首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Four 2-phenylbenzotriazole (PBTA)-type compounds (PBTA-4, PBTA-6, PBTA-7, and PBTA-8) were identified as major mutagens in blue cotton/rayon-adsorbed substances collected at sites below textile dyeing factories or municipal water treatment plants treating domestic waste and effluents from textile dyeing factories in several rivers in Japan. The main purpose of this study is to understand the basis of the roles of human cytochrome P450 (CYP) and N-acetyltransferases (NATs) in genotoxic activation of PBTA derivatives. We compared the induction of umuC gene expression as a measure of genotoxicity using Salmonella typhimurium TA1535/pSK1002 (parental strain), NM2009 (bacterial O-acetyltransferase-overexpressing strain) established in our laboratories. PBTA-4, PBTA-6, PBTA-7, and PBTA-8 induced the umuC gene expression more strongly in the bacterial O-acetyltransferase-overproducing strain than in the parental strain in the presence of rat S9 mix. We determined the activation of PBTA derivatives by cDNA-based recombinant (Trichoplusia ni) systems expressing human or rat cytochrome P450 enzymes (P450 or CYP) and NADPH-P450 reductase using S. typhimurium NM2009. The results showed that human recombinant CYP1A1 enzyme was much more active than CYP1A2 and CYP3A4 in the genotoxic activation of PBTA-4, PBTA-6, PBTA-7, and PBTA-8. Similarly, rat recombinant CYP1A1 enzyme catalyzed the activation of these chemicals at high rates. α-Naphthoflavone, a known inhibitor of CYP1A1, was found to inhibit genotoxic activation caused by PBTA derivatives. We further determined the activation of PBTA derivatives using S. typhimurium NM6001 (human NAT1-expressing strain), S. typhimurium NM6002 (human NAT2-expressing strain), and S. typhimurium NM6000 (O-AT-deficient parent strain) in the presence of S9 mix. PBTA-4 showed almost similar sensitivity in the NAT1-expressing strain and the NAT2-expressing strain, although NAT2-expressing strain exhibited relatively higher sensitivity to PBTA-6, PBTA-7, and PBTA-8 than NAT1-expressing strain. The results support the view that O-acetylation by human NAT1 and NAT2 enzymes is involved in the genotoxic activation of PBTA compounds. These results demonstrate for the first time that human P4501A1 and NATs (NAT1 and NAT2) contribute significantly to the activation of PBTA-type compounds to genotoxic metabolites that induce umuC gene expression in S. typhimurium tester strains.  相似文献   

2.
Oda Y 《Mutation research》2004,554(1-2):399-406
Human acetyltransferase genes NAT1 or NAT2 were expressed in a Salmonella typhimurium strain used to detect the genotoxicity of bladder carcinogens. To clarify whether the human and rodent bladder carcinogenic arylamines are activated via either NAT1 or NAT2 to cause genotoxicity, a SOS/umu genotoxicity assay was used, with the strains S. typhimurium NM6001 (NAT1-overexpressing strain), S. typhimurium NM6002 (NAT2-overexpressing strain), and S. typhimurium NM6000 (O-AT-deficient parent strain). Genotoxicity was measured by induction of SOS/umuC gene expression in the system, which contained both an umuC"lacZ fusion gene and NAT1 or NAT2 plasmids. 4-Aminobiphenyl, 2-acetylaminofluorene, beta-naphthylamine, o-tolidine, o-anisidine, and benzidine exhibited dose-dependent induction of the umuC gene in strain NM6001. Although the induction of umuC by these chemicals was observed in the NM6002 strain, the induction was considerably lower than in the NM6001 strain. In the parent strain, NM6000, none of these compounds induced umuC gene expression. We also determined activation of these chemicals by recombinant human cytochrome P450 (P450 or CYP) 1A2 enzyme in three S. typhimurium tester strains. The activation of the chemicals was stronger in the NM6001 strain than that in NM6002. The specific NAT1 inhibitor 5-iodosalicylic acid inhibited umuC gene expression induced by aromatic amines used. These results could provide evidence that the bladder carcinogenic aromatic amines are mainly activated by the NAT1 enzyme to produce DNA damage rather than NAT2. The NAT1-overexpressing strain can be used to determine the genotoxic activation of bladder carcinogenic arylamines in the umu test and could provide a tool for predicting the carcinogenic potential of arylamines.  相似文献   

3.
In order to develop a new tester strain detecting environmental promutagens and procarcinogens, we introduced two plasmids into Salmonella typhimurium TA1535; one contains the cDNAs of human cytochrome P450 (P450 or CYP) 1A2 and NADPH-P450 reductase and the other (pOA101) a umuC"lacZ fusion gene. The newly developed tester strain, S. typhimurium OY1001/1A2, was found to express P450 at a level of 0.15 nmol/ml in whole cell culture. Membrane fractions, when isolated from this tester strain, contained 0.04 P450 nmol/mg protein and a reductase activity of 170 nmol cytochrome c reduced/min/mg protein and were active in catalyzing CYP1A2-dependent 7-ethoxyresorufin O-deethylation and metabolic activation of heterocyclic aromatic amines to DNA-damaging products in a conventional tester S. typhimurium NM2009 strain, only when NADPH was added as a reducing equivalent. In the OA1002/1A2 strain, heterocyclic aromatic amines (e.g., IQ, MeIQ, and MeIQx) were found to be activated to reactive metabolites that cause induction of umuC gene expression in a dose-dependent manner, without addition of external NADPH. These results indicate that the newly established strain can be of use to detect mutagenic and carcinogenic potencies of environmental chemicals without addition of metabolic activation system.  相似文献   

4.
We investigated roles of different forms of cytochrome P450 (P450 or CYP) in the metabolic activation of heterocyclic amines (HCAs) and other procarcinogens to genotoxic metabolite(s) in the newly developed umu tester strains Salmonella typhimurium (S. typhimurium) OY1002/1A1, OY1002/1A2, OY1002/1B1, OY1002/2C9, OY1002/2D6, OY1002/2E1 and OY1002/3A4, which express respective human P450 enzymes and NADPH-cytochrome P450 reductase (reductase) and bacterial O-acetyltransferase (O-AT). These strains were established by introducing two plasmids into S. typhimurium TA1535, one carrying both P450 and the reductase cDNA in a bicistronic construct under control of an IPTG-inducible double tac promoter and the other, pOA102, carrying O-AT and umuC"lacZ fusion genes. Expression levels of CYP were found to range between 35 to 550 nmol/l cell culture in the strains tested. O-AT activities in different strains ranged from 52 to 125 nmol isoniazid acetylated/min/mg protein. All HCAs tested, and 2-aminoanthracene and 2-aminofluorene exhibited high genotoxicity in the OY1002/1A2 strain, and genotoxicity of 2-amino-3-methylimidazo [4,5-f]quinoline was detected in both the OY1002/1A1 and OY1002/1A2 strains. 3-Amino-1,4-dimethyl-5H-pyrido[4,3-b]-indole and 3-amino-1-methyl-5H-pyrido[4,3-b]-indole were activated in the OY1002/1A1, OY1002/1B1, OY1002/1A2, and OY1002/3A4 strains. Aflatoxin B(1) exhibited genotoxicity in the OY1002/1A2, OY1002/1A1, and OY1002/3A4 strains. beta-Naphthylamine and benzo[a]pyrene did not exhibit genotoxicity in any of the strains. These results suggest that CYP1A2 is the major cytochrome P450 enzyme involved in bioactivation of HCAs.  相似文献   

5.
A sensitive umu test system for the detection of mutagenic nitroarenes has been developed using a new tester strain Salmonella typhimurium NM1011 having a high nitroreductase activity. The new strain was constructed by subcloning the bacterial nitroreductase gene into a plasmid pACYC184 and introducing the plasmid into the original strain S. typhimurium TA1535/pSK1002 harboring a fusion gene umuC'-'lacZ (pSK1002). Thus, the tester strain enabled us to monitor the genotoxic activities of various nitroarene compounds by measuring the beta-galactosidase activity in the cells. The sensitivity of strain NM1011 was compared with that of the parent tester strain S. typhimurium TA1535/pSK1002 or a nitroreductase-deficient strain S. typhimurium NM1000 with respect to the induction of umuC gene expression by 17 mutagenic nitroarenes. The newly developed strain with high nitroreductase activity had about 3 times higher nitrofurazone-reductase activity than the parent strain and was highly sensitive to the compounds 2-nitrofluorene, 1-nitronaphthalene, 2-nitronaphthalene, 1-nitropyrene, m-dinitrobenzene, 4,4'-dinitrobiphenyl, 3-nitrofluoranthene, 3,7-dinitrofluoranthene, 3,9-dinitrofluoranthene, 5-nitroacenaphthene and 2,4-dinitrotoluene. By contrast, the enzyme-deficient strain did not show any considerable response to 2-nitrofluorene, m-dinitrobenzene, 1-nitronaphthalene, 2-nitronaphthalene, 1-nitropyrene, 4,4'-dinitrobiphenyl, 3-nitrofluoranthene, 3,7-dinitrofluoranthene, 2,4-dinitrotoluene and 5-nitroacenaphthene. These results suggest that the newly developed tester strain with high nitroreductase activity is very useful for the detection of potent mutagenic nitroarene compounds.  相似文献   

6.
We previously reported on the isolation and structural determination of five 2-phenylbenzotriazole (PBTA)-type mutagens (PBTA-1, PBTA-2, PBTA-3, PBTA-4 and PBTA-6) in blue rayon/cotton adsorbed substances collected from surface waters at sites located downstream of sewage treatment plants. We also noted that PBTA-1 and PBTA-2 were discharged from sewage treatment plants and subsequently diluted or decomposed while moving down the Yodo River system. However, it has not been investigated whether they are commonly discharged from sewage treatment plants into rivers. The main purpose of this study was to make a comprehensive survey of levels and behavior of PBTA-type mutagens in effluents discharged from the sewage treatment plant located along the bank of the Uji River, one tributary of the Yodo River system. Water samples were collected at the outlet of the sewage treatment plant for 16 consecutive days in May 1999 and 11 consecutive days in December 1999. Organic constituents were obtained via sorption to blue rayon and subsequent methanol elution. Extract mutagenic activity was measured using Salmonella typhimurium YG1024 with metabolic activation. PBTA-type mutagens (PBTA-1, PBTA-2, PBTA-3, PBTA-4, PBTA-5 and PBTA-6) were quantified by HPLC with electrochemical detection, followed by HPLC purification on reverse-phase columns. The study showed that PBTA-2, PBTA-3, PBTA-4 and PBTA-6 were detected in most samples. The total contribution of these four PBTA-type mutagens to overall extract mutagenicity is on average 33% for the May 1999 sample and 58% for the December 1999 sample. The individual PBTA compounds that had the largest contribution to the overall mutagenicity were PBTA-3 and PBTA-4, accounting for 11 and 16% in May 1999, and 25 and 26% in December 1999. A further comparative study was done in December 1999 using the blue rayon hanging method and the results were similar to those obtained using the blue rayon column method. In conclusion, the present study showed that PBTA-2, PBTA-3, PBTA-4 and PBTA-6 were commonly discharged from a sewage treatment plant into the Uji River, and they accounted for a substantial portion of the effluent mutagenicity.  相似文献   

7.
Metabolic activation of 1-nitropyrene (1-NP) by human cytochrome P450 (P450) family 1 enzymes co-expressed with NADPH-cytochrome P450 reductase (NPR) in Escherichia coli membranes was investigated. 1-NP induced umu gene expression in Salmonella typhimurium TA1535/pSK1002 in the absence of any P450 system, but the activities were influenced by the levels of bacterial O-acetyltransferase (OAT) and nitroreductase. Metabolic activation of 1-NP by human P450 1B1/NPR membranes was observed and was influenced by the levels of OAT levels in tester strains. Metabolic activation of 1-NP (0.3microM) by P450 1B1 was 750 umu units/min/nmol P450 1B1 in an OAT-overexpressing strain NM2009. The metabolic activation of 1-NP (3-30microM) was similar (approximately 300 umu units/min/nmol P450 1B1) using TA1535/pSK1002 or OAT-deficient strain NM2000. P450 1B1 had the highest catalytic activities among P450 family 1 enzymes for the activation of 1-aminopyrene (1-AP) in the OAT-overexpressing strain NM2009, suggesting nitrenium ion formation via N-hydroxylation/O-acetylation. High-performance liquid chromatography (HPLC) analyses revealed the formation of 1-nitropyrene-6-ol and also 1-nitropyrene-3-ol, 1-nitropyrene-8-ol, and trans-4,5-dihydroxy-4,5-diol-1-nitropyrene from 1-NP (10microM), catalyzed by P450 1B1. These results indicate that 1-NP can be activated by human P450 1B1 to a genotoxic agent by nitroreduction/O-acetylation at low substrate concentrations and probably by epoxidation (independent of OAT) at high concentrations.  相似文献   

8.
We newly developed 10 Salmonela typhimurium TA1538 strains each co-expressing a form of human cytochrome P450s (P450 or CYP) together with NADPH-cytochrome P450 reductase (CPR) for highly sensitive detection of mutagenic activation of mycotoxins, polycyclic aromatic hydrocarbons, heterocyclic amines, and aromatic amines at low substrate concentrations. Each form of P450 (CYP1A1, CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4 or CYP3A5) expressed in the TA1538 cells efficiently catalyzed the oxidation of a representative substrate. Aflatoxin B1 was mutagenically activated effectively by CYP1A1, CYP1A2, and CYP3A4 and weakly by CYP2A6 and CYP2C8 expressed in S. typhimurium TA1538. CYP1A1 and CYP1A2 were responsible for the mutagenic activation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-acetylaminofluorene. Benzo[a]pyrene was also activated efficiently by CYP1A1 and weakly by CYP1A2, CYP2C9, CYP2C19, and CYP3A4 expressed in TA1538. These results suggest that the newly developed S. typhimurium TA1538 strains are applicable for detecting the activation of promutagens of which mutagenic activation is not or weakly detectable with N-nitrosamine-sensitive YG7108 strains expressing human P450s.  相似文献   

9.
We have previously isolated five mutagens in blue rayon-adsorbed substances from water at a site below sewage plants in the Nishitakase River, in Kyoto, Japan, and identified two of them as 2-phenylbenzotriazole derivatives, 2-[2-(acetylamino)-4-[bis(2-methoxyethyl)amino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-1) and 2-[2-(acetylamino)-4-[(2-cyanoethyl)ethylamino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-2). In the present study, we collected adsorbed materials on blue cotton (3 kg x 9 times) at the same location, and isolated a sufficient amount (97 microg) of one of the remaining three mutagens other than PBTA-1 and PBTA-2, for structural analysis, by multiple column chromatography. The structure of mutagen, accounting for 12% of the total mutagenicity of the blue rayon-adsorbed substances, was determined to be a PBTA-1 analogue, 2-[2-(acetylamino)-4-amino-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-4). PBTA-4 is a potent mutagen, inducing 190,000 and 7,800,000 revertants of Salmonella typhimurium TA98 and YG1024 per microgram, respectively, in the presence of S9 mix. In addition to the water of the Nishitakase River, PBTA-4 was detected in water samples from two rivers that flow through other regions where textile-dyeing industries have been developed. Like other PBTA analogues, PBTA-4 might also be produced from azo dyes during industrial processes in dyeing factories and treatment at sewage plants.  相似文献   

10.
Genetic polymorphism of CYP2A6 in relation to cancer.   总被引:7,自引:0,他引:7  
To clarify the roles of human cytochrome P450 (P450 or CYP) 2A6 and 2E1 on the metabolic activation of N-nitrosamines, we established genetically engineered Salmonella typhimurium strains harboring human CYP2A6 or CYP2E1 together with NADPH-P450 reductase (OR). The 5'-terminus of CYP cDNA was modified to achieve a high-level expression in S. typhimurium. Modified CYP2A6 or CYP2E1 cDNA and native OR cDNA were introduced into a pCW vector. S. typhimurium YG7108 cells were transformed with this vector. The mutagen producing ability of these enzymes for some N-nitrosamines were evaluated using the established S. typhimurium cells. We found that the substrate specificity of CYP2A6 and CYP2E1 was different among mutagens. CYP2A6 was responsible for the metabolic activation of N-nitrosamines possessing relatively long alkyl chains, whereas CYP2E1 was responsible for the metabolic activation of N-nitrosamines with relatively short alkyl chains. It is likely that CYP2A6 gene polymorphism is responsible for the interindividual variability on the cancer susceptibility. We found the whole deletion of CYP2A6 gene as a type of genetic polymorphism in Japanese. Thus, we developed a gene diagnosis method to detect the variant. We evaluated the relationship between the CYP2A6 gene whole deletion and the susceptibility to the lung cancer. The frequency of CYP2A6 gene whole deletion was significantly lower in the lung cancer patients than that of healthy volunteers.  相似文献   

11.
To clarify their mutagenic potential, samples of water from the Mawatari, Asuwa and Kitsune rivers, which flow through the central area of Fukui, Japan, were seasonally collected at six sites using blue rayon from July 1998 to August 2000. Forty-five of 52 (87%) of the water samples exhibited mutagenicity toward Salmonella typhimurium YG1024 and YG1029 with and without S9 mix, and the highest potencies were observed in YG1024 with S9 mix. The samples collected in summer and autumn tended to be more mutagenic than those collected in winter and spring. Fractionation using high-performance liquid chromatography (HPLC) suggests that several compounds are responsible for the mutagenicity of river water samples, and some of the major mutagens seem to be common among the samples. Three 2-phenylbenzotriazole (PBTA)-type mutagens, 2-[2-(acetylamino)-4-[(2-hydroxyethyl)amino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-3), 2-[2-(acetylamino)-4-amino-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-4) and 2-[2-(acetylamino)-4-[bis(2-hydroxyethyl)amino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-6), were quantified in samples collected between July 1998 and April 1999. At least one of these PBTA-type mutagens was detected in 23/24 (96%) of the samples. The amounts of PBTA-3, -4 and -6 were <0.08-58.7, <0.1-15.0 and <0.07-467.9 ng/g of blue rayon, respectively, and high levels of PBTA congeners were detected in the samples collected from each river in July and November 1998. The contributions of these PBTA congeners to the mutagenicity of water samples were also high in July and November 1998. The highest total contribution was observed for samples from the Asuwa river (67.6%). These findings suggest that these three rivers were continually and heavily contaminated with mutagens, and PBTA congeners were some of the major mutagens in these rivers.  相似文献   

12.
The role of human cytochrome P450 (CYP) in the metabolic activation of N-alkylnitrosamines was examined by Ames test using genetically engineered Salmonella typhimurium (S. typhimurium)YG7108 cells expressing each form of human CYP together with human NADPH-cytochrome P450 reductase (OR). The relationship between the structure of N-alkylnitrosamines and CYP form(s) involved in the activation was evaluated. Eleven strains of S. typhimurium YG7108 cells expressing each form of CYP (CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4 or CYP3A5) were employed. Eight N-alkylnitrosamines including N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA), N-nitrosodipropylamine (NDPA), N-nitrosodibutylamine (NDBA), N-nitrosomethylethylamine (NMEA), N-nitrosomethylpropylamine (NMPA), N-nitrosomethylbutylamine (NMBA) and N-nitrosoethylbutylamine (NEBA) were examined. Minimal concentration (MC) value of a promutagen was defined as the concentration of a chemical giving a positive result. Mutagen-producing capacity of CYP, as indicated by induced revertants/nmol promutagen/pmol CYP, for an N-alkylnitrosamine was determined for all forms of CYP. These N-alkylnitrosamines were mainly activated by CYP2E1, CYP2A6 and CYP1A1. N-alkylnitrosamines with relatively short alkyl chains such as NDMA and NMEA were primarily activated by CYP2E1 as judged by mutagen-producing capacity. With the increase of the number of the carbon atoms of the alkyl chains, the contribution of CYP2A6 increased. CYP2A6 played major roles in the activation of NDEA, NDPA, NMPA, NMBA and NEBA. Interestingly, CYP1A1 became a molecular form of CYP playing a major role in the metabolic activation of NDBA.  相似文献   

13.
Catechins, major polyphenol constituents of green tea, are potent chemopreventive agents against cancers caused by chemical carcinogens in rodents. The effects of four epicatechin derivatives, epigallocatechin gallate (EGCG), epicatechin gallate (ECG), epigallocatechin (EGC) and epicatechin (EC), on the metabolic activation of benzo[a]pyrene (B[a]P), 2-amino-1-methyl-6-phenylimidazo-[4,5-b]pyridine (PhIP) and aflatoxin B(1) (AFB(1)) by human cytochrome P450 (CYP) were examined. B[a]P, PhIP and AFB(1) were activated by respective human CYP1A1, CYP1A2 and CYP3A4 expressed in the membrane fraction of genetically engineered Salmonella typhimurium (S. typhimurium) TA1538 cells harboring the human CYP and human NADPH-CYP reductase (OR), when the membrane fraction was added to S. typhimurium TA98. Galloylated catechins, ECG and EGCG inhibited the mutagenic activation potently, while EGC and EC showed relatively weak inhibitory effects. Catechins also inhibited the oxidations of typical substrates catalyzed by human CYPs, namely ethoxycoumarin O-deethylation by CYP1A1, ethoxyresorufin O-deethylation by CYP1A2 and midazolam 1'-hydroxylation by CYP3A4. The IC(50) values of catechins for the inhibition of human CYP were roughly the same as those seen in the mutagenic activation. EGCG inhibited other forms of human CYP such as CYP2A6, CYP2C19 and CYP2E1, indicating the non-specific inhibitory effects of EGCG toward human CYPs. Furthermore, EGCG inhibited human NADPH-cytochrome CYP reductase (OR) with a K(i) value of 2.5 microM. These results suggest that the inhibition of the enzyme activity of CYP is accounted for partially by the inhibition of OR.  相似文献   

14.
We previously determined the chemical structures of four 2-phenylbenzotriazole mutagens (PBTA-1, -2, -3 and -4) in blue rayon-adsorbed material from the Nishitakase River in Kyoto prefecture and the Nikko River in Aichi prefecture in Japan. On the basis of a synthesis study, these four PBTA derivatives were deduced to have originated from corresponding dinitrophenylazo dyes by reduction and chlorination. 2-[(2-Bromo-4,6-dinitrophenyl)azo]-5-[bis(2-acetoxyethyl) amino]-4-methoxyacetanilide (Color Index Name, Disperse Blue 79:1; CAS Registry Number, 75497-74-4) is a very common dinitrophenylazo dye used in textile dyeing factories. In the present study, we synthesized 2-[4-[bis(2-acetoxyethyl)amino]-2-(acetylamino)-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-5) from Disperse Blue 79:1 by reduction with sodium hydrosulfite and subsequent chlorination with sodium hypochlorite. On hydrolysis of PBTA-5 with alkali, 2-[2-(acetylamino)-4-[bis(2-hydroxyethyl)amino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-6) was obtained. Both PBTA-5 and -6 were potent mutagens, inducing 723,000 revertants and 485,000 revertants per microgram of Salmonella typhimurium YG1024, respectively, in the presence of S9 mix. To clarify whether PBTA-5 and -6 exist in the environment, water samples were collected from five rivers flowing through regions where textile dyeing industries are developed. PBTA-6 was detected at levels of 3-134 ng/g blue rayon in all water samples that were examined. On the other hand, the amount of PBTA-5 in the samples was less than the detection limit.  相似文献   

15.
We recently identified dichlorobiphenyl (DCB) derivatives and 2-phenylbenzotriazole (PBTA) congeners as major mutagenic constituents of the waters of the Waka River and the Yodo River system in Japan, respectively. In this study we examined sister chromatid exchange (SCE) induction by two dichlorobiphenyl derivatives, 3,3′-dichlorobenzidine (DCB, 4,4′-diamino-3,3′-dichlorobiphenyl) and 4,4′-diamino-3,3′-dichloro-5-nitrobiphenyl (5-nitro-DCB); three PBTA congeners, 2-[2-(acetylamino)-4-[bis(2-methoxyethyl)amino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-1), 2-[2-(acetylamino)-4-[N-(2-cyanoethyl)ethylamino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-2), and 2-[2-(acetylamino)amino]-4-[bis(2-hydroxyethyl)amino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-6); and water concentrates from the Waka River in Chinese hamster lung (CHL) cells. Concentration-dependent induction of SCE was found for all DCBs and PBTAs examined in the presence of S9 mix, and statistically significant increases of SCEs were detected at 2 μg per ml of medium or higher concentrations. SCE induction of MeIQx was examined to compare genotoxic activities of these water pollutants. According to the results, a ranking of the SCE-inducing potency of these compounds is the following: 5-nitro-DCB ≈ MeIQx > PBTA6 > PBTA-1 ≈ PBTA-2 > DCB.Water samples collected at a site at the Waka River showed concentration-related increases in SCEs at 6.25–18.75 ml-equivalent of river water per ml of medium with S9 mix. The concentrations of 5-nitro-DCB and DCB in the river water samples were from 2.5 to 19.4 ng/l and from 4100 to 18,900 ng/l, respectively. However, these chemicals showed only small contribution to SCE induction by the Waka River water.  相似文献   

16.
The 2-phenylbenzotriazole (PBTA)-type water pollutant, 2-[2-(acetylamino)-4-[N-(2-cyanoethyl)ethylamino]-5-methoxyphenyl]-5- amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-2), has been recently identified in samples from the Nishitakase River in Kyoto, Japan, and shows potent mutagenic activities in Salmonella typhimurium in the presence of a microsomal metabolizing system (S9 mix). In the present study, we conducted the in vitro micronucleus (MN) test on PBTA-2 in the absence and presence of S9 mix in two Chinese hamster cell lines, CHL and V79-MZ. In the MN test, PBTA-2 was weakly positive in CHL cells and strongly positive in V79-MZ cells. Because the positive results were accompanied by a statistically significant increase in the number of polynuclear (PN) and/or mitotic (M) cells, we examined treated cells in metaphase to see if numerical chromosome aberrations were being induced. We found that PBTA-2 induces polyploidy in both CHL and V79-MZ cells. A detailed analysis of MN preparations showed that in CHL cells, PBTA-2 predominantly induces equal-sized binucleated cells. Rhodamine phalloidin staining revealed that PBTA-2 causes actin filament abnormalities in both cell lines similar to those caused by cytochalasin B. Cytochalasin B induced PN cells predominantly and dose dependently, and almost all the cells were equal-sized and binucleate. The results suggest that PBTA-2 has cytochalasin B-mimetic activity, although agents affecting actin filaments, such as cytochalasins, phallotoxins and chloropeptide, have been derived only from molds so far. This study also suggests that our MN test protocol may be used to identify chemicals that have cytochalasin B-mimetic activity as well as those that induce numerical aberrations.  相似文献   

17.
Reactive nitrogen species and their by-products, such as peroxynitrite, modulate many physiological functions of skeletal muscle. Peroxynitrite generation occuring under specific conditions, such as inflammation, may also lead to skeletal muscle dysfunction and pathologies. Arylamine N-acetyltransferases (NATs) are xenobiotic-metabolizing enzymes (XMEs) involved in the detoxification and/or metabolic activation of several drugs and chemicals. In addition to other XMEs, such as gluthatione S-transferases or cytochromes P450, NAT enzymes are expressed in skeletal muscle. We show here that functional NAT1 and NAT2 isoforms are expressed in mouse myotubes and that peroxynitrite may impair their activity in these cells. We show that this inactivation is likely due to the irreversible modification of NATs catalytic cysteine residue in vivo. Our results suggest that peroxynitrite-dependent inactivation of muscle XMEs such as NATs may contribute to muscle dysfunction by impairing the biotransformation activity of this key cellular defense enzyme system.  相似文献   

18.
Previous studies have identified two potent aromatic amine mutagens in the Nishitakase River, a tributary of the Yodo River, which serves as the main drinking water supply for the Osaka area in Japan. The two potent mutagens are 2-[2-(acetylamino)-4-[bis(2-methoxyethyl)amino]-5-methoxyphenyl]-5-am ino-7-bromo-4-chloro-2H-benzotriazole (PBTA-1) and 2-[2-(acetylamino)-4-[N-(2-cyanoethyl)ethylamino]-5-methoxyphenyl]-5- amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-2). PBTA-1 and PBTA-2 are presumed to be formed from azo dyes discharged in a reduced form from dye factories to sewage treatment plants where they become chlorinated and are then discharged into the river. PBTA-1 and PBTA-2 account for 21% and 17% of the mutagenic activity of the Nishitakase River, respectively. Here we determined the mutation spectra induced by these two mutagens in TA98, TA100, and TA104 at 30-35, 8-10, and 2x, respectively, above the background. In TA98, the PBTA compounds produced identical mutation spectra, with 100% of the revertants containing the hotspot 2-base deletion of CG within the (CG)(4) sequence. In TA100, 73% of the revertants were GC-->TA transversions, with most of the remaining being GC-->AT transitions; the spectra produced by the two compounds in TA100 were not significantly different (p=0.8). In TA104, as in TA100, the majority (83%-87%) of the revertants were GC-->TA transversions, with most of the remaining revertants (11%-13%) being AT-->TA transversions. Thus, 83%-87% of the mutations induced by the PBTA compounds in TA104 were at G/C sites. The mutation spectra produced by the two compounds in TA104 were not significantly different (p0.08). PBTA-1 and PBTA-2 are structurally similar and have similar mutagenic potencies and mutation spectra in the respective strains. The mutation spectra produced by the PBTA compounds (100% hotspot deletion in TA98 and primarily GC-->TA transversions in TA100 and TA104) are similar to those produced by other potent aromatic amines, which is the class of compounds from which the PBTA mutagens derive.  相似文献   

19.
The human arylamine N-acetyltransferase NAT2 is responsible for the biotransformation of numerous arylamine drugs and carcinogens. A common polymorphism of the NAT2 gene has been associated with susceptibility to drug toxicity and various malignancies. In this study, we used the crystal structure of the Salmonella typhimurium NAT (StNAT) to construct a high-quality model of a catalytic N-terminal region of NAT2 (residues 34-131). We show that this region has a similar structure in StNAT and the human isoforms NAT1 and NAT2. Comparison of the structures of these three molecules suggests that NATs have an active-site loop with a conserved structure, which is involved in substrate recognition. Our model is consistent with previous experimental data and provides the first plausible structural basis of the effects of a common genetic polymorphism (Arg(64)-->Gln) on NAT2 activity.  相似文献   

20.
Nitrogen-containing analogs of chrysene, 1,10-diazachrysene (1,10-DAC) and 4,10-DAC, were tested for mutagenicity in Salmonella typhimurium TA100 in the presence of rat liver S9 and human liver microsomes to investigate the effect of nitrogen-substitution. Although these DACs could not be converted to the bay-region diol epoxide because of their nitrogen atoms in the bay-region epoxide or diol moiety, DACs were mutagenic in the Ames test with rat liver S9. Both DACs also showed mutagenicity in the Ames test using pooled human liver microsomes, although chrysene itself was not mutagenic in the presence of pooled human liver microsomes. The mutagenicity of DACs (50nmol/plate) in Ames tests using human liver microsome preparations from 10 individuals was compared with cytochrome P450 (CYP) activity in each microsome preparation to investigate the CYP isoform involved in the activation of DACs to the genotoxic forms. The numbers of induced revertants obtained by 1,10-DAC varied 6.2-folds (109-680) and those by 4,10-DAC 4.8-folds (155-751) among the 10 individuals. The number of induced revertants obtained by 1,10-DAC significantly correlated with the CYP1A2-selective catalytic activity (r=0.84, P<0.01) in each microsome preparation. On the other hand, the number of induced revertants obtained by 4,10-DAC significantly correlated with the combined activity of CYP2A6 and 1A2 (CYP2A6+0.51xCYP1A2; r=0.75, P<0.01). However, in Ames tests using microsomes from insect cells expressing various human CYP isoforms, the mutagenicity of 1,10-DAC was induced only by recombinant human CYP1A2, whereas both recombinant human CYP2A6 and 1A2 contributed to the mutagenicity of 4,10-DAC. These results suggest that 1,10-DAC shows the mutagenicity through involvement of CYP1A2 in human liver, and 4,10-DAC does so through both CYP2A6 and 1A2. In conclusion, our results suggested that the difference in the nitrogen-substituted position in the chrysene molecule might affect the mutagenic activity through influencing the ratio of participation of the metabolic activation enzyme isoforms of CYP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号