首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Capillary pressures in isogravimetric lung and skeletal muscle measured with the double vascular occlusion technique (Pdo) were compared to those measured using the traditional gravimetric technique (Pc,i). Pressures were measured using both techniques in isolated blood-perfused canine lungs (n = 18), blood-perfused rat hindquarters before (n = 8) and after (n = 6) maximal dilatation with papaverine and in rat hindquarters perfused with an artificial plasma (n = 6). In both organs, regardless of vascular tone, the double vascular occlusion isogravimetric pressure was the same as the gravimetric Pc,i, and the two measurements were highly correlated. Lung: Pdo = -0.22 + 1.06 Pc,i (r = 0.85, P less than 0.01); hindquarter: Pdo = -1.03 + 0.99 Pc,i (r = 0.91, P less than 0.01). In addition, Pdo was the same at every combination of isogravimetric arterial and venous pressures tested. The results indicate that the more rapidly applied double vascular occlusion pressure yields an accurate measure of isogravimetric capillary pressure in isolated organs over a wide range of isogravimetric pressures.  相似文献   

2.
A pump-perfused extracorporeal digital preparation was used to evaluate blood flow, arterial pressure, venous pressure, isogravimetric capillary filtration coefficient, capillary pressure, and vascular compliance in six normal horses. From these data, pre- and postcapillary resistances and pre- and postcapillary resistance ratios were determined. Vascular and tissue oncotic pressures were estimated from plasma and lymph protein concentrations, respectively. By use of the collected and calculated data, tissue pressure in the digit was calculated using the Starling equation. In the isolated equine digit, isogravimetric capillary pressure averaged 36.7 mmHg, plasma and lymph oncotic pressures averaged aged 19.12 and 6.6 mmHg, respectively, interstitial fluid pressure averaged 25.6 mmHg, and the capillary filtration coefficient averaged 0.0013 ml.min-1.mm-1.100 g-1. Our results indicate that digital capillary pressure in the laterally recumbent horse is much higher than in analogous tissues in other species such as dog and human. However, the potential edemagenic effects of this high digital capillary pressure are opposed by at least two mechanisms: 1) a high tissue pressure and 2) a low microvascular surface area for fluid exchange and/or a low microvascular permeability to filtered fluid.  相似文献   

3.
The venous occlusion technique was used to measure capillary pressure in the forearm and foot of man over a wide range of venous pressures. In six recumbent subjects venous pressure (Pv) in the forearm (mean +/- SE) was 9.3 +/- 1.4 mmHg and the venous occlusion estimate of capillary pressure (Pc) was 17.0 +/- 1.6 mmHg, whereas in another six subjects Pv in the foot was 17.1 +/- 1.2 mmHg and Pc was 23.4 +/- 2.5 mmHg. Venous pressure in the limbs was increased either by changes in posture or by venous congestion with a sphygmomanometer cuff. On standing Pv in the foot increased to 95.2 +/- 1.5 mmHg and Pc rose to 112.8 +/- 3.1 mmHg. The relationship established between venous pressure and capillary pressure in the forearm is Pc = 1.16 Pv + 8.1, whereas in the foot the relationship is Pc = 1.2 Pv + 1.6. The magnitude and duration of the changes in capillary pressure were also recorded during reactive hyperemia. The venous occlusion method of measuring capillary pressure is simple and easily applied to studies in humans.  相似文献   

4.
The canine lung lobe was embolized with 100-micron glass beads before lobectomy and blood anticoagulation. The lobe was isolated, ventilated, and pump-perfused with blood at an arterial pressure (Pa) of about 50 (high pressure, HP, n = 9) or 25 Torr (low pressure, LP, n = 9). Rus/PVR, the ratio of upstream (Rus) to total lobar vascular resistance (PVR), was determined by venous occlusion and the isogravimetric capillary pressure technique. The capillary filtration coefficient (Kf), an index of vascular permeability, was obtained from rate of lobe weight gain during stepwise capillary pressure (Pc) elevation. The embolized lobes became more edematous than nonembolized controls, (C, n = 11), (P less than 0.05), with Kf values of 0.20 +/- 0.04, 0.25 +/- 0.06, and 0.07 +/- 0.01 ml X min-1 X Torr-1 X 100 X g-1 in LP, HP, and C, respectively (P less than 0.05). The greater Rus/PVR in embolized lobes (P less than 0.05) protected the microvessels and, although Pc was greater in HP than in controls (P less than 0.05), Pc did not differ between HP and LP (P greater than 0.05). Although indexes of permeability did not differ between embolized groups (P greater than 0.05), HP became more edematous than LP (P less than 0.05). The greater edema in HP did not appear due to a greater imbalance of Starling forces across the microvessel wall or to vascular recruitment. At constant Pc and venous pressure, elevating Pa from 25 to 50 Torr in embolized lobes resulted in greater edema to suggest fluid filtration from precapillary vessels.  相似文献   

5.
Whole-body and organ-level transcapillary filtration rates and coefficients are virtually unexamined in ectothermal vertebrates. These filtration rates appear to be greater than in mammals when plasma volume shifts and lymphatic function are analyzed. Gravimetric techniques monitoring whole-body mass changes were used to estimate net systemic filtration in Bufo marinus and Rana catesbeiana while perfusing with low-protein Ringer's and manipulating venous pressure. Capillary pressures were estimated from arterial and venous pressures after measuring the venous to arterial resistance ratio of 0.23. The capillary filtration coefficient (CFC) for the two species was 25.2+/-1.47 mL min-1 kg-1 kPa-1. Isogravimetric capillary pressure (Pci), the pressure at which net fluid is neither filtered nor reabsorbed, was 1.12+/-0.054 kPa and was confirmed by an independent method. None of these variables showed a significant interspecific difference. The anuran CFC and Pci are significantly higher than those found using the same method on rats (7.6+/-2.04 mL min-1 kg-1 kPa-1 and 0.3+/-0.37 kPa, respectively) and those commonly reported in mammals. Despite the high CFC, the high Pci predicts that little net filtration will occur at resting in vivo capillary pressures.  相似文献   

6.
Recent studies in humans have suggested sex differences in venous compliance of the lower limb, with lower compliance in women. Capillary fluid filtration could, however, be a confounder in the evaluation of venous compliance. The venous capacitance and capillary filtration response in the calves of 12 women (23.2 +/- 0.5 years) and 16 men (22.9 +/- 0.5 years) were studied during 8 min lower body negative pressure (LBNP) of 11, 22, and 44 mmHg. Calf venous compliance is dependent on pressure and was determined using the first derivative of a quadratic regression equation that described the capacitance-pressure relationship [compliance = beta1 + (2 x beta2 x transmural pressure)]. We found a lower venous compliance in women at low transmural pressures, and the venous capacitance in men was increased (P < 0.05). However, the difference in compliance between sexes was reduced and not seen at higher transmural pressures. Net capillary fluid filtration and capillary filtration coefficient (CFC) were greater in women than in men during LBNP (P < 0.05). Furthermore, calf volume increase (capacitance response + total capillary filtration) during LBNP was equivalent in both sexes. When total capillary filtration was not subtracted from the calf capacitance response in the calculation of venous compliance, the sex differences disappeared, emphasizing that venous compliance measurement should be corrected for the contribution of CFC.  相似文献   

7.
The results of direct pressure measurements are described which demonstrate that pressures in a certain fraction of mesenteric capillaries remain remarkably constant during large changes in systemic pressure. The results of isogravimetric studies, reported in the literature, are also described which indicate that this phenomenon may also occur in the intestine. The question is raised whether capillary pressures may therefore be regulated. Pressures recorded from mesenteric arterioles and capillaries are shown which indicate that maintenance of a constant capillary pressure is primarily the consequence of the vascular architecture peculiar to this tissue, and is merely a secondary reflection of mechanisms associated with flow regulation. The results of direct pressure measurements recorded in the microcirculation of intestinal muscle are also shown. These data indicate that capillary pressures in innervated, denervated, and xylocaine-treated intestinal muscle change in direct proportion to variations in arterial pressure. It is concluded that capillary pressures in the intestinal muscle layers are therefore not regulated, so that the observation that capillary pressures may be maintained is probably a phenomenon unique to the mesentery. Pressures recorded from capillaries in the mucosal villi are also shown and compared to capillary pressures measured in the microvasculature of mesentery and intestinal muscle. When systemic pressure was normal (107 +/- 10 mm Hg), capillary pressure in the mesentery averaged 30 to 33 mm Hg; capillary pressures in the intestinal muscle averaged 22 to 24 mm Hg; and capillary pressures in the mucosal villi averaged 13 to 15 mm Hg. These data suggest that mesenteric capillaries are primarily a filtering network; intestinal muscle capillaries are normally in fluid balance; whereas at rest mucosal capillaries are primarily absorptive. These pressures, recorded from the three major regions of the rat intestine, were used to calculate a weighted average for the whole organ. The calculated value, based on assumed values for relative capillary densities, was 17 mm Hg. This result compares favorably with data from whole organ, isogravimetric studies, and may clarify some of the apparent discrepancies between previous isogravimetric and servopressure studies.  相似文献   

8.
The effect of increased arterial pressure (Pa) on microvessel pressure (Pc) and edema following microvascular obstruction (100-micron glass spheres) was examined in the isolated ventilated dog lung lobe pump perfused with blood. Lobar vascular resistance (PVR) increased 2- to 10-fold following emboli when either Pa or flow was held constant. Microbead obstruction increased the ratio of precapillary to total PVR from 0.60 +/- 0.05 to 0.84 +/- 0.02 (SE) or to 0.75 +/- 0.06 (n = 6), as determined by the venous occlusion and the isogravimetric capillary pressure techniques, respectively. Isogravimetric Pc (5.0 +/- 0.7) did not differ from Pc obtained by venous occlusion (3.8 +/- 0.2 Torr, n = 6). After embolism, Pc in constant Pa decreased from 6.2 +/- 0.3 to 4.4 +/- 0.3 Torr (n = 16). In the constant-flow group, embolism doubled Pa while Pc increased only 40% (6.7 +/- 0.6 to 9.2 +/- 1.4 Torr, n = 6) with no greater edema formation than in the constant Pa groups. These data indicate poor transmission of Pa to filtering capillaries. Microembolism, even when accompanied by elevated Pa and increased flow velocity of anticoagulated blood of low leukocyte and platelet counts, caused little edema. Our results suggest that mechanical effects alone of lung microvascular obstruction cause minimal pulmonary edema.  相似文献   

9.
We investigated the effects of low temperatures down to approximately 5 degrees C on postcapillary resistance (Rv) and isogravimetric capillary pressure (Pci) in the isolated constant-flow-perfused cat hindlimb to see if a low-temperature-induced increase in Rv and decrease in Pci could lead to an increase in filtration pressure and edema formation. A low-viscosity perfusate (20% cat plasma, 80% albumin-electrolyte solution; viscosity approximately 1 cP) was used. Isoproterenol (10(-7) M) was added to vasodilate the limb and achieve normal microvascular permeability. Rv and Pci were estimated from the slope and zero-flow intercept, respectively, of the straight-line fit to the isogravimetric venous pressure vs. flow data. Rv and Pci were determined in each experiment at an initial 37 degrees C control, at a lowered temperature (30, 23, 15, or 5-10 degrees C), and then at 37 degrees C again. The ratio of Rv at the low temperatures relative to the initial 37 degrees C control increased almost linearly as temperature was reduced. The increase was 3.4 times control at the lowest temperature. Pci decreased significantly from control only in the lowest temperature group where the change was -5.4 mmHg. Analysis of our data with the low-viscosity perfusate shows that the limb can become edematous if temperature is lowered to approximately 5 degrees C unless venous pressure (Pv) is lowered to venous collapse and flow reduced to less than approximately 20 ml.min-1.100g-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
We have developed a model including three serial compliant compartments (arterial, capillary, and venous) separated by two resistances (arterial and venous) for interpreting in vivo single pulmonary arterial or venous occlusion pressure profiles and double occlusion. We formalized and solved the corresponding system of equations. We showed that in this model 1) pulmonary capillary pressure (Pc) profile after arterial or venous occlusion has an S shape, 2) the estimation of Pc by zero time extrapolation of the slow component of the arterial occlusion profile (Pcao) always overestimates Pc, 3) symmetrically such an estimation on the venous occlusion profile (Pcvo) always underestimates Pc, 4) double occlusion pressure (Pcdo) differs from Pc. We evaluated the impact of varying parameter values in the model with parameter sets drawn either from the literature or from arbitrary arterial and venous pressures, being respectively 20 and 5 mmHg. Resulting Pcao-Pc differences ranged from 0.4 to 5.4 mmHg and resulting Pcvo-Pc differences ranged from -0.3 to -5.0 mmHg. Pcdo-Pc was positive or negative, its absolute value in general being negligible (< 1.1 mmHg).  相似文献   

11.
In isolated canine lung lobes perfused with a pulsatile pump, arterial occlusions were performed and the postocclusion arterial pressure profiles were analyzed to estimate the pulmonary capillary pressure. A solenoid valve interposed between the pump and the lobar artery was used to perform arterial occlusions at several instants equally distributed within a pressure cycle. Double occlusions were also accomplished by simultaneously activating the solenoid valve and clamping the venous outflow of the lung lobe. To analyze an arterial occlusion pressure profile, we computed the best monoexponential fit of the pressure decay over a short period of time after the occlusion maneuvers. Two estimates of the capillary pressure were derived from this analysis: 1) the extrapolation of the exponential fit to the instant of occlusion, and 2) the point at which the recorded pressure decay curve merges with the exponential fit. The pressures thus determined were compared with the double occlusion pressure that provided an independent estimate of the pulmonary capillary pressure. Our results show that, under a wide range of conditions, the estimates of the capillary pressure obtained from the arterial occlusion data are nearly equal to the double occlusion pressures. Additionally, we estimated the capillary pressure variations within a pressure cycle by examining the occlusion pressures sampled at different instants of the cycle. The pulsatility of the pulmonary microvascular pressure varied with the pump frequency as well as the state of arterial and venous vasoaction. These variations are consistent with the representation of the lung vasculature as a low-pass filter.  相似文献   

12.
Because both chemical and mechanical insults to the lung may occur concomitantly with trauma, we hypothesized that the pressure threshold for vascular pressure-induced (mechanical) injury would be decreased after a chemical insult to the lung. Normal isolated canine lung lobes (N, n = 14) and those injured with either airway acid instillation (AAI, n = 18) or intravascular oleic acid (OA, n = 25) were exposed to short (5-min) periods of elevated venous pressure (HiPv) ranging from 19 to 130 cmH2O. Before the HiPv stress, the capillary filtration coefficient (Kf,c) was 0.12 +/- 0.01, 0.27 +/- 0.03, and 0.31 +/- 0.02 ml.min-1.cmH2O-1 x 100 g-1 and the isogravimetric capillary pressure (Pc,i) was 9.2 +/- 0.3, 6.8 +/- 0.5, and 6.5 +/- 0.3 cmH2O in N, AAI, and OA lungs, respectively. However, the pattern of response to HiPv was similar in all groups: Kf,c was no different from the pre-HiPv value when the peak venous pressure (Pv) remained less than 55 cmH2O, but it increased reversibly when peak Pv exceeded 55 cmH2O (P less than 0.05). The reflection coefficient (sigma) for total proteins measured after pressure exposure averaged 0.60 +/- 0.03, 0.32 +/- 0.04, and 0.37 +/- 0.09 for N, AAI, and OA lobes respectively. However, in contrast to the result expected if pore stretching had occurred at high pressure, in all groups the sigma measured during the HiPv stress when Pv exceeded 55 cmH2O was significantly larger than that measured during the recovery period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The osmotic reflection coefficient (sigma) for total plasma proteins was estimated in 11 isolated blood-perfused canine lungs. Sigma's were determined by first measuring the capillary filtration coefficient (Kf,C in ml X min-1 X 100g-1 X cmH2O-1) using increased hydrostatic pressures and time 0 extrapolation of the slope of the weight gain curve. Kf,C averaged 0.19 +/- 0.05 (mean +/- SD) for 14 separate determinations in the 11 lungs. Following a Kf,C determination, the isogravimetric capillary pressure (Pc,i) was determined and averaged 9.9 +/- 0.5 cmH2O for all controls reported in this study. Then the blood colloids in the perfusate were either diluted or concentrated. The lung either gained or lost weight, respectively, and an initial slope of the weight gain curve (delta W/delta t)0 was estimated. The change in plasma protein colloid osmotic pressure (delta IIP) was measured using a membrane osmometer. The measured delta IIP was related to the effective colloid osmotic pressure (delta IIM) by delta IIM = (delta W/delta t)0/Kf,C = sigma delta IIP. Using this relationship, sigma averaged 0.65 +/- 0.06, and the least-squares linear regression equation relating Pc,i and the measured IIP was Pc,i = -3.1 + 0.67 IIP. The mean estimate of sigma (0.65) for total plasma proteins is similar to that reported for dog lung using lymphatic protein flux analyses, although lower than estimates made in skeletal muscle using the present methods (approximately 0.95).  相似文献   

14.
In this study, 14 canine lung lobes were isolated and perfused with autologous blood at constant pressure (CP) or constant flow (CF). Pulmonary capillary pressure (Pc) was measured via venous occlusion or simultaneous arterial and venous occlusions. Arterial and venous pressures and blood flow were measured concurrently so that total pulmonary vascular resistance (RT) as well as pre- (Ra) and post- (Rv) capillary resistances could be calculated. In both CP and CF perfused lobes, 5-min arachidonic acid (AA) infusions (0.085 +/- 0.005 to 2.80 +/- 0.16 mg X min-1 X 100 g lung-1) increased RT, Rv, and Pc (P less than 0.05 at the highest dose), while Ra was not significantly altered and Ra/Rv fell (P less than 0.05 at the highest AA dose). In five CP-perfused lobes, the effect of AA infusion on the pulmonary capillary filtration coefficient (Kf,C) was also determined. Neither low-dose AA (0.167 +/- 0.033 mg X min-1 X 100 g-1) nor high-dose AA (1.35 +/- 0.39 mg X min-1 X 100 g-1) altered Kf,C from control values (0.19 +/- 0.02 ml X min-1 X cmH2O-1 X 100 g-1). The hemodynamic response to AA was attenuated by prior administration of indomethacin (n = 2). We conclude that AA infusion in blood-perfused canine lung lobes increased RT and Pc by increasing Rv and that microvascular permeability is unaltered by AA infusion.  相似文献   

15.
We studied the interdependence of arterial and venous extra-alveolar vessel (EAV) leakage on the rate of pulmonary vascular fluid filtration (measured as the change in lung weight over time). Edema was produced in continually weighed, excised rabbit lungs kept in zone 1 (alveolar pressure = 25 cmH2O) by increasing pulmonary arterial (Ppa) and/or venous (Ppv) pressure from 5 to 20 cmH2O (relative to the lung base) and continuing this hydrostatic stress for 3-5 h. Raising Ppa and Ppv simultaneously produced a lower filtration rate than the sum of the filtration rates obtained when Ppa and Ppv were raised separately, while the lung gained from 20 to 95% of its initial weight. When vascular pressure was elevated in either EAV segment, fluid filtration always decreased rapidly as the lung gained up to 30-45% of its initial weight. Filtration then decreased more slowly. The lungs became isogravimetric at 60 and 85% weight gain when the Ppa or Ppv was elevated, respectively; when Ppa and Ppv were raised simultaneously substantial fluid filtration continued even after 140% weight gain. We conclude that the arterial and venous EAV's share a common interstitium in the zone 1 condition, this interstitium cannot be represented as a single compartment with a fixed resistance and compliance, and arterial and venous EAV leakage influences leakage from the other segment.  相似文献   

16.
We devised a technique that permitted elevation of pulmonary pressures in unanesthetized sheep by occluding their pulmonary veins. Using this technique, we raised pulmonary capillary pressure from a baseline of 13.2 +/- 2.2 to 35.3 +/- 5.1 mmHg. This increased lung lymph flow (from 8.8 +/- 2.7 to 53.1 +/- 13.9 ml/h). We estimated the pulmonary microvascular oncotic reflection coefficient and found it to be 0.82 +/- 0.05 (SD). The filtration coefficient was 0.019 +/- 0.005 ml.mmHg-1.min-1. During the period of increased pressure, the animals had stable arterial pressures and cardiac outputs. None of the animals developed blood coagulation problems. These data illustrate the usefulness of pulmonary venous occlusion to elevate pulmonary microvascular pressure to obtain plasma-to-lymph protein concentration ratios independent of flow, allowing for the calculation of the oncotic reflection coefficient.  相似文献   

17.
Occlusion pressures vs. micropipette pressures in the pulmonary circulation   总被引:2,自引:0,他引:2  
Because of the discrepancies between the arterial and venous occlusion technique and the micropuncture technique in estimating pulmonary capillary pressure gradient, we compared measurements made with the two techniques in the same preparations (isolated left lower lobe of dog lung). In addition, we also obtained direct and reliable measurements of pressures in 0.9-mm arteries and veins using a retrograde catheterization technique, as well as a microvascular pressure made with the double-occlusion technique. The following conclusions were made from dog lobes perfused with autologous blood at normal flow rate of 500-600 ml/min and pressure gradient of 12 mmHg. 1) The double-occlusion technique measures pressure in the capillaries, 2) a small pressure gradient (0.5 mmHg) exists between 30- to 50-micron arteries and veins, 3) a large pressure gradient occurs in arteries and veins greater than 0.9 mm, 4) the arterial and venous occlusion techniques measure pressures in vessels that are less than 900 microns diam but greater than 50 microns, very likely close to 100 microns, 5) serotonin constricts arteries (larger and smaller than 0.9 mm) whereas histamine constricts veins (larger and smaller than 0.9 mm). Thus three different techniques (small retrograde catheter, arterial and venous occlusion, and micropuncture) show consistent results, confirming the presence of significant resistance in large arteries and veins with minimal resistance in the microcirculation.  相似文献   

18.
This investigation was undertaken to determine whether a Starling resistor or venous waterfall effect exists between the sagittal sinus and the cerebral veins such that increases in sagittal sinus pressure (Pss) do not abolish cerebral venous outflow and to examine two possible contributions of extracranial venous valves in regulating outflow. Anesthetized dogs were subjected to positive end-expiratory pressure (PEEP) before and after intracranial pressure (Pic) was elevated by inflation of an epidural balloon. PEEP raised Pss equally in all animals, but Pic and cerebral venous pressure (Pcv) increased less in the presence of intracranial hypertension. When Pss was low, passage of a catheter in the cerebral vein in and out of the sagittal sinus demonstrated an abrupt drop in pressure as the sinus was entered. When Pss was raised and lowered independently of superior vena caval pressure (Psvc) the changes in Pic and Pcv were less when Pss was decreased than when it was increased. Sustained increases and decreases in Psvc caused increases and decreases in Pcv, Pic, Pss, and external jugular venous pressure (Pejv) regardless of whether external jugular venous valves were present or absent. We conclude that a Starling resistor between the sagittal sinus and the cerebral veins regulates cerebral venous outflow when Pss is increased by PEEP and other maneuvers that raise Psvc. The waterfall maintains Pcv and Pic at normal levels when Psvc and Pss are reduced. Extracranial venous valves are not essential to this mechanism.  相似文献   

19.
The capillary filtration coefficient (Kf,c) is a sensitive and specific index of vascular permeability if surface area remains constant, but derecruitment might affect Kf,c in severely damaged lungs with high vascular resistance. We studied the effect of high and low blood flow rates on Kf,c in papaverine-pretreated blood-perfused isolated dog lungs perfused under zone 3 conditions with and without paraquat (PQ, 10(-2) M). Three Kf,cs were measured successively at hourly intervals for 5 h. These progressed sequentially from isogravimetric blood flow with low vascular pressure (I/L) to high flow with low vascular pressure (H/L) to high flow with high vascular pressure (H/H). The blood flows of H/L and H/H were greater than or equal to 1.5 times that of I/L. There were no significant changes in Kf,c in lungs without paraquat over a 50-fold range of blood flow rates. At 3 h after PQ, I/L-Kf,c was significantly increased and both isogravimetric capillary pressure and total protein reflection coefficient were decreased from base line. At 4 and 5 h, H/L-Kf,c was significantly greater than the corresponding I/L-Kf,c (1.01 +/- 0.22 vs. 0.69 +/- 0.09 and 1.26 +/- 0.19 vs. 0.79 +/- 0.10 ml.min-1.cmH2O-1.100 g-1, respectively) and isogravimetric blood flow decreased to 32.0 and 12.0% of base line, respectively. Pulmonary vascular resistance increased to 12 times base line at 5 h after PQ. We conclude that Kf,c is independent of blood flow in uninjured lungs. However, Kf,c measured at isogravimetric blood flow underestimated the degree of increase in Kf,c in severely damaged and edematous lungs because of a high vascular resistance and derecruitment of filtering surface area.  相似文献   

20.
This study evaluated the physiological effects of compounds that increase adenosine 3',5'-cyclic monophosphate (cAMP) on changes in pulmonary capillary permeability and vascular resistance induced by ischemia-reperfusion (I-R) in isolated blood-perfused rabbit lungs. cAMP was elevated by 1) beta-adrenergic stimulation with isoproterenol (ISO, 10(-5) M), 2) post-beta-receptor stimulation of adenylate cyclase with forskolin (FSK, 10(-5) M), 3) and dibutyryl cAMP (DBcAMP, 1 mM), a cAMP analogue. Vascular permeability was assessed by determining the capillary filtration coefficient (Kf,c), and capillary pressure was measured using the double occlusion technique. The total, arterial, and venous vascular resistances were calculated from measured pulmonary arterial, venous, and capillary pressures and blood flow. Reperfusion after 2 h of ischemia significantly (P less than 0.05) increased Kf,c (from 0.115 +/- 0.028 to 0.224 +/- 0.040 ml.min-1.cmH2O-1.100 g-1). These I-R-induced changes in capillary permeability were prevented when ISO, FSK, or DBcAMP was added to the perfusate at reperfusion (0.110 +/- 0.022 and 0.103 +/- 0.021, 0.123 +/- 0.029 and 0.164 +/- 0.024, and 0.153 +/- 0.030 and 0.170 +/- 0.027 ml.min-1.cmH2O-1.100 g-1, respectively). I-R significantly increased total, arterial, and venous vascular resistances. These increases in vascular resistance were also blocked by ISO, FSK, and DBcAMP. These data suggest that beta-adrenergic stimulation, post-beta-receptor activation of adenylate cyclase, and DBcAMP prevent the changes in pulmonary vascular permeability and vascular resistances caused by I-R in isolated rabbit lungs through a mechanism involving an increase in intracellular levels of cAMP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号