首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a two-stage genomewide scan for osteoarthritis-susceptibility loci, using 481 families that each contain at least one affected sibling pair. The first stage, with 272 microsatellite markers and 297 families, involved a sparse map covering 23 chromosomes at intervals of approximately 15 cM. Sixteen markers that showed evidence of linkage at nominal P相似文献   

2.
Thrombin-Activatable Fibrinolysis Inhibitor (TAFI) is a protein that potently attenuates fibrinolysis. A considerable proportion of its variability levels is genetically determined. It has been associated with arterial and venous thrombosis. We conducted a Genome Wide Scan for genes affecting variation in plasma TAFI levels in 398 subjects from 21 extended Spanish families. The data were analyzed by a variance-component linkage method. A strong linkage signal was found on the long arm of Chromosome 13, near the DNA marker D13S156, where the structural gene encoding for TAFI is located. In addition, other new linkage signals were detected on chromosome regions 5p and 7q. More importantly, we performed another multipoint linkage analysis of functional TAFI conditioned on TAFI antigen levels. We detected a strong linkage signal on Chromosome 19 (LOD = 3.0, P = 0.0001) suggesting a novel QTL in this region involved in the specific functional activity of TAFI, regardless of the TAFI antigen levels. One notable aspect of this study is the identification of new QTLs that reveal a clearer picture of the genetic determinants responsible for variation in TAFI levels. Another is the replication of the linkage signal of the CPB2 gene, which confirms an important genetic determinant for TAFI antigen levels. These results strongly suggest an oligogenic mode of inheritance for TAFI, in which CPB2 gene accounts for a proportion of the variation of the phenotype together with other unknown genes that may represent potential risk factors for thrombotic disease.  相似文献   

3.
We report on our initial genetic linkage studies of schizophrenia in the genetically isolated population of the Afrikaners from South Africa. A 10-cM genomewide scan was performed on 143 small families, 34 of which were informative for linkage. Using both nonparametric and parametric linkage analyses, we obtained evidence for a small number of disease loci on chromosomes 1, 9, and 13. These results suggest that few genes of substantial effect exist for schizophrenia in the Afrikaner population, consistent with our previous genealogical tracing studies. The locus on chromosome 1 reached genomewide significance levels (nonparametric LOD score of 3.30 at marker D1S1612, corresponding to an empirical P value of.012) and represents a novel susceptibility locus for schizophrenia. In addition to providing evidence for linkage for chromosome 1, we also identified a proband with a uniparental disomy (UPD) of the entire chromosome 1. This is the first time a UPD has been described in a patient with schizophrenia, lending further support to involvement of chromosome 1 in schizophrenia susceptibility in the Afrikaners.  相似文献   

4.
We report the results of a genomewide scan using homozygosity mapping to identify genes causing Fanconi anemia, a genetically heterogeneous recessive disorder. By studying 23 inbred families, we detected linkage to a locus causing Fanconi anemia near marker D16S520 (16q24.3). Although -65% of our families displayed clear linkage to D16S520, we found strong evidence (P = .0013) of genetic heterogeneity. This result independently confirms the recent mapping of the FAA gene to chromosome 16 by Pronk et al. Family ascertainment was biased against a previously identified FAC gene on chromosome 9, and no linkage was observed to this locus. Simultaneous search analysis suggested several additional chromosomal regions that could account for a small fraction of Fanconi anemia in our families, but the sample size is insufficient to provide statistical significance. We also demonstrate the strong effect of marker allele frequencies on LOD scores obtained in homozygosity mapping and discuss ways to avoid false positives arising from this effect.  相似文献   

5.
A susceptibility locus for migraine with aura, on chromosome 4q24   总被引:18,自引:0,他引:18  
Migraine is a complex neurovascular disorder with substantial evidence supporting a genetic contribution. Prior attempts to localize susceptibility loci for common forms of migraine have not produced conclusive evidence of linkage or association. To date, no genomewide screen for migraine has been published. We report results from a genomewide screen of 50 multigenerational, clinically well-defined Finnish families showing intergenerational transmission of migraine with aura (MA). The families were screened using 350 polymorphic microsatellite markers, with an average intermarker distance of 11 cM. Significant evidence of linkage was found between the MA phenotype and marker D4S1647 on 4q24. Using parametric two-point linkage analysis and assuming a dominant mode of inheritance, we found for this marker a maximum LOD score of 4.20 under locus homogeneity (P=.000006) or locus heterogeneity (P=.000011). Multipoint parametric (HLOD = 4.45; P=.0000058) and nonparametric (NPL(all) = 3.43; P=.0007) analyses support linkage in this region. Statistically significant linkage was not observed in any other chromosomal region.  相似文献   

6.
Paget disease of bone (PDB) is characterized by increased osteoclast activity and localized abnormal bone remodeling. PDB has a significant genetic component, with evidence of linkage to chromosomes 6p21.3 (PDB1) and 18q21-22 (PDB2) in some pedigrees. There is evidence of genetic heterogeneity, with other pedigrees showing negative linkage to these regions. TNFRSF11A, a gene that is essential for osteoclast formation and that encodes receptor activator of nuclear factor-kappa B (RANK), has been mapped to the PDB2 region. TNFRSF11A mutations that segregate in pedigrees with either familial expansile osteolysis or familial PDB have been identified; however, linkage studies and mutation screening have excluded the involvement of RANK in the majority of patients with PDB. We have excluded linkage, both to PDB1 and to PDB2, in a large multigenerational pedigree with multiple family members affected by PDB. We have conducted a genomewide scan of this pedigree, followed by fine mapping and multipoint analysis in regions of interest. The peak two-point LOD scores from the genomewide scan were 2.75, at D7S507, and 1.76, at D18S70. Multipoint and haplotype analysis of markers flanking D7S507 did not support linkage to this region. Haplotype analysis of markers flanking D18S70 demonstrated a haplotype segregating with PDB in a large subpedigree. This subpedigree had a significantly lower age at diagnosis than the rest of the pedigree (51.2+/-8.5 vs. 64.2+/-9.7 years; P=.0012). Linkage analysis of this subpedigree demonstrated a peak two-point LOD score of 4.23, at marker D18S1390 (straight theta=0), and a peak multipoint LOD score of 4.71, at marker D18S70. Our data are consistent with genetic heterogeneity within the pedigree and indicate that 18q23 harbors a novel susceptibility gene for PDB.  相似文献   

7.
Maternally inherited deafness associated with the A1555G mutation in the mitochondrial 12S ribosomal RNA (rRNA) gene appears to require additional environmental or genetic changes for phenotypic expression. Aminoglycosides have been identified as one such environmental factor. In one large Arab-Israeli pedigree with congenital hearing loss in some of the family members with the A1555G mutation and with no exposure to aminoglycosides, biochemical evidence has suggested the role of nuclear modifier gene(s), but a genomewide search has indicated the absence of a single major locus having such an effect. Thus it has been concluded that the penetrance of the mitochondrial mutation appears to depend on additive effects of several nuclear genes. We have now investigated 10 multiplex Spanish and Italian families with 35 members with the A1555G mutation and sensorineural deafness. Parametric analysis of a genomewide screen again failed to identify significant evidence for linkage to a single autosomal locus. However, nonparametric analysis supported the role of the chromosomal region around marker D8S277. The combined maximized allele-sharing LOD score of 3.1 in Arab-Israeli/Spanish/Italian families represents a highly suggestive linkage result. We suggest that this region should be considered a candidate for containing the first human nuclear modifier gene for a mitochondrial DNA disorder. The locus operates in Arab-Israeli, Spanish, and Italian families, resulting in the deafness phenotype on a background of the mitochondrial A1555G mutation. No obvious candidate genes are located in this region.  相似文献   

8.
Generalized vitiligo is a common autoimmune disorder characterized by the development of white patches of skin and overlying hair due to loss of pigment-forming melanocytes from the involved areas. Family clustering of cases is not uncommon, in a pattern suggestive of multifactorial, polygenic inheritance, and there is strong association between vitiligo and other autoimmune diseases. To map genetic loci that confer susceptibility to generalized vitiligo and perhaps other autoimmune diseases, we performed a genomewide linkage scan in 71 white multiplex families with vitiligo from North America and the United Kingdom. Linkage was assessed by multipoint nonparametric linkage analyses. One linkage signal, AIS1, located at 1p31, met genomewide criteria for highly significant linkage (nonparametric LOD 5.56; P=.000000282), establishing its importance as a major vitiligo susceptibility locus. An additional seven signals, on chromosomes 1, 7, 8, 11, 19, and 22, met genomewide criteria for "suggestive linkage," and will thus be of particular importance for follow-up studies.  相似文献   

9.
Infectious pancreatic necrosis (IPN) is a viral disease currently presenting a major problem in the production of Atlantic salmon (Salmon salar). IPN can cause significant mortality to salmon fry within freshwater hatcheries and to smolts following transfer to seawater, although challenged populations show clear genetic variation in resistance. To determine whether this genetic variation includes loci of major effect, a genomewide quantitative trait loci (QTL) scan was performed within 10 full-sib families that had received a natural seawater IPN challenge. To utilize the large difference between Atlantic salmon male and female recombination rates, a two-stage mapping strategy was employed. Initially, a sire-based QTL analysis was used to detect linkage groups with significant effects on IPN resistance, using two to three microsatellite markers per linkage group. A dam-based analysis with additional markers was then used to confirm and position any detected QTL. Two genomewide significant QTL and one suggestive QTL were detected in the genome scan. The most significant QTL was mapped to linkage group 21 and was significant at the genomewide level in both the sire and the dam-based analyses. The identified QTL can be applied in marker-assisted selection programs to improve the resistance of salmon to IPN and reduce disease-related mortality.  相似文献   

10.
Type 2 diabetes mellitus is a heterogeneous inherited disorder characterized by chronic hyperglycemia resulting from pancreatic beta-cell dysfunction and insulin resistance. Although the pathogenic mechanisms are not fully understood, manifestation of the disease most likely requires interaction between both environmental and genetic factors. In the search for such susceptibility genes, we have performed a genomewide scan in 58 multiplex families (comprising 440 individuals, 229 of whom were affected) from the Botnia region in Finland. Initially, linkage between chromosome 12q24 and impaired insulin secretion had been reported, by Mahtani et al., in a subsample of 26 families. In the present study, we extend the initial genomewide scan to include 32 additional families, update the affectation status, and fine map regions of interest, and we try to replicate the initial stratification analysis. In our analysis of all 58 families, we identified suggestive linkage to one region, chromosome 9p13-q21 (nonparametric linkage [NPL] score 3.9; P<.0002). Regions with nominal P values <.05 include chromosomes 2p11 (NPL score 2.0 [P<.03]), 3p24-p22 (NPL score 2.2 [P<.02]), 4q32-q33 (NPL score 2.5 [P<.01]), 12q24 (NPL score 2.1 [P<.03]), 16p12-11 (NPL score 1.7 [P<.05]), and 17p12-p11 (NPL score 1.9 [P<.03]). When chromosome 12q24 was analyzed in only the 32 additional families, a nominal P value <.04 was observed. Together with data from other published genomewide scans, these findings lend support to the hypothesis that regions on chromosome 9p13-q21 and 12q24 may harbor susceptibility genes for type 2 diabetes.  相似文献   

11.
Although several genetic forms of rare or syndromic hypertriglyceridemia have been reported, little is known about the specific chromosomal regions across the genome harboring susceptibility genes for common forms of hypertriglyceridemia. Therefore, we conducted a genomewide scan for susceptibility genes influencing plasma triglyceride (TG) levels in a Mexican American population. We used both phenotypic and genotypic data from 418 individuals distributed across 27 low-income, extended Mexican American families. For the analyses, TG values were log transformed (ln TG). We used a variance-components technique to conduct multipoint linkage analyses for localizing susceptibility genes that determine variation in TG levels. We used an approximately 10-15-cM map, which was made on the basis of information from 295 microsatellite markers. After accounting for the effects of sex and sex-specific age terms, we found significant evidence for linkage (LOD = 3.88) of ln TG levels to a genetic location between the markers GABRB3 and D15S165 on chromosome 15q. This putative locus explains 39.7+/-7% (P=.000012) of total phenotypic variation in ln TG levels. Suggestive evidence was found for linkage of ln TG levels to two different locations on chromosome 7, which are approximately 85 cM apart from each other. Also, there is some evidence for linkage of high-density lipoprotein cholesterol concentrations to a genetic location near one of the regions on chromosome 7. In conclusion, we found strong evidence for linkage of ln TG levels to a genetic location on chromosome 15q in a Mexican American population, which is prone to disease conditions such as type 2 diabetes and the insulin-resistance syndrome that are associated with hypertriglyceridemia. This putative locus appears to have a major influence on ln TG variation.  相似文献   

12.
Epidemiological studies have demonstrated that genetic factors account for at least 50% of the liability for nicotine dependence (ND). Although several linkage studies have been conducted, all samples to date were primarily of European origin. In this study, we conducted a genomewide scan of 1,261 individuals, representing 402 nuclear families, of African American (AA) origin. We examined 385 autosomal microsatellite markers for ND, which was assessed by smoking quantity (SQ), the Heaviness of Smoking Index (HSI), and the Fagerstrom Test for ND (FTND). After performing linkage analyses using various methods implemented in the GENEHUNTER and S.A.G.E. programs, we found a region near marker D10S1432 on chromosome 10q22 that showed a significant linkage to indexed SQ, with a maximum LOD score of 4.17 at 92 cM and suggestive linkage to HSI, SQ, and log-transformed SQ. Additionally, we identified three regions that met the criteria for suggestive linkage to at least one ND measure: on chromosomes 9q31 at marker D9S1825, 11p11 between markers D11S1993 and D11S1344, and 13q13 between markers D13S325 and D13S788. Other locations on chromosomes 15p11, 17q25, and 18q12 exhibited some evidence of linkage for ND (LOD >1.44). The four regions with significant or suggestive linkage were positive for multiple ND measures by multiple statistical methods. Some of these regions have been linked to smoking behavior at nominally significant levels in other studies, which provides independent replication of the regions for ND in different cohorts. In summary, we found significant linkage on chromosome 10q22 and suggestive linkage on chromosomes 9, 11, and 13 for major genetic determinants of ND in an AA sample. Further analysis of these positive regions by fine mapping and/or association analysis is thus warranted. To our knowledge, this study represents the first genomewide linkage scan of ND in an AA sample.  相似文献   

13.
An autosomal genomewide search for genes related to body composition and its changes after a 20-wk endurance-exercise training program has been completed in the HERITAGE Family Study. Phenotypes included body mass index (BMI), sum of eight skinfold thicknesses, fat mass (FM), fat-free mass, percent body fat (%Fat), and plasma leptin levels. A maximum of 364 sib-pairs from 99 Caucasian families was studied with the use of 344 markers with single-point and multipoint linkage analyses. Evidence of significant linkage was observed for changes in fat-free mass with the S100A and the insulin-like growth factor I genes (P = 0.0001). Suggestive evidence (2.0 < or = Lod < 3.0; 0.0001 < P < or = 0.001) was also observed for the changes in FM and %Fat at 1q31 and 18q21-q23, in %Fat with the uncoupling protein 2 and 3 genes, and in BMI at 5q14-q21. At baseline, suggestive evidence was observed for BMI at 8q23-q24, 10p15, and 14q11; for FM at 14q11; and for plasma leptin levels with the low-density lipoprotein receptor gene. This is the first genomic scan on genes involved in exercise-training-induced changes in body composition that could provide information on the determinants of weight loss.  相似文献   

14.
We previously reported a genomewide scan to identify autism-susceptibility loci in 110 multiplex families, showing suggestive evidence (P <.01) for linkage to autism-spectrum disorders (ASD) on chromosomes 5, 8, 16, 19, and X and showing nominal evidence (P <.05) on several additional chromosomes (2, 3, 4, 10, 11, 12, 15, 18, and 20). In this follow-up analysis we have increased the sample size threefold, while holding the study design constant, so that we now report 345 multiplex families, each with at least two siblings affected with autism or ASD phenotype. Along with 235 new multiplex families, 73 new microsatellite markers were also added in 10 regions, thereby increasing the marker density at these strategic locations from 10 cM to approximately 2 cM and bringing the total number of markers to 408 over the entire genome. Multipoint maximum LOD scores (MLS) obtained from affected-sib-pair analysis of all 345 families yielded suggestive evidence for linkage on chromosomes 17, 5, 11, 4, and 8 (listed in order by MLS) (P <.01). The most significant findings were an MLS of 2.83 (P =.00029) on chromosome 17q, near the serotonin transporter (5-hydroxytryptamine transporter [5-HTT]), and an MLS of 2.54 (P =.00059) on 5p. The present follow-up genome scan, which used a consistent research design across studies and examined the largest ASD sample collection reported to date, gave either equivalent or marginally increased evidence for linkage at several chromosomal regions implicated in our previous scan but eliminated evidence for linkage at other regions.  相似文献   

15.
Psoriasis is a common chronic inflammatory skin disease with a strong genetic component. Few psoriasis-susceptibility loci have been reported, and only two have been confirmed in independent data sets. This article reports results of a genomewide scan that was performed, using 370 microsatellite markers, for psoriasis-susceptibility loci in 32 German extended families, comprising 162 affected and 195 unaffected individuals. Nonparametric linkage analysis of all families provided strong evidence for a novel psoriasis-susceptibility locus on chromosome 19p (Zlr=3.50; P=.0002). Parametric analysis revealed a heterogeneity LOD score of 4.06, corresponding to a genomewide significance level of.037, under the assumption of a recessive model with high disease-allele frequency and 66% as the proportion of linked families. This study confirms linkage of psoriasis to the HLA region on chromosome 6p and suggests additional regions on chromosomes 8q and 21q for further investigations.  相似文献   

16.
Asthma is a complex genetic disorder with a heterogeneous phenotype, largely attributed to the interactions among many genes and between these genes and the environment. Numerous loci and candidate genes have been reported to show linkage and association to asthma and atopy. Although some studies reporting these observations are compelling, no gene has been mapped that confers a sufficiently high risk of asthma to meet the stringent criteria for genomewide significance. Using 175 extended Icelandic families that included 596 patients with asthma, we performed a genomewide scan with 976 microsatellite markers. The families were identified by cross-matching a list of patients with asthma from the Department of Allergy/Pulmonary Medicine of the National University Hospital of Iceland with a genealogy database of the entire Icelandic nation. We detected linkage of asthma to chromosome 14q24, with an allele-sharing LOD score of 2.66. After we increased the marker density within the locus to an average of one microsatellite every 0.2 cM, the LOD score rose to 4.00. We designate this locus "asthma locus one" (AS1). Taken together, these results provide evidence of a novel susceptibility gene for asthma on chromosome 14q24.  相似文献   

17.
Although the predisposition to morbid obesity is heritable, the identities of the disease-causing genes are largely unknown. Therefore, we have conducted a genomewide search with 628 markers, using multigenerational Utah pedigrees to identify genes involved in predisposition to obesity. In the genomewide search, we identified a highly significant linkage to high body-mass index in female patients, at D4S2632, with a multipoint heterogeneity LOD (HLOD) score of 6.1 and a nonparametric linkage (NPL) score of 5.3. To further delineate the linkage, we increased both the marker density around D4S2632 and the size of our pedigree data set. As a result, the linkage evidence increased to a multipoint HLOD score of 9.2 (at D4S3350) and an NPL score of 11.3. Evidence from almost half of the families in this analysis support this linkage, and therefore the gene in this region might account for a significant percentage of the genetic predisposition to severe obesity in females. However, further studies are necessary to clarify the effect that this gene has in males and in the general population.  相似文献   

18.
One approach to the identification of genetic loci that influence complex diseases is through the study of quantitative risk factors correlated with disease susceptibility. Factor XII (FXII) plasma levels, a related phenotype correlated with thrombosis, is such a risk factor. We conducted the first genomewide linkage screen to localize genes that influence variation in FXII levels. Two loci were detected: one on chromosome 5 and another on chromosome 10 (LOD scores 4.73 and 3.53, respectively). On chromosome 5, the peak LOD score occurred in the 5q33-5ter region, near the FXII gene. Addition of a 46C/T mutation in the FXII gene increased the multipoint LOD score to 10.21 (P=3.6 x 10(-12)). A bivariate linkage analysis of FXII activity and thrombosis further improved the linkage signal (LOD = 11.73) and provided strong evidence that this quantitative-trait locus (QTL) has a pleiotropic effect on the risk of thrombosis (P=.004). Linkage analysis conditional on 46C/T indicated that this mutation alone cannot explain the chromosome 5 signal, implying that other functional sites must exist. These results represent the first direct genetic evidence that a QTL in or near the FXII gene influences both FXII activity and susceptibility to thrombosis and suggest the presence of one or more still unknown functional variants in FXII.  相似文献   

19.
Mild/moderate (common) myopia is a very common disorder, with both genetic and environmental influences. The environmental factors are related to near work and can be measured. There are no known genetic loci for common myopia. Our goal is to find evidence for a myopia susceptibility gene causing common myopia. Cycloplegic and manifest refraction were performed on 44 large American families of Ashkenazi Jewish descent, each with at least two affected siblings. Individuals with at least -1.00 diopter or lower in each meridian of both eyes were classified as myopic. Microsatellite genotyping with 387 markers was performed by the Center for Inherited Disease Research. Linkage analyses were conducted with parametric and nonparametric methods by use of 12 different penetrance models. The family-based association test was used for an association scan. A maximum multipoint parametric heterogeneity LOD (HLOD) score of 3.54 was observed at marker D22S685, and nonparametric linkage analyses gave consistent results, with a P value of.0002 at this marker. The parametric multipoint HLOD scores exceeded 3.0 for a 4-cM interval, and significant evidence of genetic heterogeneity was observed. This genomewide scan is the first step toward identifying a gene on chromosome 22 with an influence on common myopia. At present, we are following up our linkage results on chromosome 22 with a dense map of >1,500 single-nucleotide-polymorphism markers for fine mapping and association analyses. Identification of a susceptibility locus in this region may eventually lead to a better understanding of gene-environment interactions in the causation of this complex trait.  相似文献   

20.
Autosomal dominant cerebellar ataxia type III (ADCA III) is a relatively benign, late-onset, slowly progressive neurological disorder characterized by an uncomplicated cerebellar syndrome. Three loci have been identified: a moderately expanded CAG trinucleotide repeat in the SCA 6 gene, the SCA 5 locus on chromosome 11, and a third locus on chromosome 22 (SCA 10). We have identified two British families in which affected individuals do not have the SCA 6 expansion and in which the disease is not linked to SCA 5 or SCA 10. Both families exhibit the typical phenotype of ADCA III. Using a genomewide searching strategy in one of these families, we have linked the disease phenotype to marker D15S1039. Construction of haplotypes has defined a 7.6-cM interval between the flanking markers D15S146 and D15S1016, thereby assigning another ADCA III locus to the proximal long-arm of chromosome 15 (SCA 11). We excluded linkage of the disease phenotype to this region in the second family. These results indicate the presence of two additional ADCA III loci and more clearly define the genetic heterogeneity of ADCA III.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号