首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Experimental simian varicella virus (SVV) infection of St. Kitts vervet monkeys was evaluated as an animal model to investigate human varicella-zoster virus (VZV) infections. During the incubation period, viremia disseminated infectious virus throughout the body via infected peripheral blood lymphocytes (PBLs). A vesicular skin rash in the inguinal area, and on the abdomen, extremities, and face appeared on day 7–10 postinfection. Necrosis and hemorrhage in lung and liver tissues from acutely infected monkeys were evident upon histologic analysis. Recovery from simian varicella was accompanied by a rise in the serum neutralizing antibody response to the virus. SVV latency was established in trigeminal ganglia of monkeys which resolved the acute infection. This study indicates that experimental SVV infection of St. Kitts vervets is a useful animal model to investigate SVV and VZV pathogenesis and to evaluate potential antiviral agents and vaccines.  相似文献   

3.
Ganglia of monkeys with reactivated simian varicella virus (SVV) contained more CD8 than CD4 T cells around neurons. The abundance of CD8 T cells was greater less than 2 months after reactivation than that at later times and correlated with that of CXCL10 RNA but not with those of SVV protein or open reading frame 61 (ORF61) antisense RNA. CXCL10 RNA colocalized with T-cell clusters. After SVV reactivation, transient T-cell infiltration, possibly mediated by CXCL10, parallels varicella zoster virus (VZV) reactivation in humans.  相似文献   

4.
5.
6.
7.
Varicella zoster virus (VZV) is the etiological agent of varicella (chickenpox) and herpes zoster (HZ [shingles]). Clinical observations suggest that VZV-specific T cell immunity plays a more critical role than humoral immunity in the prevention of VZV reactivation and development of herpes zoster. Although numerous studies have characterized T cell responses directed against select VZV open reading frames (ORFs), a comprehensive analysis of the T cell response to the entire VZV genome has not yet been conducted. We have recently shown that intrabronchial inoculation of young rhesus macaques with simian varicella virus (SVV), a homolog of VZV, recapitulates the hallmarks of acute and latent VZV infection in humans. In this study, we characterized the specificity of T cell responses during acute and latent SVV infection. Animals generated a robust and broad T cell response directed against both structural and nonstructural viral proteins during acute infection in bronchoalveolar lavage (BAL) fluid and peripheral blood. During latency, T cell responses were detected only in the BAL fluid and were lower and more restricted than those observed during acute infection. Interestingly, we identified a small set of ORFs that were immunogenic during both acute and latent infection in the BAL fluid. Given the close genome relatedness of SVV and VZV, our studies highlight immunogenic ORFs that may be further investigated as potential components of novel VZV vaccines that specifically boost T cell immunity.  相似文献   

8.
Abstract: The humoral immune response to simian varicella virus (SVV) was investigated following primary and secondary experimental infection of African green monkeys. Neutralization and immunoprecipitation assays were used to determine antibody titers to SVV throughout the course of infection. The immune response to specific viral polypeptides was analyzed by immunoprecipitation analysis. The results demonstrate that the simian varicella model offers a useful approach to investigate immune mechanisms in human varicella zoster virus (VZV) infections.  相似文献   

9.
We have sequenced a simian varicella virus (SVV) open reading frame (ORF), 3,123 bp in length, whose product has 51% amino acid homology with the sequence encoded by the ORF of varicella-zoster virus gene 21. Several regions are highly conserved between the two ORFs, with homologies of approximately 80%. The SVV gene is transcribed in tissue culture cells productively infected with SVV and in monkey ganglia latently infected with SVV.  相似文献   

10.
Simian varicella virus (SVV) infection of primates shares clinical, pathological, immunological, and virological features with varicella-zoster virus infection of humans. Natural varicella infection was simulated by exposing four SVV-seronegative monkeys to monkeys inoculated intratracheally with SVV, in which viral DNA and RNA persist in multiple tissues for more than 1 year (T. M. White, R. Mahalingam, V. Traina-Dorge, and D. H. Gilden, J. Neurovirol. 8:191-205, 2002). The four naturally exposed monkeys developed mild varicella 10 to 14 days later, and skin scrapings taken at the time of the rash contained SVV DNA. Analysis of multiple ganglia, liver, and lung tissues from the four naturally exposed monkeys sacrificed 6 to 8 weeks after resolution of the rash revealed SVV DNA in ganglia at multiple levels of the neuraxis but not in the lung or liver tissue of any of the four monkeys. This animal model provides an experimental system to gain information about varicella latency with direct relevance to the human disease.  相似文献   

11.
Simian varicella virus (SVV) causes a natural erythematous disease in Old World monkeys and is responsible for simian varicella epizootics that occur sporadically in facilities housing nonhuman primates. This review summarizes the biology of SVV and simian varicella as a veterinary disease of nonhuman primates. SVV is closely related to varicella–zoster virus, the causative agent of human varicella and herpes zoster. Clinical signs of simian varicella include fever, vesicular skin rash, and hepatitis. Simian varicella may range from a mild infection to a severe and life-threatening disease, and epizootics may have high morbidity and mortality rates. SVV establishes a lifelong latent infection in neural ganglia of animals in which the primary disease resolves, and the virus may reactivate later in life to cause a secondary disease corresponding to herpes zoster. Prompt diagnosis is important for control and prevention of epizootics. Antiviral treatment for simian varicella may be effective if administered early in the course of infection.Abbreviations: FEAU, 1-(2′-deoxy-2′-flouro-β-D-arabinofuranosyl)-5-iodouracil, IE, immediate early, ORF, open reading frame, PBL, peripheral blood lymphocyte, SVV, simian varicella virus, VZV, varicella–zoster virusSimian varicella is a natural erythematous disease of Old World primates (Superfamily Cercopithecoidea, Subfamily Cercopithecinae), involving particularly patas (Erythrocebus patas), African green or vervet (Chlorocebus aethiops), and various species of macaque (Macaca spp.) monkeys. Epizootics of simian varicella occur sporadically in facilities housing nonhuman primates. These outbreaks are sometimes associated with high morbidity and mortality and the loss of valuable research animals. Simian varicella virus (SVV; Cercopithecine herpesvirus 9), a primate herpesvirus, is the etiologic agent of the disease. SVV is antigenically and genetically related to varicella–zoster virus (VZV; Human herpesvirus 3), the cause of human varicella (chickenpox) and herpes zoster (shingles). The clinical similarities between simian and human varicella and the relatedness of SVV and VZV, indicate that SVV infection of nonhuman primates is a useful model for study of varicella pathogenesis and development of antiviral therapies. A previous comprehensive review emphasized simian varicella as an experimental model for VZV infections.22 This review focuses on simian varicella as a veterinary disease of nonhuman primates. Simian varicella outbreaks and their epidemiology are considered, and the etiologic agent, clinical manifestations, pathogenesis, diagnosis, treatment, and control of the disease are discussed.  相似文献   

12.
13.
14.
Mutagenic repair in mammalian cells was investigated by determining the mutagenesis of UV-irradiated or unirradiated herpes simplex virus in UV-irradiated CV-1 monkey kidney cells. These results were compared with the results for UV-enhanced virus reactivation (UVER) in the same experimental situation. High and low multiplicities of infection were used to determine the effects of multiplicity reactivation (MR). UVER and MR were readily demonstrable and were approximately equal in amount in an infectious center assay. For this study, a forward-mutation assay was developed to detect virus mutants resistant to iododeoxycytidine (ICdR), probably an indication of the mutant virus being defective at its thymidine kinase locus. ICdR-resistant mutants did not have a growth advantage over wild-type virus in irradiated or unirradiated cells. Thus, higher fractions of mutant virus indicated greater mutagenesis during virus repair and/or replication. The data showed that: (1) unirradiated virus was mutated in unirradiated cells, providing a background level of mutagenesis; (2) unirradiated virus was mutated about 40% more in irradiated cells, indicating that virus replication (DNA synthesis?) became more mutagenic as a result of cell irradiation; (3) irradiated virus was mutated much more (about 6-fold) than unirradiated virus, even in unirradiated cells; (4) cell irradiation did not change the mutagenesis of irradiated virus except at high multiplicity of infection. High multiplicity of infection did not lead to higher mutagenesis in unirradiated cells. Thus the data did not demonstrate UVER or MR alone to be either error-free or error-prone. When the two processes were present simultaneously, they were mutagenic.  相似文献   

15.
16.
Wild-type varicella zoster virus (VZV) causes chickenpox, a common childhood illness characterized by fever and a vesicular rash and rare serious complications. Wild-type VZV persists in a latent form in the sensory ganglia, and can re-activate to cause herpes zoster. More than 10 million American children have received the live attenuated Oka strain VZV vaccine (OkaVZV) since its licensure in 1995. Pre-licensure clinical studies showed that mean serum anti-VZV levels among vaccinees continued to increase with time after vaccination. This was attributed to immunologic boosting caused by exposure to wild-type VZV in the community. Here, we examine the alternative, that large-scale asymptomatic reactivation of OkaVZV might occur in vaccinees. We analyzed serum antibody levels and infection rates for 4 years of follow-up in 4,631 children immunized with OkaVZV. Anti-VZV titers decreased over time in high-responder subjects, but rose in vaccinees with low titers. Among subjects with low anti-VZV titers, the frequency of clinical infection and immunological boosting substantially exceeded the 13%-per-year rate of exposure to wild-type varicella. These findings indicate that OkaVZV persisted in vivo and reactivated as serum antibody titers decreased after vaccination. This has salient consequences for individuals immunized with OkaVZV.  相似文献   

17.
A rhesus monkey was inoculated with rhesus cytomegalovirus. A leukocyte-associated herpes virus, unrelated to cytomegalovirus, was later isolated from the same monkey. Four years after the virus inoculation, the monkey developed a disseminated lymphoma.  相似文献   

18.
Summary Patients suffering from metastatic breast cancer and recurrent fever were investigated for viral reactivation or new viral infection as a possible cause of these febrile episodes. Three groups of patients were included in the study: (a) patients under adjuvant chemotherapy with cyclophosphamide, methotrexate and fluoruracil, (b) patients with stable metastatic disease treated with cyclophosphamide, fluoruracil and Adriamycin or mitoxantrone and (c) patients with progressive metastatic disease who also received the latter treatment. During the time of observation, patients under adjuvant chemotherapy did not present with fever or asymptomatic viral reactivation or bacterial infections at all. Out of 7 patients with stable disease, 2 had bacterial infections that coincided with the leukocyte nadir, and 1 presented with asymptomatic reactivation of cytomegalovirus. In contrast, fever in 9 of 11 patients with progressive disease was associated with a reactivation of herpes simplex virus (HSV) and in 3 of them with a consecutive reactivation of varicella zoster virus (VZV). The increase in complement-fixing anti-HSV or anti-VZV antibodies occurred in close association with a rise of the respective preexisting antibodies of the IgG class. In addition, HSV-infected cells were recovered from the urine of 7 patients with progressive disease further corroborating the serological data. Incidentally, natural killer cell activity, which has been postulated to be connected with the defense against viral infections, was found to be significantly lower in the group of patients with progressive disease, as compared to the group of patients under adjuvant chemotherapy (P <0.05) or to the group of patients with stable disease (P <0.05). We conclude that unexplained fever in patients with progressive metastatic breast cancer may result from viral reactivation.  相似文献   

19.
Simian varicella virus (SVV) causes varicella in primates, becomes latent in ganglionic neurons, and reactivates to produce zoster. SVV produces a cytopathic effect in monkey kidney cells in tissue culture. To study the mechanism by which SVV-infected cells die, we examined markers of apoptosis 24 to 64 h postinfection (hpi). Western blot analysis of virus-infected cell lysates revealed a significant increase in the levels of the cleaved active form of caspase-3, accompanied by a parallel increase in caspase-3 activity at 40 to 64 hpi. Caspase-9, a marker for the intrinsic pathway, was activated significantly in SVV-infected cells at all time points, whereas trace levels of the active form of caspase-8, an extrinsic pathway marker, was detected only at 64 hpi. Bcl-2 expression at the mRNA and protein levels was decreased by 50 to 70% throughout the course of virus infection. Release of cytochrome c, an activator of caspase-9, from mitochondria into the cytoplasm was increased by 200% at 64 hpi. Analysis of Vero cells infected with SVV expressing green fluorescent protein (SVV-GFP) at 64 hpi revealed colocalization of the active forms of caspase-3 and caspase-9 and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) staining with GFP. A significant decrease in the bcl-2 mRNA levels along with an abundance of mRNA specific for SVV genes 63, 40, and 21 was seen in the fraction of Vero cells that were infected with SVV-GFP. Together, these findings indicate that SVV induces apoptosis in cultured Vero cells through the intrinsic pathway in which Bcl-2 is downregulated.Apoptosis, a regulated form of cell death, plays a critical role in the homeostasis of multicellular organisms. Key features include membrane blebbing, chromatin condensation, and cell shrinkage. UV irradiation, deprivation of growth factors, and viral infection all cause apoptosis in cultured cells. Apoptosis is triggered by sequential activation of a group of cysteine proteases known as caspases. Apoptosis proceeds primarily through two pathways. The extrinsic pathway involves activation of caspase-8 and is initiated by ligand interaction with Fas or death receptors, while the intrinsic pathway is activated by an imbalance between proapoptotic (e.g., Bad and Bax) and antiapoptotic (e.g., Bcl-2 and Bcl-xL) proteins in mitochondria (21), resulting in release of cytochrome c from mitochondria, which in turn activates caspase-9. Bcl-2 plays an important role in cell survival (22, 32). Both caspase-8 and caspase-9 activate caspase-3, which along with other effector caspases, cleave critical cellular proteins, resulting in apoptosis.Simian varicella virus (SVV), the primate counterpart of human varicella zoster virus (VZV), produces a naturally occurring exanthematous disease that mimics human varicella (9, 18). Clinical and pathological changes produced by SVV infection of primates are similar to those produced by human varicella, and both VZV and SVV reactivate from latently infected ganglionic neurons (4, 13, 23, 33). The SVV and VZV genomes share a high degree of nucleotide homology (3, 10), and SVV-specific antibodies cross-react with human VZV in serum neutralization and complement fixation tests (5, 6, 30). Both viruses produce a cytopathic effect in monkey kidney cells in tissue culture (2, 29, 31). VZV has been shown to cause apoptosis in cultured Vero cells, human foreskin fibroblasts, and peripheral blood mononuclear cells isolated from healthy donors but not in primary human dorsal root ganglionic neurons (12, 13, 16, 28). Apoptosis is also seen in peripheral blood mononuclear cells of children infected with VZV in vivo (25). Thus, VZV-induced apoptosis may be cell type specific. The main objectives of this study were to determine if SVV induces apoptosis in cultured Vero cells, a monkey kidney cell line, and to identify the specific pathways.  相似文献   

20.
K Takimoto 《Mutation research》1983,121(3-4):159-166
The frequency of forward mutation of unirradiated, UV-irradiated or gamma-irradiated herpes virus was determined after infecting UV-irradiated or unirradiated CV-1 monkey kidney cells, to investigate the correlation between UV-enhanced reactivation (UVER) and mutagenesis. UV-irradiation to cells had no effect on mutation frequency of irradiated virus even in the conditions in which UVER was maximally expressed for the survival of UV-irradiated virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号