首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Two Candida albicans genes that encode the protein synthesis factor elongation factor 1 alpha (EF-1 alpha) were cloned by using a heterologous TEF1 probe from Mucor racemosus to screen libraries of C. albicans genomic DNA. Sequence analysis of the two clones showed that regions of DNA flanking the coding regions of the two genes were not homologous, verifying the presence of two genes, called TEF1 and TEF2, for EF-1 alpha in C. albicans. The coding regions of TEF1 and TEF2 differed by only five nucleotides and encoded identical EF-1 alpha proteins of 458 amino acids. Both genes were transcribed into mRNA in vivo, as shown by hybridization of oligonucleotide probes, which bound specifically to the 3' nontranslated regions of TEF1 and TEF2, respectively, to C. albicans total RNA in Northern (RNA) blot analysis. The predicted EF-1 alpha protein of C. albicans was more similar to Saccharomyces cerevisiae EF-1 alpha than to M. racemosus EF-1 alpha. Furthermore, codon bias and the promoter and termination signals of the C. albicans EF-1 alpha proteins were remarkably similar to those of S. cerevisiae EF-1 alpha. Taken together, these results suggest that C. albicans is more closely related to the ascomycete S. cerevisiae than to the zygomycete M. racemosus.  相似文献   

4.
Protein methylation reactions can play important roles in cell physiology. After labeling intact Saccharomyces cerevisiae cells with S-adenosyl-l-[methyl-(3)H]methionine, we identified a major methylated 49-kDa polypeptide containing [(3)H]methyl groups in two distinct types of linkages. Peptide sequence analysis of the purified methylated protein revealed that it is eukaryotic elongation factor 1A (eEF1A, formerly EF-1alpha), the protein that forms a complex with GTP and aminoacyl-tRNAs for binding to the ribosomal A site during protein translation. Previous studies have shown that eEF1A is methylated on several internal lysine residues to give mono-, di-, and tri-N-epsilon-methyl-lysine derivatives. We confirm this finding but also detect methylation that is released as volatile methyl groups after base hydrolysis, characteristic of ester linkages. In cycloheximide-treated cells, methyl esterified eEF1A was detected largely in the ribosome and polysome fractions; little or no methylated protein was found in the soluble fraction. Because the base-labile, volatile [methyl-(3)H]radioactivity of eEF1A could be released by trypsin treatment but not by carboxypeptidase Y or chymotrypsin treatment, we suggest that the methyl ester is present on the alpha-carboxyl group of its C-terminal lysine residue. From the results of pulse-chase experiments using radiolabeled intact yeast cells, we find that the N-methylated lysine residues of eEF1A are stable over 4 h, whereas the eEF1A carboxyl methyl ester has a half-life of less than 10 min. The rapid turnover of the methyl ester suggests that the methylation/demethylation of eEF1A at the C-terminal carboxyl group may represent a novel mode of regulation of the activity of this protein in yeast.  相似文献   

5.
We have determined the complete nucleotide sequence for TEF-1, one of three genes coding for elongation factor (EF)-1 alpha in Mucor racemosus. The deduced EF-1 alpha protein contains 458 amino acids encoded by two exons. The presence of an intervening sequence located near the 3' end of the gene was predicted by the nucleotide sequence data and confirmed by alkaline S1 nuclease mapping. The amino acid sequence of EF-1 alpha was compared to the published amino acid sequences of EF-1 alpha proteins from Saccharomyces cerevisiae and Artemia salina. These proteins shared nearly 85% homology. A similar comparison to the functionally analogous EF-Tu from Escherichia coli revealed several regions of amino acid homology suggesting that the functional domains are conserved in elongation factors from these diverse organisms. Secondary structure predictions indicated that alpha helix and beta sheet conformations associated with the functional domains in EF-Tu are present in the same relative location in EF-1 alpha from M. racemosus. Through this comparative structural analysis we have predicted the general location of functional domains in EF-1 alpha which interact with GTP and tRNA.  相似文献   

6.
The antineoplastic cyclic depsipeptide didemnin B (DB) inhibits protein synthesis in cells and in vitro. The stage at which DB inhibits protein synthesis in cells is not known, although dehydrodidemnin B arrests translation at the stage of polypeptide elongation. Inhibition of protein synthesis by DB in vitro also occurs at the elongation stage, and it was shown previously that DB prevents EF-2-dependent translocation in partial reaction models of protein synthesis. This inhibition of translocation displays an absolute requirement for EF-1alpha; however, the dependence upon EF-1alpha was previously unexplained. It is shown here that DB binds only weakly to EF-1alpha/GTP in solution, but binds to ribosome. EF-1alpha complexes with a dissociation constant K(d) = 4 microM. Thus, the inhibition of protein synthesis by DB appears to involve an interaction with both EF-1alpha and ribosomes in which all three components are required. Using diphtheria toxin-mediated ADP-ribosylation to assay for EF-2, it is demonstrated that DB blocks EF-2 binding to pre-translocative ribosome.EF-1alpha complexes, thus preventing ribosomal translocation. Based on this model for protein synthesis inhibition by DB, and the proposed mechanism of action of fusidic acid, evidence is presented in support of the Grasmuk model for EF-1alpha function in which this elongation factor does not fully depart the ribosome during polypeptide elongation.  相似文献   

7.
A single protein, Mr approximately 50000, is shown to be phosphorylated during incubation of a mono- and polyribosome fraction of rabbit reticulocytes with [gamma-32P]ATP at a low ionic strength. This protein has been identified as the elongation factor 1 alpha (EF-1 alpha). The phosphorylated EF-1 alpha, in contrast to the unmodified factor, is not detected in complexes with mono- and polyribosomes. It is suggested that the phosphorylation of EF-1 alpha can result in its decompartmentation from polyribosomes and thus affect the rate of protein synthesis.  相似文献   

8.
A protein existing mainly in the supernatant fraction of Escherichia coli was found to be methylated by accepting the methyl moiety originating from methionine. The protein was identified as peptide synthesis elongation factor Tu (EF-Tu) by the following criteria. 1) The methylatable protein separated at the same position as purified EF-Tu on two-dimensional gel electrophoresis. 2) The methylatable protein interacted with antiserum specific for EF-Tu. Amino acid analysis of the methyl-labeled protein suggested that the site of methylation was an epsilon-amino group of lysine.  相似文献   

9.
To identify genes that contribute to apoptotic resistance, IL-3 dependent hematopoietic cells were transfected with a cDNA expression library and subjected to growth factor withdrawal. Transfected cells were enriched for survivors over two successive rounds of IL-3 withdrawal and reconstitution, resulting in the identification of a full-length elongation factor 1 alpha (EF-1alpha) cDNA. Ectopic EF-1alpha expression conferred protection from growth factor withdrawal and agents that induce endoplasmic reticulum stress, but not from nuclear damage or death receptor signaling. Overexpression of EF-1alpha did not lead to growth factor independent cell proliferation or global alterations in protein levels or rates of synthesis. These findings suggest that overexpression of EF-1alpha results in selective resistance to apoptosis induced by growth factor withdrawal and ER stress.  相似文献   

10.
Thesaurin a is one of two protein components of a 42 S ribonucleoprotein particle that is very abundant in previtellogenic oocytes of Xenopus laevis. The primary function of the 42 S particle is the long-term storage of 5 S RNA and aminoacyl-tRNA. Thesaurin a is homologous to eukaryotic elongation factor 1 alpha (EF-1 alpha) and to prokaryotic elongation factor Tu (EF-Tu). Sequence comparison with EF-1 alpha and EF-Tu of different species indicates that thesaurin a is rather distantly related to all eukaryotic elongation factors. In spite of this, the secondary structure of thesaurin a, deduced from hydrophobic cluster analysis, is remarkably similar to that of EF-1 alpha and EF-Tu. The binding and catalytic properties of thesaurin a are also similar but not identical to those of EF-1 alpha. Like EF-1 alpha, purified thesaurin a binds tRNA, GDP, and GTP. Unlike EF-1 alpha, thesaurin a binds discharged tRNA more tightly than charged tRNA, and GTP more tightly than GDP. Thesaurin a also hydrolyzes GTP and catalyzes the mRNA-dependent binding of aminoacyl-tRNA to 80 S ribosomes. The functional properties of the 42 S particle are in general agreement with those of purified thesaurin a. In particular, the 42 S particle contains GTP and efficiently transfers aminoacyl-tRNA to 80 S ribosomes without addition of exogenous elongation factor.  相似文献   

11.
A M Metz  R T Timmer  M L Allen  K S Browning 《Gene》1992,120(2):315-316
A cDNA encoding the alpha-subunit of wheat protein synthesis elongation factor 1 (EF-1 alpha) was isolated from a wheat cDNA expression library and sequenced. The deduced amino acid sequence is compared to EF-1 alpha from other species and to elongation factor Tu (EF-Tu) from Escherichia coli. Putative GTP-binding sites are identified.  相似文献   

12.
We have cloned cDNAs encoding two variants of the elongation factor for protein synthesis in Xenopus laevis, called EF-1 alpha. One of these (42Sp50) is expressed exclusively in immature oocytes. It is one of two protein components of a 42S RNP particle that is very abundant in previtellogenic oocytes. The 42S RNP particle consists of various tRNAs, 5S RNA, 42Sp50 and a 5S RNA binding protein (42Sp43). A major function served by 42Sp50 appears to be the storage of tRNAs for later use in oogenesis and early embryogenesis. The second EF-1 alpha variant (EF-1 alpha O) is expressed mainly in oocytes but transiently in early embryogenesis as well. Its mRNA cannot be detected after neurulation in somatic cells. EF-1 alpha O is closely related to a third EF-1 alpha (EF-1 alpha S), discovered originally by Krieg et al. (1). EF-1 alpha S is expressed at low levels in oocytes but actively in somatic cells. The latter two proteins are very similar to known eukaryotic EF-1 alpha from other organisms and presumably function in their respective cell types to support protein synthesis.  相似文献   

13.
Elongation Factor 1 alpha (EF-1 alpha), an important eukaryotic translation factor, transports charged aminoacyl-tRNA from the cytosol to the ribosomes during poly-peptide synthesis. Metabolic radiolabeling with [3H] ethanolamine shows that, in all cells examined, EF-1 alpha is the major radiolabeled protein. Radiolabeled EF-1 alpha has an apparent Mr = 53,000 and a basic isoelectric point. It is cytosolic and does not contain N-linked oligosaccharides. Trypsin digestion of murine EF-1 alpha generated two major [3H]ethanolamine-labeled peptides. Three peptides were sequenced and were identical to two distinct regions of the human EF-1 alpha protein. Blank sequencing cycles coinciding with glutamic acid in the human cDNA-derived sequence were also found to release [3H]ethanolamine, and compositional analysis of these peptides confirmed the presence of glutamic acid. Dansylation analysis demonstrates that the amine group of the ethanolamine is blocked. These results indicate that EF-1 alpha is posttranslationally modified by the covalent attachment of ethanolamine via an amide bond to at least two specific glutamic acid residues (Glu-301 and Glu-374). The hydroxyl group of the attached ethanolamine was shown by mass spectrometry and compositional analysis, to be further modified by the addition of a phosphoglycerol unit. This novel posttranslational modification may represent an important alteration of EF-1 alpha, comparable to the regulatory effects of posttranslational methylation of EF-1 alpha lysine residues.  相似文献   

14.
The machinery of eukaryotic protein synthesis is found in association with the actin cytoskeleton. A major component of this translational apparatus, which is involved in the shuttling of aa-tRNA, is the actin- binding protein elongation factor 1alpha (EF-1alpha). To investigate the consequences for translation of the interaction of EF-1alpha with F- actin, we have studied the effect of F-actin on the ability of EF- 1alpha to bind to aa-tRNA. We demonstrate that binding of EF-1alpha:GTP to aa-tRNA is not pH sensitive with a constant binding affinity of approximately 0.2 microM over the physiological range of pH. However, the sharp pH dependence of binding of EF-1alpha to F-actin is sufficient to shift the binding of EF-1alpha from F-actin to aa-tRNA as pH increases. The ability of EF-1alpha to bind either F-actin or aa- tRNA in competition binding experiments is also consistent with the observation that EF-1alpha's binding to F-actin and aa-tRNA is mutually exclusive. Two pH-sensitive actin-binding sequences in EF-1alpha are identified and are predicted to overlap with the aa-tRNA-binding sites. Our results suggest that pH-regulated recruitment and release of EF- 1alpha from actin filaments in vivo will supply a high local concentration of EF-1alpha to facilitate polypeptide elongation by the F-actin-associated translational apparatus.  相似文献   

15.
A high Mr complex isolated from rabbit reticulocytes contains valyl-tRNA synthetase and the four subunits of elongation factor 1 (EF-1). Previously, valyl-tRNA synthetase and the alpha, beta, and delta subunits of EF-1 were shown to be phosphorylated in reticulocytes in response to phorbol 12-myristate 13-acetate (PMA). Phosphorylation of the complex was accompanied by an increase in both valyl-tRNA synthetase and EF-1 activity (Venema, R. C., Peters, H. I., and Traugh, J. A. (1991) J. Biol. Chem., 266, 11993-11998). To investigate phosphorylation of the valyl-tRNA synthetase EF-1 complex in vitro by protein kinase C, the complex has been purified to apparent homogeneity from rabbit reticulocytes by gel filtration on Bio-Gel A-5m, affinity chromatography on tRNA-Sepharose, and fast protein liquid chromatography on Mono Q. Valyl-tRNA synthetase and the beta and delta subunits of EF-1 in the complex are highly phosphorylated by protein kinase C (0.5-0.9 mol of phosphate/mol of subunit), while EF-1 alpha is phosphorylated to a lesser extent (0.2 mol/mol). However, the isolated EF-1 alpha subunit is highly phosphorylated (2.0 mol/mol). Phosphopeptide mapping of EF-1 alpha shows that the same sites are modified by protein kinase C in vitro and in PMA-treated cells. Phosphorylation of the valyl-tRNA synthetase.EF-1 complex results in a 3-fold increase in activity of EF-1 as measured by poly(U)-directed polyphenylalanine synthesis; no effect of phosphorylation is detected with valyl-tRNA synthetase and isolated EF-1 alpha. Thus, phosphorylation and activation of EF-1 by protein kinase C, which has been shown to occur in vitro as well as in reticulocytes, may have a role in PMA stimulation of translational rates.  相似文献   

16.
Eukaryotic protein elongation factors   总被引:27,自引:0,他引:27  
In eukaryotes, peptide chain elongation is mediated by elongation factors EF-1 and EF-2. EF-1 is composed of a nucleotide-binding protein EF-1 alpha, and a nucleotide exchange protein complex, EF-1 beta gamma, while EF-2 catalyses the translocation of peptidyl-tRNA on the ribosome. Elongation factors are highly conserved among different species and may be involved in functions other than protein synthesis, such as organization of the mitotic apparatus, signal transduction, developmental regulation, ageing and transformation. Yeast contains a third factor, EF-3, whose structure and function is not yet well understood.  相似文献   

17.
The developmental regulation of the translational elongation factor EF-1 alpha has been analyzed in tobacco. A gene fusion was constructed consisting of the 5' and 3' regions of the tomato genomic clone LeEF-A from the EF-1 alpha gene family and the beta-glucuronidase coding region. Analysis of the transgenic plants containing this chimeric gene demonstrated that the tomato LeEF-A flanking sequences were sufficient to confer expression patterns similar to those of the endogenous tobacco EF-1 alpha gene. The patterns of beta-glucuronidase activity in this system indicated that during plant growth and development EF-1 alpha is regulated with increased expression corresponding to regions of high protein synthesis, including meristems, rapidly growing tissues, and developing gametophytes. In addition, EF-1 alpha expression responds rapidly to changes in growth patterns induced by hormone treatment. Our results are in agreement with studies in animals indicating that EF-1 alpha expression may be rate limiting for protein synthesis and demonstrate that the analysis of EF-1 alpha is of value for studying interrelationships between protein synthesis and developmental control.  相似文献   

18.
We examined survival, growth and protein synthesis in mosquito cells that had been maintained for up to 21 days in serum-free medium. On polyacrylamide gels, protein bands from "starved" cells remained discrete, and despite low levels of incorporation, radiolabeled bands were detectable, suggesting that low levels of protein synthesis were sustained. A prominent band that accumulated in serum-starved cells was digested with trypsin and analyzed by tandem mass spectrometry, which identified the protein as eukaryotic elongation factor (EF)-1 alpha EF-1 alpha is well-conserved among species, and differential accumulation of EF-1 alpha in serum-starved cells was verified by western blotting using a primary antibody to the homologous protein from Trypanosoma brucei. Aside from its importance in the elongation step of protein synthesis, EF-1 alpha has been shown to have a number of non-canonical functions, including interaction with viral RNA and a potential role in apoptosis. We anticipate that the prolonged viability of mosquito cells in serum-free medium may provide a system to explore whether EF-1 alpha accumulation is an adaptive response compatible with resumption of growth in the event that nutrients are replenished, or whether the excess EF-1 alpha represents an irreversible commitment to an apoptotic pathway.  相似文献   

19.
The guanine nucleotide exchange factor, elongation factor 1 beta gamma (EF-1 beta gamma) has been purified from Artemia cysts using an improved method. The protein consists of two distinct polypeptides with relative molecular masses of 26,000 (EF-1 beta) and 46,000 (EF-1 gamma). A nucleoside diphosphate phosphotransferase activity often found in EF-1 beta gamma preparations has been completely separated from the actual guanine nucleotide exchange stimulatory activity of EF-1 beta gamma, thus indicating that nucleotide diphosphate phosphotransferase is not an intrinsic property of EF-1 beta. Both EF-1 beta gamma and EF-1 beta have been shown to stimulate the following three reactions to a comparable degree: (a) exchange of GDP bound to EF-1 alpha with exogenous GDP; (b) EF-1 alpha-dependent binding of Phe-tRNA to ribosomes; (c) poly(U)-dependent poly(phenylalanine) synthesis. However, a significantly higher nucleotide exchange rate was observed in the presence of EF-1 beta gamma compared to EF-1 beta alone. Concerning elongation factor 1 gamma (EF-1 gamma) the following observations were made. In contrast to EF-1 beta, pure EF-1 gamma is rather insoluble in aqueous buffers, but the tendency to precipitate can be partially suppressed by the addition of detergents. In particular, EF-1 gamma partitions solely into the detergent phase of Triton X-114 solutions. EF-1 gamma is also more susceptible to spontaneous, specific fragmentation. It is remarkably that about 5% of the cellular pool of EF-1 beta gamma was found to be present in membrane fractions, under conditions where no EF-1 alpha was detectable in these fractions. Furthermore it was noted that EF-1 beta gamma copurified strongly with tubulin on DEAE-cellulose. Moreover, it was observed that from a mixture of EF-1 beta gamma and tubulin, EF-1 gamma coprecipitates with tubulin using a non-denaturating immunoprecipitation technique. These findings suggest that EF-1 gamma has a hydrophobic domain and interacts with membrane and cytoskeleton structures in the cell.  相似文献   

20.
Eukaryotic polypeptide elongation factor EF-1 is not only a major translational factor, but also one of the most important multifunctional (moonlighting) proteins. EF-1 consists of four different subunits collectively termed EF-1alphabeta beta'gamma and EF-1alphabeta gammadelta in plants and animals, respectively. EF-1alpha x GTP catalyzes the binding of aminoacyl-tRNA to the A-site of the ribosome. EF-1beta beta'gamma (EF-1beta and EF-1beta'), catalyzes GDP/GTP exchange on EF-1alpha x GDP to regenerate EF-1alpha x GTP. EF-1gamma has recently been shown to have glutathione S-transferase activity. EF-2 catalyzes the translocation of peptidyl-tRNA from the A-site to the P-site on the ribosome. Recently, molecular mimicry among tRNA, elongation factors, releasing factor (RF), and ribosome recycling factor (RRF) has been demonstrated and greatly improved our understanding of the mechanism of translation. Moreover, eukaryotic elongation factors have been shown to be concerned or likely to be concerned in various important cellular processes or serious diseases, including translational control, signal transduction, cytoskeletal organization, apoptosis, adult atopic dermatitis, oncogenic transformation, nutrition, and nuclear processes such as RNA synthesis and mitosis. This article aims to overview the recent advances in protein biosynthesis, concentrating on the moonlighting functions of EF-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号