首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The increasing amino acid transport activity which occurs during germination of Neurospora crassa is repressed by substrate amino acid. This repression acts on the transport systems similarly to competition in that amino acids within a specific transport class (e.g., basic) repress that system. Repression of the other system (neutral-aromatic) by that amino acid is shown to be repression of the general transport system. The level of repression and the rate of derepression after removal of the amino acid appear to depend on the nonrepressed level and rate. The extent of repression caused by increasing the concentration of the amino acid is shown to be different for two amino acids. A mutant deficient in developmental transport for arginine and phenylalanine contains two mutations. The mutation affecting phenylalanine transport maps on linkage group III and results in an accumulation of phenylalanine in the medium, thus repressing the development of this transport activity.This work was supported in part by a National Institutes of Health, U.S. Public Health Service Traineeship in Genetics (2-T01-GM1316).  相似文献   

2.
Short term, carrier mediated transport of D-glucose, L-leucine and L-lysine by guinea pig peritoneal macrophages was characterized. Analysis of the amino acid transport demonstrated two-limbed double reciprocal plots suggesting two transport systems for each amino acid. The low concentration limb of the curves established a Km of 0.1 mM for L-leucine and 0.05 mM for L-lysine; Vmax values were 2.0 and 2.85 nmole/mg protein/90 seconds, respectively. Leucine and lysine were shown to be competitive inhibitors of each other. Further competition studies revealed that other amino acids also had affinity for these carriers. Amino acid transport was found to be sensitive to sulfhydryl active compounds. Colchicine treatment of peritoneal macrophages did not inhibit the transport of the amino acids tested. Preloading macrophages with latex beads or heat-killed staphylococci by phagocytosis stimulated 2-deoxy-D-glucose (2-dOG) uptake markedly, but had no measurable effect on amino acid transport. Although total transport of 2-dOG increased in post-phagocytic macrophages, the kinetics of the system were not altered significantly. The Km for both pre- and post-phagocytic transport of 2-dOG was shown to be 1.2 mM and the Vmax was shown to increase from a pre-phagocytic value of 20 nmoles/mg protein/90 seconds to a post-phagocytic 27 nmoles/mg protein/90 seconds. Phagocytosis of heat-killed staphylococci by guinea pig polymorphonuclear leukocytes (PMNs), however, did not cause an augmentation in hexose transport in the cells. The presence of colchicine during phagocytosis did not alter subsequent uptake of amino acids by the macrophages.  相似文献   

3.
Further studies of amino acid transport by the rat liver slice have shown that the transport of α-aminoisobutyric acid is inhibited by glycine as well as dinitrophenol, Na+-free medium, and iodoacetate. Glycine itself is actively transported by the rat liver slice, although some metabolism also takes place. Cystine is transported by a single transport system, although reduction to cysteine occurs intracellularly and to some extent in the medium also. Cysteine is transported faster than cystine and to greater concentration gradients. Kinetic studies showed that cystine was transported by a single system that was inhibited by glycine but not by α-amino-isobutyric acid. Two transport systems were involved in cysteine transport, each inhibited to a certain extent by α-aminoisobutyric acid and glycine. Lysine and valine both exist at a higher concentration intracellularly than in the plasma in vivo but no intracellular gradients were obtained after in vitro incubations. It is suggested that the intracellular gradients for these amino acids are maintained by protein catabolism.  相似文献   

4.
Transport of amino acids in Saccharomyces cerevisiae is an H(+)-driven secondary active transport. Inhibitors of the plasma membrane H(+)-ATPase, particularly heavy water, diethylstilbestrol and suloctidil, were shown to affect the H(+)-extruding ATPase activity as well as the ATP-hydrolyzing activity, to a similar degree as they inhibited the transport of amino acids. The inhibitors had virtually no effect on the membrane electric potential or on the delta pH which constitute the thermodynamically relevant source of energy for these transports. Transport of acidic amino acids was affected much more than that of the neutral and especially of the basic ones. The effects were greater with higher amino acid concentrations. All this is taken as evidence that the amino acid carriers respond kinetically to the presence of protons directly at the membrane site where they are extruded by the H(+)-ATPase, rather than to the overall protonmotive force.  相似文献   

5.
The active transport of neutral amino acids into Streptomyces hydrogenans is inhibited by external Na+. There is no indication that in these cells amino acid accumulation is driven by an inward gradient of Na+. The extent of transport inhibition by Na+ depends on the nature of the amino acid. It decreases with increasing chain length of the amino acid molecules i.e. with increasing non-polar properties of the side chain. Kinetic studies show that Na+ competes with the amino acid for a binding site at the amino acid carrier. There is a close relation between the Ki values for Na+ and the number of C atoms of the amino acids. Other cations also inhibit neutral amino acid uptake competitively; the effectiveness decreases in the order Li+ greater than Na+ greater than K+ greater than Rb+ greater than Cs+. Anions do not have a significant effect on the uptake of neutral amino acids. After prolonged incubation of the cells with 150 mM Na+, in addition to the competitive inhibition of transport Na+ induces an increase in membrane permeability for amino acids.  相似文献   

6.
Cysteine had been reported to increase survival time in thymoma-bearing mice and the interpretation suggested was that this was due to inhibition of a collagenase activity associated with some tumor cells by a chelating action of cysteine. In the present work it was shown that cysteine was a particularly potent inhibitor of amino acid transport into S37 ascites tumor cells, raising another possible interpretation of the earlier data. Sarcomas have previously been reported to lack collagenase activity; a survival study using S37 cells was therefore undertaken in an attempt to distinguish between possible interpretations of the earlier data involving thymomas. A null result was obtained with either cysteine or EDTA, reinforcing the earlier interpretation that survival enhancement with thymoma-bearing mice was due to an effect on collagenase. Other sulfhydryl analogs were found to inhibit transport also, and the effect was more pronounced with system L than system A. The reason for cysteine's particularly potent action on amino acid transport may be associated either with chelation of a metal ion involved in transport, or the involvement of the gamma-glutamyl cycle in the support of amino acid transport.  相似文献   

7.
Abstract: Since protein synthesis in the developing brain may, under certain conditions, be limited by amino acid availability, the present studies were undertaken to characterize the kinetics of large neutral amino acid transport through the blood-brain barrier (BBB) of the newborn rabbit. The Km, Vmax, and KD of the transport of eight amino acids were determined by a nonlinear regression analysis of data obtained with the carotid injection technique. Compared with kinetic parameters observed for the adult rat, the Km, Vmax, and KD of amino acid transport were all two- to threefold higher in the newborn. Albumin was found to bind tryptophan actively in vitro , but had no inhibitory effect on tryptophan transport through the newborn BBB. Glutamine was transported through the BBB of the newborn at rates severalfold higher than are seen in the adult rat. However, glutamine transport was not inhibited by high concentrations of N -methylaminoisobutyric acid (NMAIB), a model amino acid that is specific for the alanine-preferring or A-system present in peripheral tissues. In conclusion, these studies show that the BBB neutral amino acid transport system of the newborn rabbit has a lower affinity and higher capacity than does the BBB of the adult rat. Under conditions of high plasma amino acids, the increased capacity of the newborn transport system allows for a higher rate of amino acid transport into brain than would occur via the lower capacity system present in the adult rat brain.  相似文献   

8.
Transport of l-aspartic acid in Neurospora crassa conidia is shown to be mediated by neutral and general amino acid transport systems. The transport activity is dependent on pH and results in accumulation of l-aspartic acid against a gradient. Mutants deficient in transport of l-aspartic acid are described.  相似文献   

9.
Cells depleted of amino acids show lower rates of glycine or aminoisobutyric acid uptake than do freshly isolated cells. In the amino acid-depleted cells, addition of valinomycin stimulates amino acid influx at least to the level observed in freshly isolated cells. In cells containing high levels of cellular amino acids, valinomycin has little effect on influx of amino acids. It is concluded that the transport of amino acids in freshly isolated cells is elevated compared to depleted cells because the cells are hyperpolarized by the continuous loss of cellular amino acids during the transport assay. During this hyperpolarization by amino acid loss, transport of amino acids is not further stimulated by valinomycin at low external [K+] (10 mM ± 5 mM).With the exception of preloading with glycine, cells preloaded with a single amino acid to a concentration greater than 20 mM show reduced rates of glycine and aminoisobutyric acid influx at early times (less than 15 min) compared to amino acid-depleted cells. The reduction of infiux is transient and by 30 min, influx is greater in preloaded than in amino acid-depleted cells.Knowing that increases and decreases in the membrane potential are achieved by using varying external [K+] in the presence of valinomycin and propranolol, and using amino acid-depleted cells, it can be shown that an increased membrane potential increases the V for glycine and aminoisobutyric acid influx. A decrease in the potential difference results in a decreased V. Changes in Km also occur when the membrane potential is varied.  相似文献   

10.
The neurological disorders seen in patients with chronic renal failure and liver cirrhosis are analogous. Previous in vivo studies have shown that the impaired blood-brain amino acid transport seen in rats with chronic renal failure is similar to that of rats with portocaval anastomosis. To elucidate whether a comparable underlying pathogenic mechanism plays a role in both pathological conditions, blood and brain amino acid levels together with amino acid transport by isolated brain microvessels have been studied in rats with chronic renal failure and in sham-operated rats. Brain microvessels isolated from rats with experimental chronic renal failure showed that the uptake of labeled large neutral amino acid, i.e., leucine or phenylalanine, but not of lysine or alpha-methylaminoisobutyric acid, was significantly increased with respect to sham-operated rats; conversely, the uptake of glutamic acid in rats with chronic renal failure was significantly lower compared with values in controls. Kinetic analysis indicated that this was mainly due to increased exchange transport activity (Vmax) of the L-system, rather than to changes in the affinity (Km) of the carrier system for the relative substrate. These data, together with the significant rise of brain glutamine levels and an increased brain-to-plasma ratio of the sum of large neutral amino acids, are analogous to what was previously observed in rats with portocaval anastomosis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The membrane changes which occur during cellular maturation of erythroid cells have been investigated. The transport of alpha-aminoisobutyric acid, alanine, and N-methylated-alpha-aminoisobutyric acid have been studied in the erythroblastic leukemic cell, the reticulocyte, and the erythrocyte of the Long-Evans rat. The dependence of amino acid transport on extracellular sodium concentration was investigated. Erythrocytes were found to transport these amino acids only by Na-independent systems. The steady state distribution ratio was less than 1. Reticulocytes were found to transport alpha-aminoisobutyric acid and alanine by Na-dependent systems, but only small amounts of N-methylated-alpha-aminoisobutyric acid. Small amounts of these amino acids were transported by Na-independent systems. The steady state distribution ratio was greater than one for Na-dependent transport. The erythroblastic leukemia cell, a model immature erythroid cell, showed marked Na-dependence (greater than 90%) for alpha-aminoisobutyric acid and alanine transport, and greater than 80% for the Na-dependent transport of N-methyl-alpha-aminoisobutyric acid. The steady state distribution ratio for the Na-dependent transport was greater than 4. In the erythroblastic leukemic cell, at least three Na-dependent systems are present: one includes alanine and alpha-aminoisobutyric acid, but excludes N-methyl-alpha-aminoisobutyric acid; one is for alpha-aminoisobutyric acid, alanine and also N-methyl-alpha-aminoisobutyric acid; and one is for N-methyl-alpha-aminoisobutyric acid alone. In the reticulocyte, the number of Na-dependent systems are reduced to two: one for alpha-aminoisobutyric acid and alanine; one for N-methyl-alpha-aminoisobutyric acid. In the erythrocytes, no Na-dependent transport was found. Therefore, maturation of the blast cell to the mature erythrocyte is characterized by a systematic loss in the specificity and number of transport system for amino acids.  相似文献   

12.
The regulation of the aromatic amino acid transport systems was investigated. The common (general) aromatic transport system and the tyrosine-specific transport system were found to be subject to repression control, thus confirming earlier reports. In addition, tryosine- and tryptophan-specific transport were found to be enhanced by growth of cells with phenylalanine. The repression and enhancement of the transport systems was abolished in a strain carrying an amber mutation in the regulator gene tyrR. This indicates that the tyrR gene product, which was previously shown to be involved in regulation of aromatic biosynthetic enzymes, is also involved in the regulation of the aromatic amino acid transport systems.  相似文献   

13.
Testosterone was previously shown to induce an early (less than 1 min) receptor-dependent stimulation of endocytosis, hexose and amino acid transport in mouse kidney cortex (Koenig, H., Goldstone, A. and Lu, C.Y. (1982) Biochem. Biophys. Res. Commun. 104, 165-172). Testosterone (10(-8) M) has now been found to stimulate rapidly (less than 30 s) the influx and efflux of 45Ca2+ in cortex slices. Testosterone also decreased mitochondrial 45Ca and augmented soluble 45Ca, indicating a mobilization of intracellular calcium. Incubation of cortex slices in calcium-free medium without or with 2.5 mM EGTA decreased basal endocytosis, hexose and amino acid transport and blocked the hormonal response. 100 microM verapamil blocked the hormonal response without affecting basal transport. The calcium ionophore A23187 rapidly stimulated endocytosis, hexose and amino acid transport. These data indicate that androgenic stimulation of membrane transport functions involves an increased influx of extracellular calcium and a mobilization of intracellular calcium. Increased cytosolic Ca2+ is probably the regulatory signal for these transport processes.  相似文献   

14.
The livR locus, which leads to a trans-recessive derepression of branched-chain amino acid transport and periplasmic branched-chain amino acid-binding proteins, is responsible for greatly increased sensitivity toward growth inhibition by leucine, valine, and serine and, as shown previously, for increased sensitivity toward toxicity by branched-chain amino acid analogues, such as 4-azaleucine or 5',5',5'-trifluoroleucine. These phenotypes are similar to those of relA mutants; however, the livR mutants retain the stringent response of ribonucleic acid synthesis. However, an increase in the rate of transport or in the steady-state intracellular level of amino acids in the livR strain cannot completely account for this sensitivity. The ability of the LIV-I transport system to carry out exchange of pool amino acids for extracellular leucine is a major factor in leucine sensitivity. The previous finding that inhibition of threonine deaminase by leucine contributes to growth inhibition is confirmed by simulating the in vivo conditions using a toluene-treated cell preparation with added amino acids at levels corresponding to the internal pool. The relationship between transport systems and corresponding biosynthetic pathways is discussed and the general principle of a coordination in the regulation of transport and biosynthetic pathways is forwarded. The finding that the LIV-I transport system functions well for amino acid exchange in contrast to the LIV-II system provides another feature that distinguishes these systems in addition to previously described differences in regulation and energetics.  相似文献   

15.
Amino acid starvation causes an adaptive increase in the initial rate of transport of selected neutral amino acids in an established line of rat hepatoma cells in tissue culture. After a lag of 30 min, the initial rate of transport of alpha-aminoisobutyric acid (AIB) increases to a maximum after 4 to 6 h starvation of 2 to 3 times that seen in control cells. The increased rate of transport is accompanied by an increase in the Vmax and a modest decrease in the Km for this transport system, and is reversed by readdition of amino acids. The enhancement is specific for amino acids transported by the A or alanine-preferring system (AIB, glycine, proline); uptake of amino acids transported by the L or leucine-preferring system (threonine, phenylalanine, tyrosine, leucine) or the Ly+ system for dibasci amino acids (lysine) is decreased under these conditions. Amino acids which compete with AIB for transport also prevent the starvation-induced increase in AIB transport; amino acids which do not compete fail to prevent the enhancement. Paradoxically threonine, phenylalanine, tryptophan, and tyrosine, which do not compete with AIB for transport, block the enhancement of transport upon amino acid starvation. The starvation-induced enhancement of amino acid transport does not appear to be the result of a release from transinhibition. After 30 min of amino acid starvation, AIB transport is either unchanged or slightly decreased even though amino acid pools are already depleted. Furthermore, loading cells with high concentrations of a single amino acid following a period of amino acid starvation fails to prevent the enhancement of AIB transport, whereas incubation of the cells with the single amino acid for the entire duration of amino acid starvation prevents the enhancement; intracellular amino acid pools are similar under both conditions. The enhancement of amino acid transport requires concomitant RNA and protein synthesis, consistent with the view that the adaptive increase reflects an increased amount of a rate-limiting protein involved in the transport process. Dexamethasone, which dramatically inhibits AIB transport in cells incubated in amino acid-containing medium, both blocks the starvation-induced increase in AIB transport, and causes a time-dependent decrease in transport velocity in cells whose transport has previously been enhanced by starvation.  相似文献   

16.
The pool of phenylalanine, tyrosine, and tryptophan is formed in Escherichia coli K-12 by a general aromatic transport system [Michaelis constant (K(m)) for each amino acid approximately 5 x 10(-7)m] and three further transport systems each specific for a single aromatic amino acid (K(m) for each amino acid approximately 2 x 10(-6)m, reference 3). When the external concentration of a particular aromatic amino acid is saturating for both classes of transport system, the free amino acid pool is supplied with external amino acid by both systems. Blocking the general transport system reduces the pool size by 80 to 90% but does not interfere with the supply of the amino acid to protein synthesis. If, however, the external concentration is too low to saturate specific transport, blocking general transport inhibits the incorporation of external amino acid into protein by about 75%. It is concluded that the amino acids transported by either class of transport system can be used for protein synthesis. Dilution of the external amino acid or deprivation of energy causes efflux of the aromatic pool. These results and rapid exchange observed between pool amino acid and external amino acids indicate that the aromatic pool circulates rapidly between the inside and the outside of the cell. Evidence is presented that this exchange is mediated by the aromatic transport systems. Mutation of aroP (a gene specifying general aromatic transport) inhibits exit and exchange of the small pool generated by specific transport. These findings are discussed and a simple physiological model of aromatic pool formation, and exchange, is proposed.  相似文献   

17.
18.
The uptake of various amino acids into Streptomyces hydrogenans grown in chemostatically and turbidostatically controlled steady state cultures has been investigated. A close correlation between transport capacity and the growth rates of the cells was found. As shown by kinetic analysis, the increased transport is due to elevated maximum uptake rates, the apparent Michaelis constants remaining unchanged. Analysis of the unidirectional fluxes of cycloleucine revealed that not only the influx is raised as the growth rate is increased but also the efflux. Hence, the conclusion is drawn that the growth-rate dependent modulation of transport capacity is, at least, partially due to the variation of the concentration of active transport components. Since the cells were grown in the absence of external amino acids the results suggest that amino acid transport into S. hydrogenans is under the control of endogenous effectors.List of Abbreviations AIB 2-aminoisobutyric acid - Cycloleucine 1-aminocyclopentane-1-carboxylic acid  相似文献   

19.
Amino acid uptake by Rhizobium leguminosarum is dominated by two ABC transporters, the general amino acid permease (Aap) and the branched-chain amino acid permease (Bra(Rl)). Characterization of the solute specificity of Bra(Rl) shows it to be the second general amino acid permease of R. leguminosarum. Although Bra(Rl) has high sequence identity to members of the family of hydrophobic amino acid transporters (HAAT), it transports a broad range of solutes, including acidic and basic polar amino acids (L-glutamate, L-arginine, and L-histidine), in addition to neutral amino acids (L-alanine and L-leucine). While amino and carboxyl groups are required for transport, solutes do not have to be alpha-amino acids. Consistent with this, Bra(Rl) is the first ABC transporter to be shown to transport gamma-aminobutyric acid (GABA). All previously identified bacterial GABA transporters are secondary carriers of the amino acid-polyamine-organocation (APC) superfamily. Also, transport by Bra(Rl) does not appear to be stereospecific as D amino acids cause significant inhibition of uptake of L-glutamate and L-leucine. Unlike all other solutes tested, L-alanine uptake is not dependent on solute binding protein BraC(Rl). Therefore, a second, unidentified solute binding protein may interact with the BraDEFG(Rl) membrane complex during L-alanine uptake. Overall, the data indicate that Bra(Rl) is a general amino acid permease of the HAAT family. Furthermore, Bra(Rl) has the broadest solute specificity of any characterized bacterial amino acid transporter.  相似文献   

20.
When protein synthesis is arrested by amino acid starvation, Escherichia coli wild-type strains show stringent control (SC) over stable RNA (sRNA) accumulation as well as a large number of other growth-related processes. One of the events under SC is transport of metabolites. Thus, under amino acid starvation, E. coli fails to accumulate the non-metabolizable glucose analog alpha-methyl-D-glucoside, whereas isogenic relaxed strains continue to take up this glucose analog. Unlike the Bacteria, most wild-type archaeal strains show relaxed control of sRNA accumulation, although a number of stringent strains have been identified. In order to determine whether stringency in the Archaea affects physiological events different from sRNA accumulation, transport of glucose analogs was examined under amino acid starvation in two stringent archaeal strains, Haloferax volcanii and Sulfolobus acidocaldarius. The experiments were performed with 2-deoxy-D-glucose, which was shown to be transported, but metabolized very limitedly. Unlike E. coli, H. volcanii and S. acidocaldarius continued to transport 2-deoxy-D-glucose under amino acid starvation. Thus, in both Archaea glucose analog transport is not under SC, as it is in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号