首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
To explore the role of the endogenous nitric oxide synthase (NOS) inhibitor asymmetric dimethylarginine (ADMA) in gastric mucosal injury, 3 models of gastric mucosal injury induced by ethanol, indomethacin, or cold stress were used in rats. The cultured human gastric mucosal epithelial cell line GES-1 infected by Helicobacter pylori (Hp) was selected to mimic human gastric mucosal injury. Gastric mucosal ulcer index (UI), levels of ADMA and NO, and activity of dimethylarginine dimethylaminohydrolase (DDAH) were determined in the mucosal injury models; in Hp-infected or ADMA-treated GES-1 cells, levels of ADMA, NO, and TNF-alpha and activity of DDAH were measured. The results showed that UI and levels of ADMA were markedly increased and accompanied by significantly decreased DDAH activity in the mucosal injury models. Incubation of GES-1 cells with Hp increased levels of TNF-alpha and ADMA and decreased activity of DDAH. Administration of ADMA also increased levels of TNF-alpha. The results suggest that ADMA plays an important role in facilitating gastric mucosal injury, an effect which is associated with inhibiting NO synthesis and inducing inflammatory reaction.  相似文献   

2.
Nitric oxide (NO) is a major regulator of the cardiovascular system. However, the effects of endothelial nitric oxide synthase (eNOS) gene polymorphisms or haplotypes on the circulating concentrations of nitrite (a sensitive marker of NO formation) and cGMP are unknown. Here we examined the effects of eNOS polymorphisms in the promoter region (T-786C), in exon 7 (Glu298Asp), and in intron 4 (4b/4a) and eNOS haplotypes on the plasma levels of nitrite and cGMP. We hypothesized that eNOS haplotypes could have a major impact on NO formation. We genotyped 142 healthy subjects by PCR-RFLP. To assess NO formation, the plasma concentrations of nitrite and cGMP were determined using an ozone-based chemiluminescence assay and an enzyme immunoassay. Haplotypes were inferred using the PHASE 2.1 program. No significant differences were found in age, body mass index, systolic and diastolic arterial blood pressure, heart rate, total cholesterol, triglycerides, cGMP, or nitrite among the genotype groups for the three polymorphisms studied here (all p>0.05). Interestingly, the C-4b-Glu haplotype was associated with lower plasma nitrite concentrations than those found in the other haplotype groups (p<0.05), but not with different cGMP levels (p>0.05). These findings suggest that eNOS gene variants combined within a specific haplotype modulate NO formation, although individual eNOS polymorphisms probably do not have major effects.  相似文献   

3.
Nitric oxide (NO) produced by the action of endothelial nitric oxide synthase (eNOS) plays an important role in the regulation of vascular tone, cell survival, and angiogenesis. Interaction of endothelial cells (ECs) with a fibronectin (FN) rich matrix is important in the regulation of EC function and survival during angiogenesis. The present study was carried out to examine if FN can regulate eNOS and thereby NO levels in ECs. The activity and the levels of mRNA and protein of eNOS were significantly low in HUVECs maintained in culture on FN. Inhibition of p38 MAPK and blocking the interaction of FN with α5β1 integrin using antibody caused the reversal of the FN effect. Immunoblot analysis of Ser/Thr phosphorylation of purified eNOS suggested that FN downregulates post-translational phosphorylation of eNOS at Ser residues. These results suggest that FN negatively modulates eNOS in an α5β1 integrin-p38 MAPK-dependent pathway.  相似文献   

4.
Regulation of endothelial nitric oxide synthase by the actin cytoskeleton   总被引:2,自引:0,他引:2  
In the present study, the association ofendothelial nitric oxide synthase (eNOS) with the actin cytoskeleton inpulmonary artery endothelial cells (PAEC) was examined. We found thatthe protein contents of eNOS, actin, and caveolin-1 were significantly higher in the caveolar fraction of plasma membranes than in the noncaveolar fraction of plasma membranes in PAEC. Immunoprecipitation of eNOS from lysates of caveolar fractions of plasma membranes in PAECresulted in the coprecipitation of actin, and immunoprecipitation ofactin from lysates of caveolar fractions resulted in thecoprecipitation of eNOS. Confocal microscopy of PAEC, in which eNOS waslabeled with fluorescein, F-actin was labeled with Texasred-phalloidin, and G-actin was labeled with deoxyribonuclease Iconjugated with Texas red, also demonstrated an association betweeneNOS and F-actin or G-actin. Incubation of purified eNOS with purifiedF-actin and G-actin resulted in an increase in eNOS activity. Theincrease in eNOS activity caused by G-actin was much higher than thatcaused by F-actin. Incubation of PAEC with swinholide A, an actinfilament disruptor, resulted in an increase in eNOS activity, eNOSprotein content, and association of eNOS with G-actin and in a decrease in the association of eNOS with F-actin. The increase in eNOS activitywas higher than that in eNOS protein content in swinholide A-treatedcells. In contrast, exposure of PAEC to phalloidin, an actin filamentstabilizer, caused decreases in eNOS activity and association of eNOSwith G-actin and increases in association of eNOS with F-actin. Theseresults suggest that eNOS is associated with actin in PAEC and thatactin and its polymerization state play an important role in theregulation of eNOS activity.

  相似文献   

5.
Cadmium (Cd) perturbs vascular health and interferes with endothelial function. However, the effects of exposing endothelial cells to low doses of Cd on the production of nitric oxide (NO) are largely unknown. The objective of the present study was to evaluate these effects by using low levels of CdCl2 concentrations, ranging from 10 to 1000 nmol/L. Cd perturbations in endothelial function were studied by employing wound-healing and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays. The results suggest that a CdCl2 concentration of 100 nmol/L maximally attenuated NO production, cellular migration, and energy metabolism in endothelial cells. An egg yolk angiogenesis model was employed to study the effect of Cd exposure on angiogenesis. The results demonstrate that NO supplementation restored Cd-attenuated angiogenesis. Immunofluorescence, Western blot, and immuno-detection studies showed that low levels of Cd inhibit NO production in endothelial cells by blocking eNOS phosphorylation, which is possibly linked to processes involving endothelial function and dysfunction, including angiogenesis.  相似文献   

6.
We studied the effect of a nitric oxide synthase inhibitor, Nomega-Nitro-L-arginine-methyl-ester (L-NAME), on in vitro diphragmatic function both at rest (control) or after inspiratory resistive loading (IRL). Sprague-Dawley rats were anesthetized, instrumented, and then the following experimental groups: (1) controls; (2) L-NAME (100 mg/kg/body weight intravenously alone); (3) IRL alone; and (4) L-NAME + IRL. The IRL protocol consisted of applying a variable resistor to the inspiratory limb of a two-way valve at 70% of maximal airway pressure until apnea. After the experiment, the animals were sacrificed and diaphragmatic strips were obtained for activity of constitutive nitric oxide synthase (cNOS) and measurements of in vitro contractile properties: tetanic (Po) and twitch tensions (Pt). cNOS activity was significantly decreased in the L-NAME and L-NAME + IRL groups (P < or = 0.05) as compared with control and IRL groups. L-NAME alone did not affect Po or Pt. However, in both IRL groups, with and without was a significant decrease in Po and Pt. This reduction was comparable in both groups. In summary, our data showed that L-NAME resulted in a significant decrease cNOS activity, but in vitro contractility was impaired.  相似文献   

7.
Regulation of endothelial nitric oxide synthase by protein kinase C   总被引:3,自引:0,他引:3  
Endothelial nitric oxide synthase (eNOS) is a key enzyme in nitric oxide-mediated signal transduction in mammalian cells. Its catalytic activity is regulated both by regulatory proteins, such as calmodulin and caveolin, and by a variety of post-translational modifications including phosphorylation and acylation. We have previously shown that the calmodulin-binding domain peptide is a good substrate for protein kinase C [Matsubara, M., Titani, K., and Taniguchi, H. (1996) Biochemistry 35, 14651-14658]. Here we report that bovine eNOS protein is phosphorylated at Thr497 in the calmodulin-binding domain by PKC both in vitro and in vivo, and that the phosphorylation negatively regulates eNOS activity. A specific antibody that recognizes only the phosphorylated form of the enzyme was raised against a synthetic phosphopeptide corresponding to the phosphorylated domain. The antibody recognized eNOS immunoprecipitated with anti-eNOS antibody from the soluble fraction of bovine aortic endothelial cells, and the immunoreactivity increased markedly when the cells were treated with phorbol 12-myristate 13-acetate. PKC phosphorylated eNOS specifically at Thr497 with a concomitant decrease in the NOS activity. Furthermore, the phosphorylated eNOS showed reduced affinity to calmodulin. Therefore, PKC regulates eNOS activity by changing the binding of calmodulin, an eNOS activator, to the enzyme.  相似文献   

8.
Rapid activation of endothelial nitric oxide synthase by estrogen.   总被引:7,自引:0,他引:7  
P W Shaul 《Steroids》1999,64(1-2):28-34
Estrogen is an important atheroprotective molecule that causes the rapid dilation of blood vessels by stimulating endothelial nitric oxide synthase (eNOS). There is also evidence that estrogen modulates airway epithelial NO production, thereby potentially affecting bronchial hyperresponsiveness. Studies in cultured endothelial and airway epithelial cells indicate that physiologic concentrations of estrogen cause rapid direct activation of eNOS that is unaffected by actinomycin D, but fully inhibited by estrogen receptor (ER) antagonism. Overexpression of ERalpha leads to marked enhancement of the acute response to estrogen, and this process is blocked by ER antagonism, it is specific to estrogen, and it requires the ERalpha hormone binding domain. In addition, the acute response of eNOS to estrogen can be reconstituted in COS-7 cells cotransfected with wild-type ERalpha and eNOS, but not by transfection with eNOS alone. Furthermore, the inhibition of calcium influx, or tyrosine kinases or MAP kinase prevents the stimulation of eNOS by estrogen, and estrogen causes rapid ER-dependent activation of MAP kinase. These findings indicate that the acute effects of estrogen on both endothelial and airway epithelial eNOS are mediated by ERalpha functioning in a novel, nongenomic manner to activate the enzyme via calcium-dependent, MAP kinase-dependent mechanisms.  相似文献   

9.
Nitric oxide (NO) is a potent vasodilator, but it can also modulate contractile responses of the airway smooth muscle. Whether or not endothelial (e) NO synthase (NOS) contributes to the regulation of bronchial tone is unknown at present. Experiments were designed to investigate the isoforms of NOS that are expressed in murine airways and to determine whether or not the endogenous release of NO modulates bronchial tone in wild-type mice and in mice with targeted deletion of eNOS [eNOS(-/-)]. The presence of neuronal NOS (nNOS), inducible NOS (iNOS), and eNOS in murine trachea and lung parenchyma was assessed by RT-PCR, immunoblotting, and immunohistochemistry. Airway resistance was measured in conscious unrestrained mice by means of a whole body plethysmography chamber. The three isoforms of NOS were constitutively present in lungs of wild-type mice, whereas only iNOS and nNOS were present in eNOS(-/-) mice. Labeling of nNOS was localized in submucosal airway nerves but was not consistently detected, and iNOS immunoreactivity was observed in tracheal and bronchiolar epithelial cells, whereas eNOS was expressed in endothelial cells. In wild-type mice, treatment with N-nitro-L-arginine methyl ester, but not with aminoguanidine, potentiated the increase in airway resistance produced by inhalation of methacholine. eNOS(-/-) mice were hyperresponsive to inhaled methacholine and markedly less sensitive to N-nitro-L-arginine methyl ester. These results demonstrate that the three NOS isoforms are expressed constitutively in murine lung and that NO derived from eNOS plays a physiological role in controlling bronchial airway reactivity.  相似文献   

10.
L-buthionine-S,R-sulfoximine (BSO), an inhibitor of GSH synthesis, decreased IL-1 beta-induced nitrite release in rat islets and purified rat beta cells, nitrite formation and iNOS gene promoter activity in insulinoma cells, and iNOS mRNA expression in rat islets. The thiol depletor diethyl maleate (DEM) and an inhibitor of glutathione reductase 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) reduced IL-1 beta-stimulated nitrite release in islets. We conclude that GSH regulates IL-1 beta-induced NO production in islets, purified beta cells and insulinoma cells by modulation of iNOS gene expression.  相似文献   

11.
1,3,5,6-tetrahydroxyxanthone was synthesized. The relationship between protective effect of xanthone on endothelial cells and endogenous nitric oxide synthase inhibitors was investigated. Endothelial cells were treated with ox-LDL (100 microg/mL) for 48 h. Adhesion of monocytes to endothelial cells and release of lactate dehydrogenase (LDH) was determined. Levels of tumor necrosis factor-alpha (TNF-alpha), monocyte chemoattractant protein-1 (MCP-1), nitric oxide (NO) and asymmetric dimethylarginine (ADMA, an endogenous inhibitor of nitric oxide synthase) in conditioned medium and activity of dimethylarginine dimethylaminohydrolase (DDAH) in endothelial cells were measured. Incubation of endothelial cells with ox-LDL (100 microg/mL) for 48 h markedly enhanced the adhesion of monocytes to endothelial cells, increased the release of LDH, the levels of TNF-alpha, MCP-1 and ADMA, and decreased the content of NO and the activity of DDAH. Xanthone (1,3,5,6-tetrahydroxyxanthone) (1, 3 or 10 micromol/L) significantly inhibited the increased adhesion of monocytes to endothelial cells and attenuated the increased levels of LDH, MCP-1 and ADMA induced by ox-LDL. Xanthone (1,3,5,6-tetrahydroxyxanthone) (3 or 10 micromol/L) significantly attenuated the increased level of TNF-alpha and decreased level of NO and activity of DDAH by ox-LDL. The present results suggest that xanthone (1,3,5,6-tetrahydroxyxanthone) preserves endothelial cells and inhibits the increased adhesion of monocytes to endothelial cells induced by ox-LDL, and that the protective effect of xanthone (1,3,5,6-tetrahydroxyxanthone) on endothelial cells is related to reduction of ADMA concentration via increase of DDAH activity.  相似文献   

12.
The present study was designed to investigate the localization of endothelial nitric oxide synthase (eNOS) in porcine oocytes and its possible function during in vitro development. RT-PCR and immunoblotting analyses revealed the presence of eNOS in the oocytes prepared from small follicles, with an amplified product of 456 bp and an apparent mol wt of 130 kDa, respectively. The synthesis of oocyte NO was suppressed during a 72-h culture of cumulus-oocyte complexes in the presence of follicle-stimulating hormone (FSH), but not luteinizing hormone (LH). However, the decrease in NO synthesis did not result from the levels of eNOS mRNA and its protein, as revealed by analyses of RT-PCR and Western blot analysis, suggesting that expression of oocyte eNOS is not dependent upon gonadotropin stimulation. In proliferated cumulus cells, LH receptor mRNA expression was detected after a 48-h culture with FSH, as revealed by RT-PCR analysis. mRNA expression was inhibited by an NO-releasing agent (S-nitroso-N-acetyl-DL-penicillamine) after an additional 24-h culture. These results suggest that oocytes may release eNOS-derived NO as a signal for somatic cells to steadily suppress the development of cumulus cells, if not FSH stimulation. Conversely, the synthesis of NO is suppressed during the action of FSH on the cumulus cells with no changes in eNOS expression.  相似文献   

13.
Nitric oxide (NO) acts as a neuronal messenger in both the central and peripheral nervous systems and has been implicated in reproductive physiology and behavior. Pharmacological inhibition of nitric oxide synthase (NOS) with the nonspecific NOS inhibitor, l-N(G)-nitro-Arg-methyl ester (l-NAME), induced deficits in both the number of ovarian rupture sites and the number of oocytes recovered in the oviducts of mice. Female neuronal NOS knockout (nNOS-/-) mice have normal numbers of rupture sites, but reduced numbers of oocytes recovered following systemic injections of gonadotropins, suggesting that NO produced by nNOS accounts, in part, for deficits in ovulatory efficiency observed after l-NAME administration. Additionally, endothelial NOS knockout (eNOS-/-) mice have reduced numbers of ovulated oocytes after superovulation. Because endothelial NOS has been identified in ovarian follicles, and because of the noted reduced breeding efficiency of eNOS-/- mice, the present study sought to determine the role of NO from eNOS in mediating the number of rupture sites present after ovulation. Estrous cycle length and variability were consistently reduced in eNOS-/- females. The number of rupture sites was normal in eNOS-/- mice under natural conditions and after administration of exogenous GnRH. After exogenous gonadotropin administration, eNOS-/- females displayed a significant reduction in the number of ovarian rupture sites. Female eNOS-/- mice also produced fewer pups/litter compared to WT mice. These data suggest that NO from endothelial sources might play a role in mediating rodent ovulation and may be involved in regulation of the timing of the estrous cycle.  相似文献   

14.
Dou D  Gao YS 《生理科学进展》2005,36(4):345-348
血管内皮型一氧化氮合酶(eNOS)的调控机制可分为基因表达水平调节和蛋白水平调节两个方面。其中,eNOS的基因表达水平调节主要包含启动子的调节和mRNA的稳定性调节两方面。而eNOS的蛋白水平调节又可分为三个方面:eNOS细胞内转位的调节机制;eNOS复合体形成的调节机制;eNOS氨基酸残基磷酸化的调节机制。eNOS的分子调控机制与临床疾病的发生、发展及其治疗有着密切的关系,故对eNOS分子调控机制的进一步了解有着非常重要的意义。  相似文献   

15.
Nitric oxide in the gut is produced by nNOS in enteric neurons and by eNOS in smooth muscle cells. The eNOS in smooth muscle is activated by vasoactive intestinal peptide (VIP) released from enteric neurons. In the present study, we examined the effect of nitric oxide on VIP-induced eNOS activation in smooth muscle cells isolated from human intestine and rabbit stomach. NOS activity was measured as formation of the 1:1 co-product, l-citrulline from l-arginine. VIP caused an increase in l-citrulline production that was inhibited by NO in a concentration dependent manner (IC(50)~25 microM; maximal inhibition 72% at 100 microM NO). Basal l-citrulline production, however, was unaffected by NO. The effect was not mediated by cGMP/PKG since the PKG inhibitor KT5823 had no effect on eNOS autoinhibition. The autoinhibition was selective for NO since the co-product l-citrulline had no effect on VIP-induced NOS activation. Similar effects were obtained in rabbit gastric and human intestinal smooth muscle cells. The results suggest that NO produced in smooth muscle cells as a result of the activation of eNOS by VIP exerts an autoinhibitory restraint on eNOS thereby regulating the balance of the VIP/cAMP/PKA and NO/cGMP/PKG pathways that regulate the relaxation of gut smooth muscle.  相似文献   

16.
We describe the effect of (-) epigallocatechin gallate (EGCg), one of catechins known in tea, on the prostacyclin (PGI) production by bovine aortic endothelial cells. The amounts of 6-keto-PGF(1alpha) and Delta(17)-6-keto-PGF(1alpha), stable metabolites of PGI(2) and PGI(3), released in culture medium were measured using gas chromatography/selected ion monitoring (GC/SIM). The prostacyclin production of endothelial cells was increased by EGCg in a dose- and time-dependent manner. The effect by EGCg was stronger than any other catechins (catechin, epicatechin, epigallocatechin, and epicatechin gallate). When endothelial cells incubated with EGCg and arachidonic acid (AA) or eicosapentaenoic acid (EPA), PGI(2), and PGI(3) production were increased greater than those incubated with AA or EPA alone. Furthermore, gallic acid, that also has a pyrogallol structure, increased PGI(2) production. These observations indicate that catechins increase the prostacyclin production and that the pyrogallol structure is significant to this function.  相似文献   

17.
Endothelial NO, which is synthesized by endothelial nitric oxide synthase (eNOS), has been reported to be related with the occurrence of pre-eclampsia (PE). However, the polymorphisms of eNOS (− 786 T > C, 4b/a and G894T), the level of nitric oxide and the risk of PE remain unclear. Thus we performed this meta-analysis to determine the associations between them in order to predict the risk for PE and interference with PE development in the early period of antenatal care. All studies investigating the associations between PE risk and polymorphisms of eNOS, or PE risk and serum concentration of NO were reviewed. Finally, 29 studies were included, involving 11 for − 786 T > C, 11for 4b/a, and 22 for G894T polymorphisms and PE risk. In the overall analysis, − 786 T > C polymorphism was found to be related with increased PE risk in the dominant model (OR = 1.17, 95% CI = 1.02-1.35). a allele for 4b/a suffers the high risk of PE (OR = 1.46, 95% CI = 1.01–2.10). In the subgroup analysis, significantly increased risk was detected among Europeans for − 786 T > C polymorphism (OR = 1.40, 95%CI = 1.14–1.73).However, no significant association was detected for G894T polymorphism in the overall and subgroup analysis. The comprehensive evaluation of 9 available studies indicated that serum NO level was significantly decreased in case group (SMD = − 0.96 umol/mL, 95%CI = − 1.80, − 0.12 umol/mL).Hence, we concluded that eNOS gene − 786 T > C and 4b/a except for G894T polymorphisms were contributed significantly to PE risk, especially for Europeans, and a low NO concentration in serum increased the risk for PE.  相似文献   

18.
Nitric oxide (NO) has been suggested to play a key role in the pathogenesis of pulmonary hypertension (PH). To determine which mechanism exists to affect NO production, we examined the concentration of endogenous nitric oxide synthase (NOS) inhibitors and their catabolizing enzyme dimethylarginine dimethylaminohydrolase (DDAH) activity and protein expression (DDAH1 and DDAH2) in pulmonary artery endothelial cells (PAECs) of rats given monocrotaline (MCT). We also measured NOS and arginase activities and NOS protein expression. Twenty-four days after MCT administration, PH and right ventricle (RV) hypertrophy were established. Endothelium-dependent, but not endothelium-independent, relaxation and cGMP production were significantly impaired in pulmonary artery specimens of MCT group. The constitutive NOS activity and protein expression in PAECs were significantly reduced in MCT group, whereas the arginase, which shares l-arginine as a common substrate with NOS, activity was significantly enhanced in PAECs of MCT group. The contents of monomethylarginine (MMA) and asymmetric dimethylarginine (ADMA), but not symmetric dimethylarginine (SDMA), were increased in PAECs of MCT group. The DDAH activity and DDAH1, but not DDAH2, protein expression were significantly reduced in PAECs of MCT group. These results suggest that the impairment of cGMP production as a marker of NO production is possibly due to the blunted endothelial NOS activity resulting from the downregulation of endothelial NOS protein, accumulation of endogenous NOS inhibitors, and accelerated arginase activity in PAECs of PH rats. The decreased overall DDAH activity accompanied by the downregulation of DDAH1 would bring about the accumulation of endogenous NOS inhibitors.  相似文献   

19.
Li H  Raman CS  Martásek P  Masters BS  Poulos TL 《Biochemistry》2001,40(18):5399-5406
The crystal structure of the endothelial nitric oxide synthase (NOS) heme domain complexed with NO reveals close hydrogen bonding interactions between NO and the terminal guanidino nitrogen of the substrate, L-arginine. Dioxygen is expected to bind in a similar mode which will facilitate proton abstraction from L-Arg to dioxygen, a required step for O-O bond cleavage. Structures of mechanism-based NOS inhibitors, N(5)-(1-iminoethyl)-L-ornithine and N-(3-(aminomethyl)benzyl)acetamidine, provide clues on how this class of compounds operate as suicide substrate inhibitors leading to heme oxidation.  相似文献   

20.
The role of protein tyrosine phosphorylation during regulation of NO synthase (eNOS) activity in endothelial cells is poorly understood. Studies to define this role have used inhibitors of tyrosine kinase or tyrosine phosphatase (TP). Phenylarsine oxide (PAO), an inhibitor of TP, has been reported to bind thiol groups, and recent work from our laboratory demonstrates that eNOS activity depends on thiol groups at its catalytic site. Therefore, we hypothesized that PAO may have a direct effect on eNOS activity. To test this, we measured (i) TP and eNOS activities both in total membrane fractions and in purified eNOS prepared from porcine pulmonary artery endothelial cells and (ii) sulfhydryl content and eNOS activity in purified bovine aortic eNOS expressed in Escherichia coli. High TP activity was detected in total membrane fractions, but no TP activity was detected in purified eNOS fractions. PAO caused a dose-dependent decrease in eNOS activity in total membrane and in purified eNOS fractions from porcine pulmonary artery endothelial cells, even though the latter had no detectable TP activity. PAO also caused a decrease in sulfhydryl content and eNOS activity in purified bovine eNOS. The reduction in eNOS sulfhydryl content and the inhibitory effect of PAO on eNOS activity were prevented by dithiothreitol, a disulfide-reducing agent. These results indicate that (i) PAO directly inhibits eNOS activity in endothelial cells by binding to thiol groups in the eNOS protein and (ii) results of studies using PAO to assess the role of protein tyrosine phosphorylation in regulating eNOS activity must be interpreted with great caution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号