of TSWV in tomato and pepper.  相似文献   

9.
Belliure B  Janssen A  Sabelis MW 《Oecologia》2008,156(4):797-806
Herbivores can profit from vectoring plant pathogens because the induced defence of plants against pathogens sometimes interferes with the induced defence of plants against herbivores. Plants can also defend themselves indirectly by the action of the natural enemies of the herbivores. It is unknown whether the defence against pathogens induced in the plant also interferes with the indirect defence against herbivores mediated via the third trophic level. We previously showed that infection of plants with Tomato spotted wilt virus (TSWV) increased the developmental rate of and juvenile survival of its vector, the thrips Frankliniella occidentalis. Here, we present the results of a study on the effects of TSWV infections of plants on the effectiveness of three species of natural enemies of F. occidentalis: the predatory mites Neoseiulus cucumeris and Iphiseius degenerans, and the predatory bug Orius laevigatus. The growth rate of thrips larvae was positively affected by the presence of virus in the host plant. Because large larvae are invulnerable to predation by the two species of predatory mites, this resulted in a shorter period of vulnerability to predation for thrips that developed on plants with virus than thrips developing on uninfected plants (4.4 vs. 7.9 days, respectively). Because large thrips larvae are not invulnerable to predation by the predatory bug Orius laevigatus, infection of the plant did not affect the predation risk of thrips larvae from this predator. This is the first demonstration of a negative effect of a plant pathogen on the predation risk of its vector.  相似文献   

10.
The seasonal abundance and temporal pattern of Frankliniella fusca Hinds dispersal were monitored from 1996 to 2000 at 12 locations in central and eastern North Carolina. The predominant vector species of tomato spotted wilt virus (TSWV) captured across all locations was F. fusca (98%). The temporal patterns of F. fusca dispersal observed during spring seasons varied among locations in all years except 2000. Regression analysis estimated that times of first flight in the spring seasons varied among locations, whereas flight duration intervals were similar. Temporal patterns of F. fusca captured varied significantly between aerial traps placed 0.1 and 1.0 m above the soil surface. Fewer total thrips were captured at 0.1 m, although thrips dispersal occurred earlier and over a greater time interval compared with 1.0-m traps. Temporal patterns of TSWV occurrence differed among locations in the spring seasons of 1999 and 2000, whereas patterns of virus occurrence were similar during the fall seasons. Patterns of F. filsca dispersal and subsequent TSWV occurrence were synchronous at locations in 1999 and 2000 where the greatest number of TSWV lesions was recorded. Knowledge of the temporal patterns of F. fiasca dispersal and TSWV occurrence may be a useful indicator for describing the time when susceptible crops are at highest risk of TSWV infection.  相似文献   

11.
In a 2-yr study, the impacts of different plastic soil mulches, insecticides, and predator releases on Frankliniella thrips and their natural enemies were investigated in field-grown peppers. Ultraviolet light (UV)-reflective mulch significantly reduced early season abundance of adult thrips compared with standard black plastic mulch. This difference diminished as the growing seasons progressed. Late season abundance of thrips larvae was higher in UV reflective mulch compared with black mulch plots. The abundance of the predator Orius insidiosus (Say) was significantly lower in UV-reflective mulch compared with black mulch treatments. Infection of plants with tomato spotted wilt virus, a pathogen vectored by Frankliniella occidentalis (Pergande), was <6%. In the year with the higher disease incidence (2000), UV-reflective mulch plots had significantly less disease (1.9%) compared with black mulch plots (4.4%). Yield was significantly higher in UV-reflective mulch (24,529 kg/ha) compared with black mulch (15,315 kg/ha) during this year. Effects of insecticides varied with species of thrips. Spinosad reduced abundance of F. occidentalis, but not Frankliniella tritici. In contrast, esfenvalerate and acephate reduced numbers of F. tritici and Frankliniella bispinosa, but resulted in higher populations of F. occidentalis. Spinosad was the least disruptive insecticide to populations of O. insidiosus. Releases of O. insidiosus and Geocoris punctipes (Say) reduced populations of thrips immediately after releases; naturally occurring predators probably provided late season control of thrips. Our results suggest that UV-reflective mulch, combined with early season applications of spinosad, can effectively reduce abundance of thrips in field-grown pepper.  相似文献   

12.
Tomato spotted wilt virus (TSWV) is an important plant virus that infects a wide range of hosts including weeds making its management difficult. A survey was undertaken to establish the occurrence of weed species in tomato production systems in Kenya and their role as hosts of TSWV and its vectors. Selected weed species were further evaluated for their reaction to TSWV, transmission efficiency by Frankliniella occidentalis and ability to support thrips reproduction. Of the 43 weed species identified in the field, 29 species had been reported as hosts of TSWV, two were non‐hosts and 11 had no record of their status. Among the more common species, Amaranthus hybridus, Solanum nigrum, Tagetes minuta and Datura stramonium were susceptible to the virus and supported high levels of thrips reproduction. The TSWV could not be transmitted to Galinsoga parviflora and Sonchus oleraceus by F. occidentalis despite them being highly susceptible in mechanical transmission tests. There was a significant correlation between feeding damage and number of larvae of F. occidentalis on different weeds. Occurrence of weeds that support thrips reproduction and are good hosts of TSWV is a clear indicator of their role in epidemiology and the importance of their management for disease control.  相似文献   

13.
Four studies were conducted in Georgia during spring 1999, 2000, 2001, and 2002 to evaluate various management tactics for reducing thrips and thrips-vectored tomato spotted wilt virus (TSWV) in tomato and their interactions relative to fruit yield. Populations of thrips vectors of TSWV, Frankliniella occidentalis (Pergande) and Frankliniella fusca (Hinds), were determined using flower and sticky trap samples. The management practices evaluated were host plant resistance, insecticide treatments, and silver or metallic reflective mulch. Averaged over all tests, the TSWV-resistant tomato 'BHN444' on silver mulch treatment had the largest effect in terms of reducing thrips and spotted wilt and increasing marketable yield. Of the insecticide treatments tested, the imidacloprid soil treatment followed by early applications of a thrips-effective foliar insecticide treatment provided significant increase in yield over other treatments. Tomato yield was negatively correlated with the number of F. fusca and percentage of TSWV incidence. F. occidentalis per blossom was positively correlated with percentage of TSWV incidence, but not with yield. No significant interactions were observed between cultivar reflective mulch main plot treatments and insecticide subplot treatments; thus, treatment seemed to be additive in reducing the economic impact of thrips-vectored TSWV. Control tactics that manage thrips early in the growing season significantly increased tomato yield in years when the incidence of TSWV was high (>17%).  相似文献   

14.
The western flower thrips (Frankliniella occidentalis) is a polyphagous herbivore that causes serious damage to many agricultural plants. In addition to causing feeding damage, it is also a vector insect that transmits tospoviruses such as Tomato spotted wilt virus (TSWV). We previously reported that thrips feeding on plants induces a jasmonate (JA)-regulated plant defense, which negatively affects both the performance and preference (i.e. host plant attractiveness) of the thrips. The antagonistic interaction between a JA-regulated plant defense and a salicylic acid (SA)-regulated plant defense is well known. Here we report that TSWV infection allows thrips to feed heavily and multiply on Arabidopsis plants. TSWV infection elevated SA contents and induced SA-regulated gene expression in the plants. On the other hand, TSWV infection decreased the level of JA-regulated gene expression induced by thrips feeding. Importantly, we also demonstrated that thrips significantly preferred TSWV-infected plants to uninfected plants. In JA-insensitive coi1-1 mutants, however, thrips did not show a preference for TSWV-infected plants. In addition, SA application to wild-type plants increased their attractiveness to thrips. Our results suggest the following mechanism: TSWV infection suppresses the anti-herbivore response in plants and attracts its vector, thrips, to virus-infected plants by exploiting the antagonistic SA-JA plant defense systems.  相似文献   

15.
Frankliniella fusca (Hinds) (Thysanoptera: Thripidae) is the predominant thrips species found inhabiting and reproducing in peanut, Arachis hypogaea L. (Fabaceae), and is one of at least seven thrips species reported to transmit Tomato spotted wilt virus (TSWV). The entomogenous nematode Thripinema fuscum Tipping & Nguyen (Tylenchida: Allantonematidae), a natural enemy of F. fusca , parasitizes larval and adult populations under field conditions. All known Thripinema species render the host female thrips sterile and have the potential to suppress pest populations to near extinction. As a result, secondary spread of TSWV in peanut is reduced. Reduction of the virus under field conditions may also be due to lower transmission rates caused by parasite-induced alterations in host feeding behavior. Therefore, the feeding rates of healthy and parasitized F. fusca male and female cohorts on leaf discs were recorded daily for 10 days and digital images were subjected to image analysis and viral transmission rates were compared daily using double antibody sandwich enzyme-linked immunosorbent assay. Thripinema fuscum reduced the feeding of female F. fusca by nearly 65%, and the ability of females to transmit TSWV by 50%. Potential mechanisms underlying the parasite-induced alterations in feeding behavior and transmission are discussed. Parasitism by T. fuscum significantly reduced male longevity, but female longevity was not affected. These results provide further evidence that T. fuscum aids in regulating viruliferous F. fusca pest populations and suggests its potential as a biological control agent for inoculative release in peanut.  相似文献   

16.
Patterns of spread of Tomato spotted wilt virus (TSWV) were examined in lettuce and pepper plantings into which thrips vectors spread the virus from external virus sources. These plantings were: 1) seven separate field trials into which TSWV ‘infector’ plants of tomato were introduced alongside or near to plantings of lettuce or pepper, and 2) three commercial lettuce plantings into which spread from nearby external infection sources was occurring naturally. The vector thrips species were Frankliniella occidentalis, F. schnitzel and Thrips tabaci, at least two of which were always present. Spatial data for plants with TSWV infection collected at different stages in the growing period were assessed by plotting gradients of infection, and using Spatial Analysis by Distance IndicEs (SADIE) and maps of spatial pattern. Despite the persistent nature of TSWV transmission by thrips vectors, in both lettuce and pepper plantings there was a steep decline in TSWV incidence with distance from external infection sources that were alongside them. The extent of clustering increased over time and was greatest closest to the source. The relationship between percentage infection and assessment date suggested that spread was predominantly monocyclic with only limited polycyclic spread. Development of isolated clusters of infected plants distant from TSWV sources within both crops was consistent with only limited polycyclic spread. Spread to lettuce was greater downwind than upwind of virus source, with magnitude and proximity of source determining the amount of spread. When 15 m wide fallow or non-host (cabbage) barriers separated TSWV sources from lettuce plantings, spread was slower and there was much less clustering with the latter. In commercial lettuce plantings, spread was favoured by TSWV movement within successive side-by-side plantings. The spatial data from the diverse scenarios examined enabled recommendations to be made over ‘safe’ planting distances between external infection sources of different magnitudes and susceptible crops that were short-lived (e.g. lettuce) or long-lived (e.g. pepper). They also helped validate the inclusion of isolation and ‘safe’ planting distances, planting upwind, prompt removal of virus sources, avoidance of side-by-side plantings, and deploying intervening non-host barrier crops as control measures within an integrated disease management strategy for TSWV in field vegetable crops.  相似文献   

17.
The effect of a thrips‐non‐transmissible Tomato spotted wilt virus (TSWV) on insect–host interactions between thrips and Arabidopsis thaliana was analysed. A wild‐type TSWV virulent isolate and a TSWV isolate that induces mild symptoms on inoculated plants (TSWV‐Mo) were used in this study, and TSWV‐Mo isolate was obtained by single local lesion isolation using Petunia x hybrid after several passages on Nicotiana rustica plants. In transmission test, although wild‐type TSWV (TSWV‐wt) was transmitted by two thrips species (transmission ratio; Frankliniella occidentalis, 25%; Thrips tabaci, 10%; and T. palmi, 0%), none of the thrips transmitted TSWV‐Mo. Feeding damage by F. occidentalis in A. thaliana plants was more extensive on TSWV‐wt‐infected plants than on TSWV‐Mo‐infected plants, despite comparable preference. Among the markers of plant defences, salicylic acid‐regulated genes were upregulated threefold to sixfold by TSWV‐wt or TSWV‐Mo infection. In contrast, jasmonate‐regulated genes and jasmonate/ethylene‐regulated genes were not affected by the infections. Pull assays showed that adjacent TSWV‐Mo‐infected plants were preferred over uninfected plants. In conclusion, our results showed that the transmissibility by thrips of TSWV is not related to preference of vector thrips and suggested that TSWV‐Mo‐infected plants may be used as attractants for behaviour control of thrips.  相似文献   

18.
The influence of tray drench (TD) treatments, with and without foliar applications of the plant activator acibenzolar-S-methyl (Actigard), was examined in replicated field plots in 2000--2002. TD treatments of Actigard, imidacloprid (Admire), and these two products combined had little effect on seasonal mean thrips populations; however, thrips densities were lower in the Admire-treated plots at 4 and 5 wk after transplanting. Actigard and Admire TD treatments significantly reduced the seasonal incidence of tomato spotted wilt virus (TSWV) symptomatic plants in 2 yr in the study. The combination of both products was better in reducing TSWV than Actigard alone. Three early-season foliar sprays of Actigard had no effect on thrips population densities, but they did reduce TSWV incidence. The tobacco thrips, Frankliniella fusca (Hinds), comprised 92-95% of the thrips complex each year. Other thrips collected on tobacco foliage at very low densities included Haplothrips spp., Chirothrips spp., Limothrips cerealium (Haliday), other Frankliniella spp. and other unidentified species. Using nonstructural TSWV protein enzyme-linked immunosorbent assay, 1.5-2.3% of the F. fusca tested positive for nonstructural TSWV protein. Cured yields were higher in the TD treatments and the Actigard foliar treatments in the years with high TSWV in the untreated plots. The TD treatments and foliar Actigard had little impact on plant height or grade index; however, TD treatments with Admire had low tobacco aphid, Myzus nicotianae Blackman, populations through 10 wk after transplanting. The early-season Actigard and Admire treatment options are management decisions that can effectively reduce the risks of TSWV incidence in flue-cured tobacco.  相似文献   

19.
The nature of spatial and temporal dynamics of Tomato spotted wilt virus (TSWV) and its vector in a potato crop cv. Innovator without insecticide application is analysed. Seed tuber was analysed for the presence of TSWV as a source of initial inoculum. The presence of plants with symptoms of TSWV was evaluated by visual observation and DAS‐ELISA analysis to confirm the virus infection. Thrips species were collected from leaves and inflorescences and identified under stereomicroscope. The distribution of symptomatic plants and thrips species was recorded five times at 14 days intervals. The initial seed tuber infection was of 1.1%. Disease incidence was 0% at 29 days after planting (DAP), 0.2% at 43 DAP, 2.2% at 56 DAP, 11.6% at 70 DAP and 14.6% at 84 DAP. The progress of the disease was adequately described by a Logistic model [y = 0.15/(1 + 1205372.93 × exp (?0.22 × DAP))]. Thrips vector species identified as resident in the crop during the whole cycle were Thrips tabaci (n = 423), Frankliniella occidentalis (n = 141) and as occasional species, F. schultzei (n = 34) and F. gemina (n = 5) were found. At 43 and 56 DAP a random distribution pattern was observed and the thrips species found were T. tabaci (n = 188) and F. occidentalis (n = 105). An aggregated pattern was determined at 70 and 84 DAP. Spatial patterns of the disease spread suggest a polycyclic epidemic with TSWV secondary spread in the potato crop. Multiple control measures were deduced from these epidemiological results like virus testing in tubers, removal of external virus infection sources and thrips control.  相似文献   

20.
In North Carolina, Tomato spotted wilt tospovirus (family Bunyaviridae, genus Tospovirus, TSWV) is vectored primarily by the tobacco thrips, Frankliniella fusca (Hinds), and the western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). TSWV overwinters in winter annual weeds from which it is spread to susceptible crops in spring. Because most susceptible crops are destroyed after harvest before winter weeds emerge in the fall, infected summer weeds are thought to be the principal source for spread of TSWV to winter annual weeds in fall. A survey of summer weeds associated with TSWV-susceptible crops in the coastal plain of North Carolina conducted between May and October revealed that relatively few species were commonly infected with TSWV and supported populations of F. fusca or F. occidentalis. F. occidentalis made up > 75% of vector species collected from 15 summer weed species during 2002. The number of F. occidentalis and F. fusca immatures collected from plant samples varied significantly among plant species. Ipomoea purpurea (L.) Roth, Mollugo verticillata L., Cassia obtusifolia L., and Amaranthus palmeri S. Wats supported the largest numbers of immature F. occidentalis. Richardia scabra L., M. verticillata, and Ipomoea hederacea (L.) supported the largest numbers of F. fusca immatures. TSWV was present at 16 of 17 locations, and naturally occurring infections were found in 14 of 29 weed species tested. Five of the TSWV-infected species have not previously been reported as hosts of TSWV (A. palmeri, Solidago altissima L., Ipomoea lacunosa L., I. purpurea, and Phytolacca americana L.). Estimated rates of infection were highest in I. purpurea (6.8%), M. verticillata (5.3%), and I. hederacea (1.9%). When both the incidence of infection by TSWV and the populations of F. occidentalis and F. fusca associated with each weed species are considered, the following summer weed species have the potential to act as significant sources for spread of TSWV to winter annual weeds in fall: I. purpurea, I. hederacea, M. verticillata, A. palmeri, C. obtusifolia, R. scabra, Ambrosia artemisiifolia L., Polygonum pensylvanicum L., and Chenopodium album L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号