首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The binding of sodium ions to the transmembrane channel peptide gramicidin A has permitted the use of electrospray ionization mass spectrometry to study its conformation in different solvent environments. The mass spectra of the peptide in the various solvents suggest that different conformations of gramicidin A differ in their ability to bind metal ions. The data are consistent with monomeric behavior of gramicidin A in trifluoroethanol and dimethyl sulfoxide solutions, but reveal the presence of noncovalent intermolecular interactions in ethanol solution through the observation of heterodimers formed between the naturally occurring variants of the peptide. The addition of 50% v/v of water to the ethanolic solution causes changes in the circular dichroism spectrum of the peptide, suggestive of a shift in the equilibrium mixture of conformers present toward monomeric species, a result supported by its mass spectrum. The structure of gramicidin A in trifluoroethanol has also been investigated by hydrogen exchange measurements monitored by mass spectrometry. The observation of significant protection against exchange suggests that the monomeric peptide is highly structured in trifluoroethanol. The results indicate that mass spectrometry has the potential to probe the conformational behavior of neutral hydrophobic peptides in environments that mimic their functional states.  相似文献   

2.
M C Ba?ó  L Braco  C Abad 《Biochemistry》1991,30(4):886-894
We have investigated the conformation of gramicidin A reconstituted in different phospholipid environments, small unilamellar vesicles, extensive bilayers, and micelles, by exploiting a recently proposed experimental approach based on high-performance liquid chromatography [Ba?ó et al. (1988) J. Chromatogr. 458, 105; Ba?ó et al. (1989) FEBS Lett. 250, 67]. The method allows the separation of conformational species of the peptide, namely, antiparallel double-stranded (APDS) dimers and beta 6.3-helical monomers, and quantitation of their proportions in the lipid environment. Various experimental parameters (e.g., nature of organic solvent, time of incubation in organic solvent, lipid-to-peptide mole ratio, time of sonication, and temperature) commonly involved in sample preparation protocols have been analyzed independently. The results show how the peptide conformation in model membranes is exquisitely dictated by the particular nature of the reconstitution protocol. In addition, we have elucidated the nature of the slow conformational transition of gramicidin toward the channel configuration that takes place upon incubation of the model membranes. This transition has been characterized as a temperature-dependent conversion from APDS dimeric to beta 6.3-helical monomeric forms. Analysis of kinetic data permits an accurate calculation of the rate constant for this process at different temperatures in phospholipid vesicles and micelles. Finally, an explanation is proposed for the laboratory-to-laboratory variation in the observed spectral patterns of inserted gramicidin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
J A Killian  K U Prasad  D Hains  D W Urry 《Biochemistry》1988,27(13):4848-4855
The conformation of gramicidin in diacylphosphatidylcholine model membranes was investigated as a function of the solvent in which peptide and lipid are initially codissolved. By use of circular dichroism it is demonstrated that, upon removal of the solvent and hydration of the mixed gramicidin/lipid film, it is the conformational behavior of the peptide in the organic solvent that determines its final conformation in dimyristoylphosphatidylcholine model membranes. As a consequence, parameters that influence the conformation of the peptide in the solvent also play an essential role, such as the gramicidin concentration and the rate of interconversion between different conformations. Of the various solvents investigated, only with trifluoroethanol is it possible directly to incorporate gramicidin entirely in the beta 6.3-helical (channel) configuration. It is also shown that the conformation of gramicidin in the membrane varies with the peptide/lipid ratio, most likely as a result of intermolecular gramicidin-gramicidin interactions at higher peptide/lipid ratios, and that heat incubation leads to a conformational change in the direction of the beta 6.3-helical conformation. Using lipids with an acyl chain length varying from 12 carbon atoms in dilauroylphosphatidylcholine to 22 carbon atoms in dierucoylphosphatidylcholine, it was possible to investigate the acyl chain length dependence of the gramicidin conformation in model membranes prepared from these lipids with the use of different solvent systems. It is demonstrated for each solvent system that the distribution between different conformations is relatively independent of the acyl chain length but that the rate at which the conformation converts toward the beta 6.3-helical configuration upon heating of the samples is affected by the length of the acyl chain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
M Cotten  F Xu    T A Cross 《Biophysical journal》1997,73(2):614-623
The replacement of four tryptophans in gramicidin A by four phenylalanines (gramicidin M) causes no change in the molecular fold of this dimeric peptide in a low dielectric isotropic organic solvent, but the molecular folds are dramatically different in a lipid bilayer environment. The indoles of gramicidin A interact with the anisotropic bilayer environment to induce a change in the molecular fold. The double-helical fold of gramicidin M, as opposed to the single-stranded structure of gramicidin A, is not compatible with ion conductance. Gramicidin A/gramicidin M hybrid structures have also been prepared, and like gramicidin M homodimers, these dimeric hybrids appear to have a double-helical fold, suggesting that a couple of indoles are being buried in the bilayer interstices. To achieve this equilibrium structure (i.e., minimum energy conformation), incubation at 68 degrees C for 2 days is required. Kinetically trapped metastable structures may be more common in lipid bilayers than in an aqueous isotropic environment. Structural characterizations in the bilayers were achieved with solid-state NMR-derived orientational constraints from uniformly aligned lipid bilayer samples, and characterizations in organic solvents were accomplished by solution NMR.  相似文献   

5.
J A Killian  D W Urry 《Biochemistry》1988,27(19):7295-7301
The ability of gramicidin to induce bilayer formation in lysophosphatidylcholine (LPC) systems was investigated as a function of the conformation of the peptide. The conformation was varied by using different solvents to cosolubilize gramicidin and lipid. Using circular dichroism (CD), it was found that when codissolved in trifluoroethanol (TFE), after drying and subsequent hydration, gramicidin is mainly present in the single-stranded beta 6.3-helical configuration, whereas when using chloroform/methanol or ethanol as the solvent, it is proposed that the dominant conformation of gramicidin in the membrane is that of the double-stranded antiparallel dimer. Employing 31P NMR, the stoichiometry for bilayer formation was found to be 6 to 7 lipid molecules per gramicidin monomer, when samples were prepared from TFE, whereas a stoichiometry of 4 was found when chloroform/methanol or ethanol was the solvent. Upon heating the latter samples, a conversion was observed in the CD pattern toward that indicative of the beta 6.3-helical configuration. This change was accompanied by an increase in the extent of bilayer formation. Next, it was investigated whether the conformation of gramicidin and its ability to induce bilayer formation were dependent on the lipid acyl chain length. CD measurements of samples prepared from TFE indicated that gramicidin, independent of acyl chain length, was present in the beta 6.3-helical configuration but the intensity of the ellipticities at 218 nm increased with the length of the acyl chain. The extent of bilayer formation in these samples was found to be largely chain length independent.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Gramicidin A (gA) is a polypeptide antibiotic which forms dimeric channels specific for monovalent cations in biological membranes. It is a polymorphic molecule that adopts several different conformations, double-stranded (ds) helical dimers (pore conformation) and single-stranded beta-helical dimers (channel conformation). This study investigated the conformational adaptability of gramicidin A when incorporated into micelles as membrane-mimetic model system. Taking advantage of our reported, versatile, size-exclusion high-performance liquid chromatography (SE-HPLC) strategy that allows the separation of double-stranded dimers and monomers, we have quantitatively characterized the conformational transition undergone by the peptide in the micellar milieu. The importance of both hydrophobic/hydrophilic moieties of the amphipaths in the stabilization of concrete conformational species is demonstrated using detergents with different hydrocarbon chain length and/or polar head. SE-HPLC is a valuable, rapid, accurate technique for the structural characterization of hydrophobic autoassociating peptides that work in lipid environments such as biological membranes.  相似文献   

7.
It is shown by 31P-NMR and small angle X-ray scattering that induction of an hexagonal HII phase in dioleoylphosphatidylcholine model membranes by external addition of gramicidin A' depends on the solvent which is used to solubilize the peptide. Addition of gramicidin from dimethylsulfoxide or trifluoroethanol solution leads to HII phase formation whereas addition of the peptide from ethanol does not. This solvent dependence is shown by circular dichroism to be correlated with the peptide conformation. The channel conformation appears to be responsible for HII phase formation by gramicidin.  相似文献   

8.
A partial phase diagram of the system N,N-dimethyldodecylamine oxide (DDAO)/water/gramicidin D was determined by 2H-NMR. Both 2H2O and perdeuterated DDAO (DDAO-d31) were studied by solid state NMR techniques. Addition of gramicidin D to the micellar (L1), normal hexagonal (HI) and cubic (I) phases of DDAO induces phase separations, giving two-phase regions, which all contain a lamellar (L alpha) phase. The L alpha phase containing gramicidin is characterized by larger order parameters for DDAO-d31 compared with the corresponding order parameters in the L alpha and HI phases of DDAO-d31/H2O. The L alpha phase may stay in equilibrium with any other phase in the phase diagram. The DDAO exchange between the coexisting phases is slow on the NMR timescale, which is why the recorded NMR spectrum consists of superimposed spectra from the different phases occurring in the sample. Gramicidin D can be solubilized in appreciable quantities only in the lamellar phase of DDAO-d31. Increasing amounts of gramicidin in the liquid crystalline phases result in a continuous increase in the molecular ordering up to about 5 mol% gramicidin, where a plateau is reached. This is consistent with a recent theoretical model describing the influence on the ordering of lipids by a membrane protein with larger hydrophobic thickness than the lipid bilayer. The solvent used for dissolving gramicidin at the incorporation of the peptide in the lipid aggregates has no effect on the 2H-NMR lineshapes of DDAO-d31. It is concluded that gramicidin is solubilized in the L alpha phase and that it always adopts the channel conformation independent of a particular solvent. The channel conformation is also supported by CD studies. In some of the samples, macroscopic orientation of the lipid aggregates is observed. It is concluded that DDAO-d31 in the binary system favors an orientation with the long axis of the hydrocarbon chain perpendicular to the magnetic field, whereas when gramicidin D is present the hydrocarbon chain orients parallel to the magnetic field. This is explained by the fact that gramicidin aligns with its helical axis parallel to the magnetic field, thereby forcing also the DDAO-d31 molecules to obtain such an orientation.  相似文献   

9.
Enhanced structural insights into the folding energy landscape of the N-terminal dimerization domain of Escherichia coli tryptophan repressor, [2-66]2 TR, were obtained from a combined experimental and theoretical analysis of its equilibrium folding reaction. Previous studies have shown that the three intertwined helices in [2-66]2 TR are sufficient to drive the formation of a stable dimer for the full-length protein, [2-107]2 TR. The monomeric and dimeric folding intermediates that appear during the folding reactions of [2-66]2 TR have counterparts in the folding mechanism of the full-length protein. The equilibrium unfolding energy surface on which the folding and dimerization reactions occur for [2-66]2 TR was examined with a combination of native-state hydrogen exchange analysis, pepsin digestion and matrix-assisted laser/desorption mass spectrometry performed at several concentrations of protein and denaturant. Peptides corresponding to all three helices in [2-66]2 TR show multi-layered protection patterns consistent with the relative stabilities of the dimeric and monomeric folding intermediates. The observation of protection exceeding that offered by the dimeric intermediate in segments from all three helices implies that a segment-swapping mechanism may be operative in the monomeric intermediate. Protection greater than that expected from the global stability for a single amide hydrogen in a peptide from the C-helix possibly and another from the A-helix may reflect non-random structure, possibly a precursor for segment swapping, in the urea-denatured state. Native topology-based model simulations that correspond to a funnel energy landscape capture both the monomeric and dimeric intermediates suggested by the HX MS data and provide a rationale for the progressive acquisition of secondary structure in their conformational ensembles.  相似文献   

10.
Z Zhang  S M Pascal  T A Cross 《Biochemistry》1992,31(37):8822-8828
A conformational transition is described for the polypeptide, gramicidin A, in which a dimer that forms a left-handed intertwined antiparallel helix is converted to a single-stranded amino terminus to amino terminus right-handed helix. The starting structure is determined here by solution NMR methods while reference is made to the well-established folding motif of gramicidin in a lipid bilayer for the ultimate conformation of this transition. Furthermore, an organic solvent system of benzene and ethanol in which gramicidin has a unique conformation is identified. This conformation is shown to be very similar to that derived from X-ray diffraction of crystals prepared from a similar solvent system.  相似文献   

11.
Lung surfactant protein C (SP-C) is a lipophilic peptide that converts from a monomeric alpha-helical state into beta-sheet conformation and forms amyloid fibrils, a process which appears to be accelerated by removal of its two S-palmitoyl groups, and elevated amounts of non-palmitoylated SP-C are found in pulmonary alveolar proteinosis. Here, we used mass spectrometry to study the first step in fibrillogenesis of di-, mono- and non-palmitoylated SP-C. First, the individual decreases in concentration of monomeric alpha-helical forms of the three peptides in an acidified aqueous organic solvent mixture were monitored by electrospray (ES) mass spectrometry. Dipalmitoylated SP-C disappeared with a first-order rate constant of 0.01 h(-1), corresponding to a t(1/2) of 70 hours, while SP-C missing one or two palmitoyl groups disappeared with a rate constant of 0.02 h(-1), t(1/2)=35 hours. This supports the suggestion that the acyl chains stabilise helical SP-C, and that small differences in helix stability can influence fibril formation. The rates of disappearance of the monomeric alpha-helical peptides are much faster than the disappearance of total soluble SP-C (t(1/2)=15 days for SP-C forms soluble after centrifugation at 20,000 g), which suggests that fibril formation is preceded by formation of soluble aggregates. Next, we used matrix-assisted laser desorption/ionisation (MALDI) mass spectrometry to measure hydrogen-->deuterium (H/(2)H) exchange in di-, mono- and non-palmitoylated SP-C in acidified aqueous organic solvents. All three species contain a rigid alpha-helix in their monomeric forms and no difference in deuterium uptake between SP-C with and without palmitoyl groups could be detected. The decreased stability of mono- and non-palmitoylated SP-C observed by ES mass spectrometry is thus not associated with partial unwinding of the helix in solution. Finally, SP-C was shown to unfold during the ES process (where ions are transferred from the solution to the gas phase) and the unfolded forms of di-, mono- and non-palmitoylated SP-C undergo H/(2)H exchange. This, together with the findings from MALDI H/(2)H experiments that the alpha-helix does not exchange, indicates that no partly helical intermediates exist and that the unfolding is highly cooperative.  相似文献   

12.
Merlino A  Picone D  Ercole C  Balsamo A  Sica F 《Biochimie》2012,94(5):1108-1118
3D domain swapping is the process by which two or more protein molecules exchange part of their structure to form intertwined dimers or higher oligomers. Bovine pancreatic ribonuclease (RNase A) is able to swap the N-terminal α-helix (residues 1-13) and/or the C-terminal β-strand (residues 116-124), thus forming a variety of oligomers, including two different dimers. Cis-trans isomerization of the Asn113-Pro114 peptide group was observed when the protein formed the C-terminal swapped dimer. To study the effect of the substitution of Pro114 on the swapping process of RNase A, we have prepared and characterized the P114A monomeric and dimeric variants of the enzyme. In contrast with previous reports, the crystal structure and NMR data on the monomer reveals a mixed cis-trans conformation for the Asn113-Ala114 peptide group, whereas the X-ray structure of the C-terminal swapped dimer of the variant is very close to that of the corresponding dimer of RNase A. The mutation at the C-terminus affects the capability of the N-terminal α-helix to swap and the stability of both dimeric forms. The present results underscore the importance of the hydration shell in determining the cross-talk between the chain termini in the swapping process of RNase A.  相似文献   

13.
High-speed (14 kHz) solid-state magic angle spinning (MAS) 1H NMR has been applied to several membrane peptides incorporated into nondeuterated dilauroyl or dimyristoylphosphatidylcholine membranes suspended in H2O. It is shown that solvent suppression methods derived from solution NMR, such as presaturation or jump-return, can be used to reduce water resonance, even at relatively high water content. In addition, regioselective excitation of 1H peptide resonances promotes an efficient suppression of lipid resonances, even in cases where these are initially two orders of magnitude more intense. As a consequence, 1H MAS spectra of the peptide low-field region are obtained without interference from water and lipid signals. These display resonances from amide and other exchangeable 1H as well as from aromatic nonexchangeable 1H. The spectral resolution depends on the specific types of resonance and membrane peptide. For small amphiphilic or hydrophobic oligopeptides, resolution of most individual amide resonance is achieved, whereas for the transmembrane peptide gramicidin A, an unresolved amide spectrum is obtained. Partial resolution of aromatic 1H occurs in all cases. Multidimensional 1H-MAS spectra of membrane peptides can also be obtained by using water suppression and regioselective excitation. For gramicidin A, F2-regioselective 2D nuclear Overhauser effect spectroscopy (NOESY) spectra are dominated by intermolecular through-space connectivities between peptide aromatic or formyl 1H and lipid 1H. These appear to be compatible with the known structure and topography of the gramicidin pore. On the other hand, for the amphiphilic peptide leucine-enkephalin, F2-regioselective NOESY spectra mostly display cross-peaks originating from though-space proximities of amide or aromatic 1H with themselves and with aliphatic 1H. F3-regioselective 3D NOESY-NOESY spectra can be used to obtain through-space correlations within aliphatic 1H. Such intrapeptide proximities should allow determination of the conformation of the peptide in membranes. It is suggested that high-speed MAS multidimensional 1H NMR of peptides in nondeuterated membranes and in H2O can be used for studies of both peptide structure and lipid-peptide interactions.  相似文献   

14.
D Salom  C Abad  L Braco 《Biochemistry》1992,31(34):8072-8079
We have investigated the conformational adaptability of gramicidin A incorporated into reverse micelles of sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/isooctane/water, a so far unexplored "host" membrane-mimetic model system for this peptide. A high-performance liquid chromatographic strategy previously developed for the study of gramicidin in phospholipid vesicles and normal micelles [Ba?ó et al. (1989) FEBS Lett. 250, 67; Ba?ó et al. (1991) Biochemistry 30, 886] has been successfully extended to this system. The method has permitted the separation of peptide conformational species, namely, double-stranded dimers and monomers, and an accurate quantitation of their proportion in the inverted micellar environment. It has been demonstrated that, once inserted in the micelle, the double-stranded dimers undergo a dissociation process toward a thermodynamically stable monomeric configuration, whose monomerization rate constant (k1) is dependent in a bell-shaped manner on the water:surfactant mole ratio, w0. A tight correlation between k1 and the double-stranded dimer backbone conformation has been found from the comparison of chromatographic and circular dichroism data. In addition, fluorescence experiments indicate that the peptide tryptophans are in a rather nonpolar environment, with a restricted accessibility to water-soluble quenchers such as acrylamide.  相似文献   

15.
The present work evaluates the use of intermolecular polypeptide–detergent 1H through-space connectivities to determine the bilayer exposed-surface and the bilayer topography of membrane polypeptides solubilized in non- deuterated detergents. For this purpose, the membrane peptide gramicidin A, solubilized in non-deuterated sodium dodecylsulfate as its dimeric 6,3 helix channel conformation was used. For this peptide, a high-resolution 3D structure, as well as reasonable assumptions concerning its membrane arrangement, exist. Band-selective 2D NOESY, ROESY and 3D NOESY-NOESY experiments were used to detect detergent–polypeptide through-space correlations in the presence of an excess of the non-deuterated detergent. The observed intermolecular NOEs appear to be strongly temperature- dependent. Based on the known 3D structure of the gramicidin channel, the detergent–polypeptide through-space correlations appear to be selective for 1H located on the hydrophobic surface of gramicidin A with very few contributions from interior 1H or water-exposed 1H. It is suggested that this method can be of general use to evaluate the bilayer-exposed surface and topography of membrane peptides and small proteins.  相似文献   

16.
SPf66 is the first chemically synthesized peptide to elicit a partial protective immune response against malaria. Size-exclusion chromatography (SEC) with multi-angle laser light-scattering (MALLS) detection and hydrogen/deuterium (H/D) exchange monitored by (matrix-assisted laser desorption/ionization) MALDI-TOF (time-of-flight) mass spectrometry (MS) were used to assess the conformation and stability in aqueous solution after storage at different temperatures. Moreover, the feasible conformational changes of this peptide were also measured by circular dichroism (CD)-spectroscopy. The absolute molecular weight of SPf66 monomer and dimer species were 4765 and 8960Da using SEC with MALLS detection, and 4643 and 9490Da by MALDI-TOF MS, the discrepancy being between both methods lower than 5.7%, a value quite close to those found in other proteins. The results from H/D exchange monitored by MALDI-TOF MS and CD-spectroscopy show that the SPf66 monomer lacks ordered structure, whereas the SPf66 dimer species presents segments of secondary structure as a determined by CD measurements.  相似文献   

17.
Gaegurin 4 (GGN4) is a 37-residue antimicrobial peptide isolated from the skin of a Korean frog, Rana rugosa. This peptide shows a broad range of activity against prokaryotic cells but shows very little hemolytic activity against human red blood cells. The solution structure of GGN4 was studied by using circular dichroism (CD) and NMR spectroscopy. CD investigations revealed that GGN4 adopts mainly an alpha-helical conformation in trifluoroethanol/water solution, in dodecylphosphocholine and in SDS micelles, but adopts random structure in aqueous solution. By using both homonuclear and heteronuclear NMR experiments, complete 1H and 15N resonance assignments were obtained for GGN4 in 50% trifluoroethanol/water solution. The calculated structures of GGN4 consist of two amphipathic alpha-helices extending from residues 2-10 and from residues 16-32. These two helices are connected by a flexible loop spanning between the residues 11 and 15. By using enzyme digestion and matrix-assisted laser desorption/ionization mass spectroscopy, we confirmed that GGN4 contains a disulfide bridge formed between the residues Cys31 and Cys37 in its C-terminus. The effect of disulfide bridge on the structure and the activity of GGN4 was investigated. The reduced form of GGN4 revealed a similar activity and conformation to native GGN4, suggesting that the disulfide bridge does not strongly affect the conformation and the antimicrobial activity of GGN4.  相似文献   

18.
19.
Subtilosin A produced by Bacillus subtilis is a macrocyclic peptide antibiotic which comprises 35 amino acids. Its molecular mass (3399.7 Da), determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and chemical properties gave experimental support for unusual intramolecular linkages. The three-dimensional fold of native subtilosin in dimethylsulfoxide was determined from two-dimensional 1H-NMR spectra recorded at 600 MHz. Based on the backbone conformation, a structure for subtilosin A is presented which is characterized by three inter-residue bridges where two cysteines are linked with two phenylalanine residues, respectively, and a third cysteine is bound to a threonine residue.  相似文献   

20.
Using [15N-Val7]gramicidin A it is shown by solid state 15N-NMR that in dimyristoylphosphatidylcholine model membrane preparations evidence is obtained for two different backbone conformations of gramicidin. One of these conformations is the familiar channel state while a second conformation possesses very different dynamic and structural characteristics. The relative amounts of the conformations depend upon the solvent used to initially codissolve peptide and lipid. Furthermore, by incubation of the samples at modestly elevated temperatures a conversion can be induced from the non-channel to the channel state in a lipid environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号