首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three cases of 45,X/46,XYnf mosaicism   总被引:1,自引:1,他引:0  
Summary Three patients with 45,X/46,XYnf mosaicism were investigated by Southern hybridization using both X- and Y-specific DNa probes. Our patients seem to be hemizygous for the X chromosomal loci tested. Single-copy and low-copy repeated Y chromosomal sequences assigned to the short arm, centromere, and euchromatin of the long arm have been detected in our patients, suggesting the Y chromosomal origin of the marker chromosome both in male and female cases studied. Densitometry of autoradiographs revealed a double dose of Yp-specific fragments of the DXYS1 locus. None of the patients tested showed either the 3.4- or the 2.1-kb Hae III malespecific repeated DNa sequences. It seems likely that the Ynf is a pseudodicentric chromosome with duplication of Yp and euchromatic Yq sequences, the Yq heterochromatin being lost. Our findings indicate structural heterogeneity of the marker chromosome and in addition provide further information on the relative position of DNa sequences detectected by DNA probes 50f2, M1A, and pDP105.  相似文献   

2.
The origin of 45,X males.   总被引:6,自引:2,他引:4       下载免费PDF全文
Maleness in association with the karyotype 45,X is a very rare and hitherto unexplained condition previously described in only four or five patients. This study was carried out to determine whether such males might actually possess Y-chromosomal material. Of the two 45,X males studied, one was found to be a low-grade mosaic with a 46,XY karyotype in less than 3% of fibroblasts; all lymphocytes karyotyped were 45,X. Fibroblast DNA from this individual was found to contain Y-specific repeated sequences in 1%-3% the amount observed in the father, consistent with mosaicism for a 46,XY cell line. No Y-specific repeated sequences were detected in the other patient, in whom all mitoses were 45,X. In neither patient were there detectable amounts of any of the single-copy Y-specific DNA sequences for which we tested. Studies of Xg blood groups and of X-linked restriction fragment length polymorphisms indicated that the single X chromosome was of maternal origin in both 45,X male probands. In contrast to the situation in XX males, we can exclude paternal X-Y interchange as the etiology in the cases described here. Our findings are compatible with mosaicism being the explanation of at least some "45,X" males.  相似文献   

3.
White campion (Silene latifolia) is one of the few examples of plants with separate sexes and with X and Y sex chromosomes. The presence or absence of the Y chromosome determines which type of reproductive organs--male or female--will develop. Recently, we characterized the first active gene located on a plant Y chromosome, SlY1, and its X-linked homolog, SlX1. These genes encode WD-repeat proteins likely to be involved in cell proliferation. Here, we report the characterization of a novel Y-linked gene, SlY4, which also has a homolog on the X chromosome, SlX4. Both SlY4 and SlX4 potentially encode fructose-2,6-bisphosphatases. A comparative molecular analysis of the two sex-linked loci (SlY1/SlX1 and SlY4/SlX4) suggests selective constraint on both X- and Y-linked genes and thus that both X- and Y-linked copies are functional. Divergence between SlY4 and SlX4 is much greater than that between the SlY1 and SlX1 genes. These results suggest that, as for human XY-linked genes, the sex-linked plant loci ceased recombining at different times and reveal distinct events in the evolutionary history of the sex chromosomes.  相似文献   

4.
Summary The present report summarizes molecular studies of parental origin and sex chromosome mosaicism in forty-one 45,X conceptuses, consisting of 29 spontaneous abortions and 12 liveborn individuals with Turner syndrome. Our studies indicate that most 45,X conceptuses have a single, maternally derived X chromosome, regardless of whether the conceptus is liveborn or spontaneously aborted. In studies of mosaicism, our identification of X- and Y-chromosome mosaics among 45,X spontaneous abortions indicates that mosaicism does not ensure survival to term of 45,X fetuses. However, the incidence of sex chromosmome mosaicism is substantially higher in liveborn than in aborted 45,X conceptuses, indicating that the presence of a second cell line increases the likelihood of survival to term.  相似文献   

5.
Isodicentric chromosomes are considered the most common structural abnormality of the human Y chromosome. Because of their instability during cell division, loss of an isodicentric Y seems mainly to lie at the origin of mosaicism in previously reported patients with a 45,X cell line. Here, we report on a similar case, which, however, turned out to be an example of dynamic mosaicism involving isodicentric chromosome Y and isochromosome Y after FISH with a set of chromosome Y-specific probes and multicolor banding. Cytogenetic analyses (GTG-, C-, and Q-banding) have shown three different cell lines: 45,X/46, X,idic(Y)(q12)/46,X,+mar. The application of molecular cytogenetic techniques established the presence of four cell lines: 45,X (48%), 46,X,idic(Y)(q11.23) (42%), 46,X,i(Y)(p10) (6%) and 47,X,idic(Y)(q11.23),+idic(Y)(q11.23) (4%). According to the available literature, this is the first case of dynamic mosaicism with up to four different cell lines involving loss, gain, and rearrangement of an idic(Y)(q11.23). The present report indicates that cases of mosaicism involving isodicentric and isochromosome Ys can be more dynamic in terms of somatic intercellular variability that probably has an underappreciated effect on the phenotype.  相似文献   

6.
Natural Selection and Y-Linked Polymorphism   总被引:8,自引:3,他引:5       下载免费PDF全文
Andrew G. Clark 《Genetics》1987,115(3):569-577
Several population genetic models allowing natural selection to act on Y-linked polymorphism are examined. The first incorporates pleiotropic effects of a Y-linked locus, such that viability, segregation distortion, fecundity and sexual selection can all be determined by one locus. It is shown that no set of selection parameters can maintain a stable Y-linked polymorphism. Interaction with the X chromosome is allowed in the next model, with viabilities determined by both X- and Y-linked factors. This model allows four fixation equilibria, two equilibria with X polymorphism and a unique point with both X- and Y-linked polymorphism. Stability analysis shows that the complete polymorphism is never stable. When X- and Y-linked loci influence meiotic drive, it is possible to have all fixation equilibria simultaneously unstable, and yet there is no stable interior equilibrium. Only when viability and meiotic drive are jointly affected by both X- and Y-linked genes can a Y-linked polymorphism be maintained. Unusual dynamics, including stable limit cycles, are generated by this model. Numerical simulations show that only a very small portion of the parameter space admits Y polymorphism, a result that is relevant to the interpretation of levels of Y-DNA sequence variation in natural populations.  相似文献   

7.
Natural selection can reduce the effective population size of the nonrecombining Y chromosome, whereas local adaptation of Y-linked genes can increase the population divergence and overall intra-species polymorphism of Y-linked sequences. The plant Silene latifolia evolved a Y chromosome relatively recently, and most known X-linked genes have functional Y homologues, making the species interesting for comparisons of X- and Y-linked diversity and subdivision. Y-linked genes show higher population differentiation, compared to X-linked genes, and this might be maintained by local adaptation in Y-linked genes (or low sequence diversity). Here we attempt to test between these causes by investigating DNA polymorphism and population differentiation using a larger set of Y-linked and X-linked S. latifolia genes (than used previously), and show that net sequence divergence for Y-linked sequences (measured by D(a) , also known as δ) is low, and not consistently higher than X-linked genes. This does not support local adaptation, instead, the higher values of differentiation measures for the Y-linked genes probably result largely from reduced total variation on the Y chromosome, which in turn reflect deterministic processes lowering effective population sizes of evolving Y-chromosomes.  相似文献   

8.
In a four-week-old child with female external and internal genitalia but with clitoris hypertrophy chromosome analysis from blood lymphocytes revealed a 46,XY karyotype. No deletion of Y chromosomal sequences was detected by PCR analysis of genomic DNA isolated from peripheral blood leucocytes. Because of the increased risk for gonadal tumours, gonadectomy was performed. Conventional cytogenetic analysis of the left dysgenetic gonad revealed a gonosomal mosaicism with a 45,X cell line in 27 of 50 metaphases. The dysgenetic left gonad demonstrated a significantly higher proportion (P = 0.005) of cells carrying a Y chromosome (46.3%) than the streak gonad from the right side (33.9%). Histomorphological examination of the left gonad revealed immature testicular tissue and rete-like structures as well as irregular ovarian type areas with cystic follicular structures. Interphase FISH analysis of the different tissues of this dysgenetic gonad demonstrated variable proportions of cells with an X and a Y chromosome. Whereas Sertoli cells and rete-like structures revealed a significantly higher proportion of XY cells in relation to the whole section of the dysgenetic gonad (P < 0.0001), almost all granulose-like cells carried no Y chromosome. The proportion of XY/X cells in theca-like cells and Leydig cells was similar to that of the whole dysgenetic gonad. In contrast to these findings, spermatogonia exclusively contained an XY constellation.  相似文献   

9.
A 45,X male with Y-specific DNA translocated onto chromosome 15.   总被引:6,自引:1,他引:5       下载免费PDF全文
A 20-year-old male patient with chromosomal constitution 45,X, testes and normal external genitalia was examined. Neither mosaicism nor a structurally aberrant Y chromosome was observed when routine cytogenetic analysis was performed on both lymphocytes and skin fibroblasts. Y chromosome-specific single-copy and repeated DNA sequences were detected in the patient's genome by means of 11 different recombinant-DNA probes of known regional assignment on the human Y chromosome. Data indicated that the short arm, the centromere, and part of the long-arm euchromatin of the Y chromosome have been retained and that the patient lacks deletion intervals 6 and 7 of Yq. High-resolution analysis of prometaphase chromosomes revealed additional euchromatic material on the short arm of one of the patient's chromosomes 15. After in situ hybridization with the Y chromosome-specific probe pDP105, a significant grain accumulation was observed distal to 15p11.2, suggesting a Y/15 chromosomal translocation. We conclude that some 45,X males originate from Y-chromosome/autosome translocations following a break in the proximal long arm of the Y chromosome.  相似文献   

10.
Cytogenetic and molecular analysis of sex-chromosome monosomy.   总被引:16,自引:4,他引:12       下载免费PDF全文
X chromosome- and Y chromosome-specific DNA probes were used to study different aspects of the genesis of sex-chromosome monosomy. Using X-linked RFLPs, we studied the parental origin of the single X chromosome in 35 spontaneously aborted and five live-born 45,X conceptions. We determined the origin in 35 cases; 28 had a maternal X (Xm) and seven had a paternal X (Xp). There was a correlation between parental origin and parental age, with the Xp category having a significantly reduced mean maternal age by comparison with the Xm group. Studies aimed at detecting mosaicism demonstrated the presence of a Y chromosome or a second X chromosome in three of 33 spontaneous abortions, a level of mosaicism much lower than that reported for live-born Turner syndrome individuals.  相似文献   

11.
Accidental recombination between the differential segments of the X and Y chromosomes in man occasionally allows transfer of Y-linked sequences to the X chromosome leading to testis differentiation in so-called XX males. Loss of the same sequences by X-Y interchange allows female differentiation in a small proportion of individuals with XY gonadal dysgenesis. A candidate gene responsible for primary sex determination has recently been cloned from within this part of the Y chromosome by Page and his colleagues. The observation that a homologue of this gene is present on the short arm of the X chromosome and is subject to X-inactivation, raises the intriguing possibility that sex determination in man is a quantitative trait. Males have two active doses of the gonad determining gene, and females have one dose. This hypothesis has been tested in a series of XX males, XY females and XX true hermaphrodites by using a genomic probe, CMPXY1, obtained by probing a Y-specific DNA library with synthetic oligonucleotides based on the predicted amino-acid sequence of the sex-determining protein. The findings in most cases are consistent with the hypothesis of homologous gonad-determining genes, GDX and GDY, carried by the X and Y chromosomes respectively. It is postulated that in sporadic or familial XX true hermaphrodites one of the GDX loci escapes X-inactivation because of mutation or chromosomal rearrangement, resulting in mosaicism for testis and ovary-determining cell lines in somatic cells. Y-negative XX males belong to the same clinical spectrum as XX true hermaphrodites, and gonadal dysgenesis in some XY females may be due to sporadic or familial mutations of GDX.  相似文献   

12.
13.
Four X-linked loci showing homology with a previously described Y-linked polymorphic locus (DYS413) were identified and characterized. By fluorescent in situ hybridization (FISH), somatic cell hybrids, and YAC screening, the X-linked members of this small family of sequences (CAIII) all map in Xp22, while the Y members map in Yq11. These loci contribute to the overall similarity of the two genomic regions. All of the CAIII loci contain an internal microsatellite of the (CA)n type. The microsatellites display extensive length polymorphism in two of the X-linked members as well as in the Y members. In addition, common sequence variants are found in the portions flanking the microsatellites in two of the X-linked members. Our results indicate that, during the evolution of this family, length variation on the Y chromosome was accumulated at a rate not slower than that on the X chromosome. Finally, these sequences represent a model system with which to analyze human populations for similar X- and Y-linked polymorphisms. Received: 29 July 1996 / Accepted: 15 January 1997  相似文献   

14.
15.
We have used X- and Y-linked RFLPs to determine the origin of the single X chromosome in 25 live-born individuals with Turner syndrome. We determined that 18 individuals retained a maternal X (Xm) and that seven retained the paternal X (Xp). No occult mosaicism was detected. We found no differences in either maternal or paternal ages for the two groups. The ratio of maternal X to paternal X is just over 2:1, which is consistent with the expected proportion of meiotic or mitotic products, with equal loss at each step, given the nonviability of 45,Y. Six phenotypic or physiologic characteristics were assessed: (1) birth weight, (2) height percentile at time of testing, (3) presence of a webbed neck, (4) cardiovascular abnormalities, (5) renal abnormalities, and (6) thyroid autoimmunity. There were no significant differences in birth weights or heights between the girls who retained the maternal X or the paternal X. In addition, no differences between the groups could be appreciated in the incidence of the physical, anatomic, or physiologic parameters assessed.  相似文献   

16.
Studies of uniparental disomy and origin of nonmosaic trisomies indicate that both gain and loss of a chromosome can occur after fertilization. It is therefore of interest to determine both the relative frequency with which gain or loss can contribute to chromosomal mosaicism and whether these frequencies are influenced by selective factors. Thirty-two mosaic cases were examined with molecular markers, to try to determine which was the primary and which was the secondary cell line: 16 cases of disomy/trisomy mosaicism (5 trisomy 8, 2 trisomy 13, 1 trisomy 18, 4 trisomy 21, and 4 involving the X chromosome), 14 cases of 45,X/46,XX, and 2 cases of 45,X/47,XXX. Of the 14 cases of mosaic 45,X/46,XX, chromosome loss from a normal disomic fertilization predominated, supporting the hypothesis that 45,X might be compatible with survival only when the 45,X cell line arises relatively late in development. Most cases of disomy/trisomy mosaicism involving chromosomes 13, 18, 21, and X were also frequently associated with somatic loss of one (or more) chromosome, in these cases from a trisomic fertilization. By contrast, four of the five trisomy 8 cases were consistent with a somatic gain of a chromosome 8 during development from a normal zygote. It is possible that survival of trisomy 8 is also much more likely when the aneuploid cell line arises relatively late in development.  相似文献   

17.
Clones containing sequences derived from the human Y chromosome have been isolated from cosmid libraries of a human-mouse hybrid cell line. These libraries were constructed in the new expression vectors Homer V and Homer VI. The collection of cosmids isolated is enriched for unique sequence DNA and only a few of the cosmids contain the tandemly repeated sequences which constitute a major portion of the Y chromosome. Three cosmids have been studied in detail. One cosmid shows extensive homology over at least 20 kb with the long arm of the X chromosome; this homology is outside the predicted homology region required for sex chromosome pairing. The other two clones contain unique sequences specific to the Y chromosome and both map to the heterochromatic region of the Y chromosome long arm.  相似文献   

18.
Actin-like sequences are present on human X and Y chromosomes.   总被引:3,自引:1,他引:2       下载免费PDF全文
The human genome contains greater than 20 actin-related sequences, six of which at least are expressed as protein. We have shown by blot hybridization the presence of actin-like sequences on both the X and the Y chromosomes. These sequences can be detected in HindIII digests of genomic DNA, using as probe cDNA clones corresponding to human alpha skeletal actin or to a hamster (beta or gamma) cytoskeletal actin; they show more homology to the latter probe. The actin probes also detect a polymorphic DNA fragment showing autosomal inheritance with a frequency for the major allele of 0.55 in the population studied. The X-linked actin sequence has been assigned to a centromeric region between Xp11 and Xq11 by hybridization to DNAs from a panel of human-mouse hybrid cell lines, and thus lies outside the postulated region of homology between the X and Y chromosomes. The Y-linked actin sequence can serve as a marker to analyse anomalies of sex determination or of gametogenesis in man. It was found in all XY males studied but was absent from the genomic DNA of four unrelated 'XX male' subjects and two XX hermaphrodites. This shows that the region of chromosome Y which contains the actin sequence is not translocated onto the X chromosome (or onto autosomes) in these patients.  相似文献   

19.
Silene latifolia has heteromorphic sex chromosomes, the X and Y chromosomes. The Y chromosome, which is thought to carry the male determining gene, was isolated by UV laser microdissection and amplified by degenerate oligonucleotide-primed PCR. In situ chromosome suppression of the amplified Y chromosome DNA in the presence of female genomic DNA as a competitor showed that the microdissected Y chromosome DNA did not specifically hybridize to the Y chromosome, but hybridized to all chromosomes. This result suggests that the Y chromosome does not contain Y chromosome-enriched repetitive sequences. A repetitive sequence in the microdissected Y chromosome, RMY1, was isolated while screening repetitive sequences in the amplified Y chromosome. Part of the nucleotide sequence shared a similarity to that of X-43.1, which was isolated from microdissected X chromosomes. Since fluorescence in situ hybridization analysis with RMY1 demonstrated that RMY1 was localized at the ends of the chromosome, RMY1 may be a subtelomeric repetitive sequence. Regarding the sex chromosomes, RMY1 was detected at both ends of the X chromosome and at one end near the pseudoautosomal region of the Y chromosome. The different localization of RMY1 on the sex chromosomes provides a clue to the problem of how the sex chromosomes arose from autosomes.  相似文献   

20.
We sought for cloned sequences of middle repetitive (MR) complexity that mark obligatory heterochromatic regions. Total genome probes were employed in a differential screening procedure to recover X-specific, Y-specific and autosomal specific heterochromatic sequences. X- and Y-linked sequences were recovered in the same experiment. (Y-linked clones will be described elsewhere). All nine independent, non-identical X-specific clones were found to be partially homologous to one another and to type I rDNA insertion. No other X-specific Bam HI or HindIII clones were found. In situ hybridization to normal and inverted chromosomes revealed extensive homology in the heterochromatin spanning the nucleolus organizer (NOR) and the eu-heterochromatin junction. Eleven clones which are underrepresented in polytene chromosomes were selected in another differential screening. None was autosome-specific. Five were of nucleolar origin. Among them a presumptive type II 28SrDNA insertion sequence was clearly localized within the X-chromosome proximal heterochromatin in addition to the known localization of the X and Y nucleolar organizers. We mapped three clones to major sites on the Y chromosome and to secondary autosomal sites. The results are discussed with regard to the complexity of heterochromatin organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号