首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P-glycoprotein (P-gp) is believed to be one of the most common causes of multidrug resistance (MDR) in chemotherapy. Studies have shown that the biosynthesis of cholesterol and cholesterol esters interfere with the function of P-gp. Since low density lipoprotein (LDL) carries a large amount of cholesterol, we investigated the effect of cholesterol derived from LDL on a line of human lymphoblastic leukemia MDR cells, CEM/VLB. Our results demonstrated that, in addition to increased cytotoxicity, the uptake of vinblastine in CEM/VLB cells increased, and LDL subsequently increased the intracellular vinblastine concentrations retained by CEM/VLB cells. The cholesterol levels in the membrane of the MDR cells were restored, while LDL significantly decreased the P-gp-associated ATPase activity. Current studies have shown that LDL leads to the resensitization of CEM/VLB cells to cytotoxic agents, likely through the restoration of cholesterol and reduction of P-gp-associated ATPase in the cell membrane.  相似文献   

2.
Cholesteryl esters present in nascent very low density lipoproteins are generated in a reaction catalyzed by acyl CoA:cholesterol acyltransferase (ACAT). To examine the effect of cholesteryl esters on the secretion of apoB-containing lipoproteins, we transiently overexpressed human (h) ACAT-1 in the livers of low density lipoprotein (LDL) receptor(-/-) mice using adenovirus-mediated gene transfer. Overexpression of hACAT-1 increased hepatic total and esterified cholesterol but did not reduce hepatic free cholesterol due to a compensatory increase in the rate of de novo cholesterol synthesis. Overexpression of hACAT-1 markedly increased the plasma concentration and hepatic secretion of apoB-containing lipoproteins but had no effect on the clearance of very low density lipoprotein-apoB from plasma indicating that cholesteryl esters play an important role in regulating the assembly and secretion of apoB-containing lipoproteins. ACAT activity has been implicated in the regulation of the LDL receptor pathway by dietary fatty acids. It has been hypothesized that unsaturated fatty acids, by enhancing ACAT activity, reduce the amount of free cholesterol in a putative regulatory pool that feeds back on LDL receptor expression. We directly tested this hypothesis in hamsters by transiently overexpressing hACAT-1 in the liver. Enhanced cholesterol esterification in the liver resulted in a compensatory increase in de novo cholesterol synthesis but no induction of LDL receptor expression suggesting that fatty acids regulate LDL receptor expression via a mechanism independent of ACAT.  相似文献   

3.
The intracellular protozoan Toxoplasma gondii lacks a de novo mechanism for cholesterol synthesis and therefore must scavenge this essential lipid from the host environment. In this study, we demonstrated that T. gondii diverts cholesterol from low-density lipoproteins for cholesteryl ester synthesis and storage in lipid bodies. We identified and characterized two isoforms of acyl-CoA:cholesterol acyltransferase (ACAT)-related enzymes, designated TgACAT1alpha and TgACAT1beta in T. gondii. Both proteins are coexpressed in the parasite, localized to the endoplasmic reticulum and participate in cholesteryl ester synthesis. In contrast to mammalian ACAT, TgACAT1alpha and TgACAT1beta preferentially incorporate palmitate into cholesteryl esters and present a broad sterol substrate affinity. Mammalian ACAT-deficient cells transfected with either TgACAT1alpha or TgACAT1beta are restored in their capability of cholesterol esterification. TgACAT1alpha produces steryl esters and forms lipid bodies after transformation in a Saccharomyces cerevisiae mutant strain lacking neutral lipids. In addition to their role as ACAT substrates, host fatty acids and low-density lipoproteins directly serve as Toxoplasma ACAT activators by stimulating cholesteryl ester synthesis and lipid droplet biogenesis. Free fatty acids significantly increase TgACAT1alpha mRNA levels. Selected cholesterol esterification inhibitors impair parasite growth by rapid disruption of plasma membrane. Altogether, these studies indicate that host lipids govern neutral lipid synthesis in Toxoplasma and that interference with mechanisms of host lipid storage is detrimental to parasite survival in mammalian cells.  相似文献   

4.
Cholesteryl ester synthesis by the acyl-CoA:cholesterol acyltransferase enzymes ACAT1 and ACAT2 is, in part, a cellular homeostatic mechanism to avoid toxicity associated with high free cholesterol levels. In hepatocytes and enterocytes, cholesteryl esters are secreted as part of apoB lipoproteins, the assembly of which is critically dependent on microsomal triglyceride transfer protein (MTP). Conditional genetic ablation of MTP reduces cholesteryl esters and enhances free cholesterol in the liver and intestine without diminishing ACAT1 and ACAT2 mRNA levels. As expected, increases in hepatic free cholesterol are associated with decreases in 3-hydroxy-3-methylglutaryl-CoA reductase and increases in ATP-binding cassette transporter 1 mRNA levels. Chemical inhibition of MTP also decreases esterification of cholesterol in Caco-2 and HepG2 cells. Conversely, coexpression of MTP and apoB in AC29 cells stably transfected with ACAT1 and ACAT2 increases cholesteryl ester synthesis. Liver and enterocyte microsomes from MTP-deficient animals synthesize lesser amounts of cholesteryl esters in vitro, but addition of purified MTP and low density lipoprotein corrects this deficiency. Enrichment of microsomes with cholesteryl esters also inhibits cholesterol ester synthesis. Thus, MTP enhances cellular cholesterol esterification by removing cholesteryl esters from their site of synthesis and depositing them into nascent apoB lipoproteins. Therefore, MTP plays a novel role in regulating cholesteryl ester biosynthesis in cells that produce lipoproteins. We speculate that non-lipoprotein-producing cells may use different mechanisms to alleviate product inhibition and modulate cholesteryl ester biosynthesis.  相似文献   

5.
6.
胆固醇代谢平衡调控的分子机理李伯良,段治军(中国科学院上海生物化学研究所上海200031)前言胆固醇在生物体内起着重要而又神秘的作用,特别在哺乳类细胞生命过程中是不可缺少的。由于胆固醇及其类似物的绝大部分分布在细胞膜上,目前一般认为胆固醇可起影响生物膜的结构及其选择通透性和流动性等作用。但是,哺乳动物体内胆固醇过高或过低都将影响正常生命过程,甚至产生严重病变,如动脉粥样硬化等。  相似文献   

7.
Several studies indicate that cholesterol esterification is deregulated in cancers. The present study aimed to characterize the role of cholesterol esterification in proliferation and invasion of two tumor cells expressing an activated cholecystokinin 2 receptor (CCK2R). A significant increase in cholesterol esterification and activity of Acyl-CoA:cholesterol acyltransferase (ACAT) was measured in tumor cells expressing a constitutively activated oncogenic mutant of the CCK2R (CCK2R-E151A cells) compared with nontumor cells expressing the wild-type CCK2R (CCK2R-WT cells). Inhibition of cholesteryl ester formation and ACAT activity by Sah58-035, an inhibitor of ACAT, decreased by 34% and 73% CCK2R-E151A cell growth and invasion. Sustained activation of CCK2R-WT cells by gastrin increased cholesteryl ester production while addition of cholesteryl oleate to the culture medium of CCK2R-WT cells increased cell proliferation and invasion to a level close to that of CCK2R-E151A cells. In U87 glioma cells, a model of autocrine growth stimulation of the CCK2R, inhibition of cholesterol esterification and ACAT activity by Sah58-035 and two selective antagonists of the CCK2R significantly reduced cell proliferation and invasion. In both models, cholesteryl ester formation was found dependent on protein kinase zeta/ extracellular signal-related kinase 1/2 (PKCζ/ERK1/2) activation. These results show that signaling through ACAT/cholesterol esterification is a novel pathway for the CCK2R that contributes to tumor cell proliferation and invasion.  相似文献   

8.
We studied cholesterol synthesis from [14C]acetate, cholesterol esterification from [14C]oleate, and cellular cholesterol and cholesteryl ester levels after incubating cells with apoE-free high density lipoproteins (HDL) or low density lipoproteins (LDL). LDL suppressed synthesis by up to 60%, stimulated esterification by up to 280%, and increased cell cholesteryl ester content about 4-fold. Esterification increased within 2 h, but synthesis was not suppressed until after 6 h. ApoE-free HDL suppressed esterification by about 50% within 2 h. Cholesterol synthesis was changed very little within 6 h, unless esterification was maximally suppressed; synthesis was then stimulated about 4-fold. HDL lowered cellular unesterified cholesterol by 13-20% within 2 h and promoted the removal of newly synthesized cholesterol and cholesteryl esters. These changes were transient; by 24 h, both esterification and cellular unesterified cholesterol returned to control levels, and cholesteryl esters increased 2-3-fold. HDL core lipid was taken up selectively from 125I-labeled [3H]cholesteryl ester- and ether-labeled HDL. LDL core lipid uptake was proportional to LDL apoprotein uptake. The findings suggest that 1) the cells respond initially to HDL or LDL with changes in esterification, and 2) HDL mediates both the removal of free cholesterol from the cell and the delivery of HDL cholesteryl esters to the cell.  相似文献   

9.
The citrus flavonoids, naringenin and hesperetin, lower plasma cholesterol in vivo. However, the underlying mechanisms are not fully understood. The ability of these flavonoids to modulate apolipoprotein B (apoB) secretion and cellular cholesterol homeostasis was determined in the human hepatoma cell line, HepG2. apoB accumulation in the media decreased in a dose-dependent manner following 24-h incubations with naringenin (up to 82%, P < 0.00001) or hesperetin (up to 74%, P < 0.002). Decreased apoB secretion was associated with reduced cellular cholesteryl ester mass. Cholesterol esterification was decreased, dose-dependently, up to 84% (P < 0.0001) at flavonoid concentrations of 200 microM. Neither flavonoid demonstrated selective inhibition of either form of acyl CoA:cholesterol acyltransferase (ACAT) as determined using CHO cells stably transfected with either ACAT1 or ACAT2. However, in HepG2 cells, ACAT2 mRNA was selectively decreased (- 50%, P < 0.001) by both flavonoids, whereas ACAT1 mRNA was unaffected. In addition, naringenin and hesperetin decreased both the activity (- 20% to - 40%, P < 0.00004) and expression (- 30% to - 40%, P < 0.02) of microsomal triglyceride transfer protein (MTP). Both flavonoids caused a 5- to 7-fold increase (P < 0.02) in low density lipoprotein (LDL) receptor mRNA, which resulted in a 1.5- to 2-fold increase in uptake and degradation of (125)I-LDL. We conclude that both naringenin and hesperetin decrease the availability of lipids for assembly of apoB-containing lipoproteins, an effect mediated by 1) reduced activities of ACAT1 and ACAT2, 2) a selective decrease in ACAT2 expression, and 3) reduced MTP activity. Together with an enhanced expression of the LDL receptor, these mechanisms may explain the hypocholesterolemic properties of the citrus flavonoids.  相似文献   

10.
Scrapie is a prion disease for which no means of ante-mortem diagnosis is available. We recently found a relationship between cell susceptibility to scrapie and altered cholesterol homeostasis. In brains and in skin fibroblasts and peripheral blood mononuclear cells from healthy and scrapie-affected sheep carrying a scrapie-susceptible genotype, the levels of cholesterol esters were consistently higher than in tissues and cultures derived from animals with a scrapie-resistant genotype. Here we show that intracellular accumulation of cholesterol esters (CE) in fibroblasts derived from scrapie-susceptible sheep was accompanied by parallel alterations in the expression level of acyl-coenzymeA: cholesterol-acyltransferase (ACAT1) and caveolin-1 (Cav-1) that are involved in the pathways leading to intracellular cholesterol esterification and trafficking. Comparative analysis of cellular prion protein (PrPc) mRNA, showed an higher expression level in cells from animals carrying a susceptible genotype, with or without Scrapie. These data suggest that CE accumulation in peripheral cells, together with the altered expression of some proteins implicated in intracellular cholesterol homeostasis, might serve to identify a distinctive lipid metabolic profile associated with increased susceptibility to develop prion disease following infection.  相似文献   

11.
Low density lipoprotein (LDL) can follow either a holoparticle uptake pathway, initiated by the LDL receptor (LDLr), and be completely degraded, or it can deliver its cholesteryl esters (CE) selectively to HepG2 cells. Although high density lipoprotein-CE selective uptake has been shown to be linked to cell cholesterol homeostasis in nonhepatic cells, there is no available information on the effect of LDL-CE selective uptake on hepatic cell cholesterol homeostasis. In order to define the role of the LDL-CE selective uptake pathway in hepatic cell cholesterol homeostasis, we used a cellular model that expresses constitutively a LDLr antisense mRNA and that shows LDLr activity at 31% the normal level (HepG2-all cells). The addition of a specific antibody anti-LDLr (IgG-C7) reduces LDL protein degradation (LDLr activity) to 7%. This cellular model therefore reflects, above all, LDL-CE selective uptake activity when incubated with LDL. The inactivation of LDLr reduces LDL-protein association by 78% and LDL-CE association by only 43%. The LDL-CE selective uptake was not reduced by the inactivation of LDLr. The activities of the various enzymes involved in cell cholesterol homeostasis were measured in normal and LDLr-deficient cells during incubation in the absence or presence of LDL as a cholesterol source. Essentially, 3-hydroxy-3-methylglutaryl coenzyme A reductase and acyl coenzyme A:cholesterol acyltransferase (ACAT) activities responded to LDL in LDLr-deficient cells as well as in normal HepG2 cells. Inhibition of lysosomal hydrolysis with chloroquine abolished the effect measured on ACAT activity in the presence of LDL, suggesting that CE of LDL, but not free cholesterol, maintains cell cholesterol homeostasis. Thus, in HepG2 cells, when LDLr function is virtually abolished, LDL-CE selective uptake is coupled to cell cholesterol homeostasis.  相似文献   

12.
Cholesteryl ester (CE) accumulation in arterial wall macrophages (foam cells), mediated by the intracellular enzyme acyl coenzyme A:cholesterol acyl transferase (ACAT), is a prominent feature of atherosclerotic lesions. However, native low density lipoprotein (LDL) does not cause activation of ACAT or CE accumulation in cultured mouse peritoneal macrophages despite both substantial LDL uptake and degradation and the presence of ACAT in these cells. We now report that when protein synthesis is inhibited in mouse peritoneal macrophages by treatment with cycloheximide, puromycin, or actinomycin D, native LDL-induced whole-cell ACAT activity and CE accumulation is 10-fold higher than that seen in LDL-treated control cells. The enhancement of ACAT activity was seen 4 h after the addition of cycloheximide, and ACAT activity returned to control values 4 h after the withdrawal of cycloheximide. Postnuclear supernatants and microsomes from cycloheximide-treated mouse peritoneal macrophages also had higher ACAT activity than microsomes from control cells, but the relative enhancement (maximum 3.3-fold) was less than that seen when ACAT was assayed in the intact cell. In contrast to the situation with mouse peritoneal macrophages, cycloheximide treatment of J774 macrophages, which under normal conditions display high ACAT activity and CE accumulation in the presence of native LDL, did not result in further enhancement of either ACAT activity or LDL-induced CE accumulation. From these data we postulate that mouse peritoneal macrophages have a short-lived protein that inhibits ACAT-mediated cholesterol esterification which is responsible for their lack of ACAT response and CE accumulation in the presence of native LDL. The explanation for high ACAT activity and LDL-induced CE accumulation in J774 macrophages may be that these cells lack the putative mouse peritoneal macrophage cholesterol esterification inhibitor.  相似文献   

13.
Cholesterol- and cholesteryl ester-rich macrophage foam cells, characteristic of atherosclerotic lesions, are often generated in vitro using oxidized low density lipoprotein (OxLDL). However, relatively little is known of the nature and extent of sterol deposition in these cells or of its relationship to the foam cells formed in atherosclerotic lesions. The purpose of this study was to examine the content and cellular processing of sterols in OxLDL-loaded macrophages, and to compare this with macrophages loaded with acetylated LDL (AcLDL; cholesteryl ester-loaded cells containing no oxidized lipids) or 7-ketocholesterol-enriched acetylated LDL (7KCAcLDL; cholesteryl ester-loaded cells selectively supplemented with 7-ketocholesterol (7KC), the major oxysterol present in OxLDL). Both cholesterol and 7KC and their esters were measured in macrophages after uptake of these modified lipoproteins. Oxysterols comprised up to 50% of total sterol content of OxLDL-loaded cells. Unesterified 7KC and cholesterol partitioned into cell membranes, with no evidence of retention of either free sterol within lysosomes. The cells also contained cytosolic, ACAT-derived, cholesteryl and 7-ketocholesteryl esters. The proportion of free cholesterol and 7KC esterified by ACAT was 10-fold less in OxLDL-loaded cells than in AcLDL or 7KCAcLDL-loaded cells. This poor esterification rate in OxLDL-loaded cells was partly caused by fatty acid limitation. OxLDL-loaded macrophages also contained large (approximately 40-50% total cell sterol content) pools of oxidized esters, containing cholesterol or 7KC esterified to oxidized fatty acids. These were insensitive to ACAT inhibition, very stable and located in lysosomes, indicating resistance to lysosomal esterases. Macrophages loaded with OxLDL do not accumulate free sterols in their lysosomal compartment, but do accumulate lysosomal deposits of OxLDL-derived cholesterol and 7-ketocholesterol esterified to oxidized fatty acids. The presence of similar deposits in lesion foam cells would represent a pool of sterols that is particularly resistant to removal.  相似文献   

14.
Pregnenolone (PREG) can be converted to PREG esters (PE) by the plasma enzyme lecithin: cholesterol acyltransferase (LCAT), and by other enzyme(s) with unknown identity. Acyl-CoA:cholesterol acyltransferase 1 and 2 (ACAT1 and ACAT2) convert various sterols to steryl esters; their activities are activated by cholesterol. PREG is a sterol-like molecule, with 3-β-hydroxy moiety at steroid ring A, but with much shorter side chain at steroid ring D. Here we show that without cholesterol, PREG is a poor ACAT substrate; with cholesterol, the V(max) for PREG esterification increases by 100-fold. The binding affinity of ACAT1 for PREG is 30-50-fold stronger than that for cholesterol; however, PREG is only a substrate but not an activator, while cholesterol is both a substrate and an activator. These results indicate that the sterol substrate site in ACAT1 does not involve significant sterol-phospholipid interaction, while the sterol activator site does. Studies utilizing small molecule ACAT inhibitors show that ACAT plays a key role in PREG esterification in various cell types examined. Mice lacking ACAT1 or ACAT2 do not have decreased PREG ester contents in adrenals, nor do they have altered levels of the three major secreted adrenal steroids in serum. Mice lacking LCAT have decreased levels of PREG esters in the adrenals. These results suggest LCAT along with ACAT1/ACAT2 contribute to control pregnenolone ester content in different cell types and tissues.  相似文献   

15.
SND1 is a putative oncoprotein whose molecular function remains unclear. Its overexpression in hepatocellular carcinoma impairs cholesterol homeostasis due to the altered activation of the sterol regulatory element-binding protein (SREBP) 2, which results in the accumulation of cellular cholesteryl esters (CE). In this work, we explored whether high cholesterol synthesis and esterification originates changes in glycerolipid metabolism that might affect cell growth, given that acetyl-coenzyme A is required for cholesterogenesis and fatty acids (FA) are the substrates of acyl-coenzyme A:cholesterol acyltransferase (ACAT). SND1-overexpressing hepatoma cells show low triglyceride (TG) synthesis, but phospholipid biosynthesis or cell growth is not affected. Limited TG synthesis is not due to low acetyl-coenzyme A or NADPH availability. We demonstrate that the main factor limiting TG synthesis is the utilization of FAs for cholesterol esterification. These metabolic adaptations are linked to high Scd1 expression, needed for the de novo production of oleic acid, the main FA used by ACAT. We conclude that high cholesterogenesis due to SND1 overexpression might determine the channeling of FAs to CEs.  相似文献   

16.
17.
The effects of transforming growth factor-beta (TGF-beta) on low density lipoprotein (LDL) receptor-mediated cholesterol metabolism were evaluated in vascular smooth muscle cells. TGF-beta significantly increased the binding, uptake, and degradation of 125I-LDL. This increase was paralleled by an increase in LDL receptor mRNA steady state levels and an increase in cholesterol esterification. The increase in LDL cholesterol metabolism was independent of proliferation. LDL receptor expression in response to TGF-beta was not affected by coincubation with an antibody against platelet-derived growth factor or by cyclooxygenase inhibitors in arterial smooth muscle cells, suggesting that TGF-beta's effect was not mediated through platelet-derived growth factor or prostaglandins, as demonstrated in other cell systems. However, coincubation with pertussis toxin abrogated the effect of TGF-beta on LDL receptor expression, suggesting that a pertussis toxin-sensitive G-protein may be involved in the signal transduction pathway. These results are discussed in terms of their potential effects on cellular cholesterol trafficking.  相似文献   

18.
It was previously reported by Tabas et al. that J774 macrophages, unlike mouse peritoneal macrophages, accumulate large amounts of cholesteryl esters when incubated with native low-density lipoprotein (LDL). Comparison of the cell line (designated J774A.2) used in those experiments with its parent line (J774A.1) indicates that it is a variant with a greater rate of cholesterol esterification. This large difference in cholesterol esterification was accompanied by only a small difference in rates of LDL uptake and degradation by the J774A.2 line. The J774A.2 cells have become a variant line through either mutation or selection which has enhanced its susceptibility to foam cell formation by its markedly increased ability to esterify cholesterol.  相似文献   

19.
Atherosclerosis is an inflammatory-fibroproliferative response of the arterial wall involving a complex set of interconnected events where cell proliferation (lymphomonocytes, and endothelial and smooth-muscle cells) and substantial perturbations of intracellular cholesterol metabolism are considered to be among the main features. Glucose-6-phosphate dehydrogenase (G6PD), the key enzyme of the hexose-monophosphate shunt pathway, is an essential enzyme involved in both cell growth and cholesterol metabolism, raising the question as to whether G6PD deficiency may have metabolic and growth implications in a deficient population. In the present study, we investigated cell growth and cholesterol metabolism in peripheral blood lymphomononuclear cells (PBMC) from G6PD-normal (n = 5) and -deficient (n = 5) subjects stimulated with lectins (phytohaemoagglutinin and Concanavalin A). G6PD activity, DNA ([3H]-thymidine incorporation) cholesterol synthesis and esterification ([14C]-acetate and [14C]-oleate incorporation), and G6PD, HMGCoA reductase and low density lipoprotein (LDL) receptor mRNA levels (RT-PCR) all increased following lectin stimulation in both normal and G6PD-deficient cells. However, these parameters were significantly lower in G6PD-deficient cells (P < 0.05). It is of interest that G6PD-deficient PBMC, which showed lower expression of G6PD and higher expression of the LDL receptor gene than normal PBMC under basal conditions, exhibited an opposite pattern after stimulation: G6PD and HMGCoA reductase being expressed at significantly higher levels in deficient than in normal cells (P < 0.05). We conclude that the reduced capability of G6PD-deficient cells to respond to mitogenic stimuli and to synthesize cholesterol esters may represent favourable conditions for reducing the risk of cardiovascular diseases.  相似文献   

20.
The aim of the present paper is to reinvestigate the role of multidrug resistance P-glycoprotein MDR1 and MDR-associated protein (MRP1) in cholesterol esterification using well-characterized inhibitors. Using specific substrate efflux assay, we show that GF120918 (0.2 microM) and probenecid (5 mM) were specific inhibitors of MDR1 and MRP1, respectively. In HepG2 cells, neither of them affect the esterification of cholesterol derived from the uptake of cholesterol-rich lipoprotein, while both verapamil (100 microM) and progesterone (100 microM) were able to inhibit cholesterol esterification. Similar results were obtained with verapamil, progesterone, and GF120918 in the MDR1-overexpressing cells MCF7/ADR. The capacity of progesterone to reduce cholesterol esterification is not correlated with its ability to inhibit MDR1 but is rather due to direct inhibition of acyl-CoA:cholesterol acyltransferase (ACAT). We conclude that the esterification of cholesterol is not correlated with MDR1 or MRP1 activity, thus excluding their role in the intracellular transport of endocytosis-derived cholesterol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号