首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The yeast amphiphysin homologue Rvs167p plays a role in regulation of the actin cytoskeleton, endocytosis, and sporulation. Rvs167p is a phosphoprotein in vegetatively growing cells and shows increased phosphorylation upon treatment with mating pheromone. Previous work has shown that Rvs167p can be phosphorylated in vitro by the cyclin-dependent kinase Pho85p complexed with its cyclin Pcl2p. Using chymotryptic phosphopeptide mapping, we have identified the sites on which Rvs167p is phosphorylated in vitro by Pcl2p-Pho85p. We have shown that these same sites are phosphorylated in vivo during vegetative growth and that phosphorylation at two of these sites is Pcl-Pho85p dependent. In cells treated with mating pheromone, the MAP kinase Fus3p is needed for full phosphorylation of Rvs167p. Functional genomics and genetics experiments revealed that mutation of other actin cytoskeleton genes compromises growth of a strain in which phosphorylation of Rvs167p is blocked by mutation. Phosphorylation of Rvs167p inhibits its interaction in vitro with Las17p, an activator of the Arp2/3 complex, as well as with a novel protein, Ymr192p. Our results suggest that phosphorylation of Rvs167p by a cyclin-dependent kinase and by a MAP kinase is an important mechanism for regulating protein complexes involved in actin cytoskeleton function.  相似文献   

2.
Cyclin-dependent protein kinase 5 (cdk5), a member of the cdk family, is active mainly in postmitotic cells and plays important roles in neuronal development and migration, neurite outgrowth, and synaptic transmission. In this study we investigated the relationship between cdk5 activity and regulation of the mitogen-activated protein (MAP) kinase pathway. We report that cdk5 phosphorylates the MAP kinase kinase-1 (MEK1) in vivo as well as the Ras-activated MEK1 in vitro. The phosphorylation of MEK1 by cdk5 resulted in inhibition of MEK1 catalytic activity and the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. In p35 (cdk5 activator) -/- mice, which lack appreciable cdk5 activity, we observed an increase in the phosphorylation of NF-M subunit of neurofilament proteins that correlated with an up-regulation of MEK1 and ERK1/2 activity. The activity of a constitutively active MEK1 with threonine 286 mutated to alanine (within a TPXK cdk5 phosphorylation motif in the proline-rich domain) was not affected by cdk5 phosphorylation, suggesting that Thr286 might be the cdk5/p35 phosphorylation-dependent regulatory site. These findings support the hypothesis that cdk5 and the MAP kinase pathway cross-talk in the regulation of neuronal functions. Moreover, these data and the recent studies of Harada et al. (Harada, T., Morooka, T., Ogawa, S., and Nishida, E. (2001) Nat. Cell Biol. 3, 453-459) have prompted us to propose a model for feedback down-regulation of the MAP kinase signal cascade by cdk5 inactivation of MEK1.  相似文献   

3.
Neuronal Cdc2-like kinase (Nclk) plays an important role in a variety of cellular processes, including neuronal cell differentiation, apoptosis, neuron migration, and formation of neuromuscular junction. The active kinase consists of a catalytic subunit, Cdk5, and an essential regulatory subunit, neuronal Cdk5 activator (p35(nck5a) or p25(nck5a)), which is expressed primarily in neurons of central nervous tissue. In our previous study using the yeast two-hybrid screening method, three novel p35(nck5a)-associated proteins were isolated. Here we show that one of these proteins, called C42, specifically inhibits the activation of Cdk5 by Nck5a. Co-immunoprecipitation data suggested that C42 and p35(nck5a) could form a complex within cultured mammalian cells. Deletion analysis has mapped the inhibitory domain of C42 to a region of 135 amino acids, which is conserved in Pho81, a yeast protein that inhibits the yeast cyclin-dependent protein kinase Pho85. The Pho85.Pho80 kinase complex has been shown to be the yeast functional homologue of the mammalian Cdk5/p35(nck5a) kinase.  相似文献   

4.
5.
Amphiphysin1, which can simultaneously bind to dynamin1 and the clathrin adaptor AP-2, is essential for dynamin1 recruitment during receptor-mediated endocytosis, but little is known about its regulatory mechanism. Here, we purified a 120-kDa mitogen-activated protein kinase (MAPK) substrate protein from porcine brains and identified the protein as amphiphysin1. Serine phosphorylation of amphiphysin1 was rapidly induced by nerve growth factor (NGF) in PC12 cells, and the induction was blocked by a MAPK inhibitor. Furthermore, when phosphorylated by MAPK in vitro or by NGF treatment in vivo, amphiphysin1 failed to bind to AP-2, but its association with dynamin1 was unaffected. Consistent with this, mutation of consensus MAPK phosphorylation sites increased amphiphysin1 binding to AP-2 and their intracellular colocalization. Thus, we propose that MAPK phosphorylation of amphiphysin1 controls NGF receptor/TrkA-mediated endocytosis by terminating the amphiphysin1-AP-2 interaction. This perhaps helps to regulate the availability of amphiphysin1-dynamin1 complexes for binding to the endocytic vesicle.  相似文献   

6.
Mouse cyclin-dependent kinase (Cdk) 5 and yeast Pho85 kinase share similarities in structure as well as in the regulation of their activity. We found that mouse Cdk5 kinase produced in pho85Delta mutant cells could suppress some of pho85Delta mutant phenotypes including failure to grow on nonfermentable carbon sources, morphological defects, and growth defect caused by Pho4 or Clb2 overproduction. We also demonstrated that Cdk5 coimmunoprecipitated with Pho85-cyclins including Pcl1, Pcl2, Pcl6, Pcl9, and Pho80, and that the immunocomplex could phosphorylate Pho4, a native substrate of Pho85 kinase. Thus mouse Cdk5 is a functional homologue of yeast Pho85 kinase.  相似文献   

7.
In the yeast Saccharomyces cerevisiae, Sic1, an inhibitor of Clb-Cdc28 kinases, must be phosphorylated and degraded in G1 for cells to initiate DNA replication, and Cln-Cdc28 kinase appears to be primarily responsible for phosphorylation of Sic1. The Pho85 kinase is a yeast cyclin-dependent kinase (Cdk), which is not essential for cell growth unless both CLN1 and CLN2 are absent. We demonstrate that Pho85, when complexed with Pcl1, a G1 cyclin homologue, can phosphorylate Sic1 in vitro, and that Sic1 appears to be more stable in pho85Δ cells. Three consensus Cdk phosphorylation sites present in Sic1 are phosphorylated in vivo, and two of them are required for prompt degradation of the inhibitor. Pho85 and other G1 Cdks appear to phosphorylate Sic1 at different sites in vivo. Thus at least two distinct Cdks can participate in phosphorylation of Sic1 and may therefore regulate progression through G1.  相似文献   

8.
The accumulation of assembled holoenzymes composed of regulatory D-type cyclins and their catalytic partner, cyclin-dependent kinase 4 (cdk4), is rate limiting for progression through the G1 phase of the cell cycle in mammalian fibroblasts. Both the synthesis and assembly of D-type cyclins and cdk4 depend upon serum stimulation, but even when both subunits are ectopically overproduced, they do not assemble into complexes in serum-deprived cells. When coexpressed from baculoviral vectors in intact Sf9 insect cells, cdk4 assembles with D-type cyclins to form active protein kinases. In contrast, recombinant D-type cyclin and cdk4 subunits produced in insect cells or in bacteria do not assemble as efficiently into functional holoenzymes when combined in vitro but can be activated in the presence of lysates obtained from proliferating mammalian cells. Assembly of cyclin D-cdk4 complexes in coinfected Sf9 cells facilitates phosphorylation of cdk4 on threonine 172 by a cdk-activating kinase (CAK). Assembly can proceed in the absence of this modification, but cdk4 mutants which cannot be phosphorylated by CAK remain catalytically inactive. Therefore, formation of the cyclin D-cdk4 complex and phosphorylation of the bound catalytic subunit are independently regulated, and in addition to the requirement for CAK activity, serum stimulation is required to promote assembly of the complexes in mammalian cells.  相似文献   

9.
10.
Amphiphysin (amphiphysin I), a dominant autoantigen in paraneoplastic Stiff-man syndrome, is a neuronal protein highly concentrated in nerve terminals, where it has a putative role in endocytosis. The yeast homologue of amphiphysin, Rvs167, has pleiotropic functions, including a role in endocytosis and in actin dynamics, suggesting that amphiphysin may also be implicated in the function of the presynaptic actin cytoskeleton. We report here the characterization of a second mammalian amphiphysin gene, amphiphysin II (SH3P9; BIN1), which encodes products primarily expressed in skeletal muscle and brain, as differentially spliced isoforms. In skeletal muscle, amphiphysin II is concentrated around T tubules, while in brain it is concentrated in the cytomatrix beneath the plasmamembrane of axon initial segments and nodes of Ranvier. In both these locations, amphiphysin II is colocalized with splice variants of ankyrin3 (ankyrinG), a component of the actin cytomatrix. In the same regions, the presence of clathrin has been reported. These findings support the hypothesis that, even in mammalian cells, amphiphysin/Rvs family members have a role both in endocytosis and in actin function and suggest that distinct amphiphysin isoforms contribute to define distinct domains of the cortical cytoplasm. Since amphiphysin II (BIN1) was reported to interact with Myc, it may also be implicated in a signaling pathway linking the cortical cytoplasm to nuclear function.  相似文献   

11.
Phosphorylation of Tau protein and binding to microtubules is complex in neurons and was therefore studied in the less complicated model of humanized yeast. Human Tau was readily phosphorylated at pathological epitopes, but in opposite directions regulated by kinases Mds1 and Pho85, orthologues of glycogen synthase kinase-3beta and cdk5, respectively (1). We isolated recombinant Tau-4R and mutant Tau-P301L from wild type, Delta mds1 and Delta pho85 yeast strains and measured binding to Taxol-stabilized mammalian microtubules in relation to their phosphorylation patterns. Tau-4R isolated from yeast lacking mds1 was less phosphorylated and bound more to microtubules than Tau-4R isolated from wild type yeast. Paradoxically, phosphorylation of Tau-4R isolated from kinase Pho85-deficient yeast was dramatically increased resulting in very poor binding to microtubules. Dephosphorylation promoted binding to microtubules to uniform high levels, excluding other modifications. Isolated hyperphosphorylated, conformationally altered Tau-4R completely failed to bind microtubules. In parallel to Tau-4R, we expressed, isolated, and analyzed mutant Tau-P301L. Total dephosphorylated Tau-4R and Tau-P301L bound to microtubules very similarly. Surprisingly, Tau-P301L isolated from all yeast strains bound to microtubules more extensively than Tau-4R. Atomic force microscopy demonstrated, however, that the high apparent binding of Tau-P301L was due to aggregation on the microtubules, causing their deformation and bundling. Our data explain the pathological presence of granular Tau aggregates in neuronal processes in tauopathies.  相似文献   

12.
13.
The p13suc1/p9CKShs proteins bind tightly to the cyclin-dependent kinases cdk1 and cdk2. The distantly related protein, p15cdk-BP, binds cdk4/6, cdk5 and cdk8. We now show that immobilized p15cdk-BP binds both an HMG-I kinase and a 35-kDa protein that cross-reacts with anti-PSTAIRE antibodies (PSTAIRE is a totally conserved motif located in subdomain III of cdk). This 'cdkX' and the HMG-I kinase also bind to an immobilized inhibitor of cdks (HD). Several properties clearly distinguish cdkX, and its associated HMG-I kinase, from known anti-PSTAIRE cross-reactive cdks: (a) cdkX migrates, in SDS/PAGE, in a position intermediate between prophase phosphorylated cdk1 and metaphase dephosphorylated cdk1; (b) in contrast with cdk1, cdkX and associated HMG-I kinase activity do not decrease following successive depletions on p9CKShs1-sepharose; (c) cdkX and associated HMG-I kinase activity, but not cdk1, decrease following depletions on immobilized inhibitor; (d) cdkX is expressed during the early development of sea urchin embryos; in contrast with cdk1/cyclin B kinase, the p15cdk-BP-bound HMG-I kinase is active throughout the cell cycle; compared with cdk1 it is active later in development; (e) p15cdk-BP-bound HMG-I kinase is essentially insensitive to powerful inhibitors of cdk such as purvalanol, roscovitine, olomoucine, p21cip1 and p16INK4A; HD is only moderately inhibitory. Altogether these results suggest the existence of a new cdk1-related kinase, possibly involved in the regulation of early development. The presence of this kinase in all organisms investigated so far, from plants to mammals, calls for its definitive identification.  相似文献   

14.
Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine biosynthesis, and its activity is regulated by phosphorylation in the N-terminal regulatory domain. The proline-directed serine/threonine kinase cyclin-dependent kinase 5 (cdk5) plays an important role in diverse neuronal processes. In the present study, we identify TH as a novel substrate of cdk5. We show that cdk5 phosphorylates TH at serine 31 and that this phosphorylation is associated with an increase in total TH activity. In transgenic mice with increased cdk5 activity, the immunoreactivity for phosphorylated TH at Ser-31 is enhanced in neurons of the substantia nigra, a brain region enriched with TH-positive neurons. In addition, we demonstrate that co-expression of cdk5 and its regulatory activator p35 with TH increases the stability of TH. Consistent with these findings, TH protein levels are reduced in cdk5 knock-out mice. Importantly, the TH activity and protein turnover of the phosphorylation-defective mutant TH S31A was not altered by cdk5 activity. Taken together, these data suggest that cdk5 phosphorylation of TH is an important regulator of TH activity through stabilization of TH protein levels.  相似文献   

15.
The involvement of cdc2 and cdk2 during neuronal differentiation in rat pheochromocytoma PC12 cells was examined. When PC12 cells were cultured with nerve growth factor (NGF), expression of cdc2 decreased significantly after day 5, while expression of cdk2 decreased gradually after day 7. Cells overexpressing cdc2 or cdk2 were resistant to NGF-induced differentiation and growth suppression, and maintained high cdc2 or cdk2 kinase activity, respectively, during NGF treatment. In contrast, the NGF-treated parental cells showed a marked decline in these kinase activities after day 3. When PC12 cells were treated with specific inhibitors of cdc2/cdk2 (butyrolactone-I, olomoucin), they showed marked neurite extension and up-regulation of microtubule-associated protein 2 expression. In addition, treatment with mixtures of antisense oligonucleotides for cdc2 and cdk2 resulted in down-regulation of both cdc2 and cdk2 kinase activities as well as significant neurite outgrowth and up-regulation of microtubule-associated protein 2 expression. However, neurite outgrowth was not observed in cells treated with either single antisense oligonucleotide, or antisense cdc2 + cdk4 or cdk2 + cdk4 oligonucleotide mixtures. These results suggest that simultaneous down-regulation of cdc2 and cdk2 activity is sufficient and necessary for neuronal differentiation in PC12 cells.  相似文献   

16.
Pho85 is a versatile cyclin-dependent kinase (CDK) found in budding yeast that regulates a myriad of eukaryotic cellular functions in concert with 10 cyclins (called Pcls). Unlike cell cycle CDKs that require phosphorylation of a serine/threonine residue by a CDK-activating kinase (CAK) for full activation, Pho85 requires no phosphorylation despite the presence of an equivalent residue. The Pho85-Pcl10 complex is a key regulator of glycogen metabolism by phosphorylating the substrate Gsy2, the predominant, nutritionally regulated form of glycogen synthase. Here we report the crystal structures of Pho85-Pcl10 and its complex with the ATP analog, ATPγS. The structure solidified the mechanism for bypassing CDK phosphorylation to achieve full catalytic activity. An aspartate residue, invariant in all Pcls, acts as a surrogate for the phosphoryl adduct of the phosphorylated, fully activated CDK2, the prototypic cell cycle CDK, complexed with cyclin A. Unlike the canonical recognition motif, SPX(K/R), of phosphorylation sites of substrates of several cell cycle CDKs, the motif in the Gys2 substrate of Pho85-Pcl10 is SPXX. CDK5, an important signal transducer in neural development and the closest known functional homolog of Pho85, does not require phosphorylation either, and we found that in its crystal structure complexed with p25 cyclin a water/hydroxide molecule remarkably plays a similar role to the phosphoryl or aspartate group. Comparison between Pho85-Pcl10, phosphorylated CDK2-cyclin A, and CDK5-p25 complexes reveals the convergent structural characteristics necessary for full kinase activity and the variations in the substrate recognition mechanism.  相似文献   

17.
Liu F  Iqbal K  Grundke-Iqbal I  Gong CX 《FEBS letters》2002,530(1-3):209-214
Microtubule-associated protein tau is abnormally hyperphosphorylated, glycosylated, and aggregated in affected neurons in the brains of individuals with Alzheimer’s disease (AD). We recently found that the glycosylation might precede hyperphosphorylation of tau in AD. In this study, we investigated the effect of glycosylation on phosphorylation of tau catalyzed by cyclin-dependent kinase 5 (cdk5) and glycogen synthase kinase-3β (GSK-3β). The phosphorylation of the longest isoform of recombinant human brain tau, tau441, at various sites was detected by Western blots and by radioimmuno-dot-blot assay with phosphorylation-dependent and site-specific tau antibodies. We found that cdk5 phosphorylated tau441 at Thr-181, Ser-199, Ser-202, Thr-205, Thr-212, Ser-214, Thr-217, Thr-231, Ser-235, Ser-396, and Ser-404, but not at Ser-262, Ser-400, Thr-403, Ser-409, Ser-413, or Ser-422. GSK-3β phosphorylated all the cdk5-catalyzed sites above except Ser-235. Deglycosylation by glycosidases depressed the subsequent phosphorylation of AD-tau (i) with cdk5 at Thr-181, Ser-199, Ser-202, Thr-205, and Ser-404, but not at Thr-212; and (ii) with GSK-3β at Thr-181, Ser-202, Thr-205, Ser-217, and Ser-404, but not at Ser-199, Thr-212, Thr-231, or Ser-396. These data suggest that aberrant glycosylation of tau in AD might be involved in neurofibrillary degeneration by promoting abnormal hyperphosphorylation by cdk5 and GSK-3β.  相似文献   

18.
It has been thought that clathrin-mediated endocytosis is regulated by phosphorylation and dephosphorylation of many endocytic proteins, including amphiphysin I and dynamin I. Here, we show that Cdk5/p35-dependent cophosphorylation of amphiphysin I and dynamin I plays a critical role in such processes. Cdk5 inhibitors enhanced the electric stimulation-induced endocytosis in hippocampal neurons, and the endocytosis was also enhanced in the neurons of p35-deficient mice. Cdk5 phosphorylated the proline-rich domain of both amphiphysin I and dynamin I in vitro and in vivo. Cdk5-dependent phosphorylation of amphiphysin I inhibited the association with beta-adaptin. Furthermore, the phosphorylation of dynamin I blocked its binding to amphiphysin I. The phosphorylation of each protein reduced the copolymerization into a ring formation in a cell-free system. Moreover, the phosphorylation of both proteins completely disrupted the copolymerization into a ring formation. Finally, phosphorylation of both proteins was undetectable in p35-deficient mice.  相似文献   

19.
Liu F  Liang Z  Shi J  Yin D  El-Akkad E  Grundke-Iqbal I  Iqbal K  Gong CX 《FEBS letters》2006,580(26):6269-6274
Phosphorylation of tau protein is regulated by several kinases, especially glycogen synthase kinase 3beta (GSK-3beta), cyclin-dependent protein kinase 5 (cdk5) and cAMP-dependent protein kinase (PKA). Phosphorylation of tau by PKA primes it for phosphorylation by GSK-3beta, but the site-specific modulation of GSK-3beta-catalyzed tau phosphorylation by the prephosphorylation has not been well investigated. Here, we found that prephosphorylation by PKA promotes GSK-3beta-catalyzed tau phosphorylation at Thr181, Ser199, Ser202, Thr205, Thr217, Thr231, Ser396 and Ser422, but inhibits its phosphorylation at Thr212 and Ser404. In contrast, the prephosphorylation had no significant effect on its subsequent phosphorylation by cdk5 at Thr181, Ser199, Thr205, Thr231 and Ser422; inhibited it at Ser202, Thr212, Thr217 and Ser404; and slightly promoted it at Ser396. These studies reveal the nature of the inter-regulation of tau phosphorylation by the three major tau kinases.  相似文献   

20.
The myotonic dystrophy kinase-related kinases RhoA binding kinase and myotonic dystrophy kinase-related Cdc42 binding kinase (MRCK) are effectors of RhoA and Cdc42, respectively, for actin reorganization. Using substrate screening in various tissues, we uncovered two major substrates, p130 and p85, for MRCKalpha-kinase. p130 is identified as myosin binding subunit p130, whereas p85 is a novel related protein. p85 contains N-terminal ankyrin repeats, an alpha-helical C terminus with leucine repeats, and a centrally located conserved motif with the MRCKalpha-kinase phosphorylation site. Like MBS130, p85 is specifically associated with protein phosphatase 1delta (PP1delta), and this requires the N terminus, including the ankyrin repeats. This association is required for the regulation of both the catalytic activities and the assembly of actin cytoskeleton. The N terminus, in association with PP1delta, is essential for actin depolymerization, whereas the C terminus antagonizes this action. The C-terminal effects consist of two independent events that involved both the conserved phosphorylation inhibitory motif and the alpha-helical leucine repeats. The former was able to interact with PP1delta only in the phosphorylated state and result in inactivation of PP1delta activity. This provides further evidence that phosphorylation of a myosin binding subunit protein by specific kinases confers conformational changes in a highly conserved region that plays an essential role in the regulation of its catalytic subunit activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号